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ABSTRACT

Reinforcement learning has become a prominent research direction with the utiliza-
tion of deep neural networks as state-action value function approximators enabling
exploration and construction of functioning neural policies in MDPs with state
representations in high dimensions. While reinforcement learning is currently
being deployed in many different settings from medical to finance, the fact that
reinforcement learning requires a reward signal from the MDP to learn a func-
tioning policy can be restrictive for tasks in which the construction of the reward
function is more or equally complex than learning it. In this line of research several
studies proposed algorithms to learn a reward function or an optimal policy from
observed optimal trajectories. In this paper, we focus on non-robustness of the
state-of-the-art algorithms that accomplish learning without rewards in high dimen-
sional state representation MDPs, and we demonstrate that the vanilla trained deep
reinforcement learning policies are more resilient and value aligned than learning
without rewards in MDPs with complex state representations.

1 INTRODUCTION

Learning from raw high dimensional state observations became possible with the utilization of effec-
tive function approximators (Mnih et al., 2015; 2016; Vinyals et al., 2019). Thus, this enhancement
in the capabilities of reinforcement learning agents allowed these policies to be deployed in different
fields from autonomous vehicles to language agents (OpenAI, 2023). One of the main limitations
of reinforcement learning is to require a reward function to be able to learn an optimal policy for a
given task. In some cases, constructing a reward function might be substantially more challenging
than learning one, as in large language models (i.e. reinforcement learning from human feedback)
(Glaese et al., 2022; Zhu et al., 2023). To solve this problem a line of research focused on learning the
reward function solely based on observing expert trajectories, and several proposed to directly learn
the optimal policy from the expert demonstrations. Even further, quite recent work demonstrated that
learning from demonstrations is substantially more sample-efficient than deep reinforcement learning
(Garg et al., 2021).

While deep reinforcement learning policies are vastly utilized in manifold settings, several concerns
have been raised on the robustness and adversarial weaknesses of these deep neural policies (Huang
et al., 2017; Gleave et al., 2020; Korkmaz, 2022; 2023). In particular, it has been shown that deep
reinforcement learning policies can be manipulated via adversarial perturbations introduced to their
state observations. Thus, the non-robustness of deep reinforcement learning limits the capabilities of
policies trained in high dimensional state representation MDPs and raises safety concerns. Therefore,
in our paper we seek answers to the following questions:

i. Does learning without rewards in high-dimensional state representation MDPs yield learn-
ing non-robust features independent from both the MDP and algorithm?

ii. How do the state-of-the-art algorithms that focus on learning via emulating affect the policy
robustness compared to straightforward vanilla training algorithms?

iii. Does learning from expert demonstrations come with a cost compared to learning from
exploration?
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Hence, to investigate these questions further in this paper we focus on the robustness and vulnerabili-
ties of policies that can learn without a reward function towards adversarial formulations and make
the following contributions:

• We investigate the robustness of the state-of-the-art deep neural policies that focus on
learning via emulating against adversarial directions independent from both the algorithms
the policies are trained with and the MDPs the policies are trained in. Our paper is the first
one to focus on adversarial vulnerabilities of deep neural policies that can learn without a
reward function.

• We theoretically motivate that learning from expert demonstrations comes with a great cost
compared to learning from exploring. Learning without rewards causes sequential decision
making processes to be extremely sensitive towards slight deviations from their optimal
trajectories.

• We compare the robustness of straightforward vanilla trained policies and the policies that
can learn without a reward function in high dimensional state representation MDPs. We
demonstrate that vanilla trained deep reinforcement learning policies are significantly more
robust compared to algorithms proposed to learn without the presence of a reward function
(i.e. imitation learning and inverse reinforcement learning).

• Finally, we demonstrate that even extremely small divergence from optimal trajectories
completely breaks the correlation between predicted rewards and true rewards obtained from
the MDP for inverse deep neural policies.

2 RELEVANT WORK AND BACKGROUND

In reinforcement learning the environment is given by a Markov decision process (MDP) M =
{S,A,P, p0, r, γ} where S is the set of states, A is the set of actions, P(s′ | s, a) is the probability
of transitioning to state s′ given that action a is taken in state s, p0 is the initial state distribution,
r(s, a) is the reward received when taking action a in state s, and 0 < γ ≤ 1 is the discount factor.
A policy π(s, a) assigns a probability distribution on actions a ∈ A to each state s ∈ S. Given a
starting state distribution p0, and transition probabilities P(· | st, at), a policy π defines a probability
distribution Pπ on trajectories {st, at}t≥0 where s0 ∼ p0, at ∼ π(st, ·), and st+1 ∼ P(· | st, at). In
particular, the distribution Pπ satisfies Pπ[s0 = s] = p0(s),

Pπ[at = a | st = s] = π(s, a),Pπ[st+1 = s′ | st = s, at = a] = P(s′ | s, a).

The goal in reinforcement learning is to learn a policy π(s, a) that maximizes the expected dis-
counted cumulative rewards

∑
t γ

t Est,at∼Pπ [r(st, at)]. The occupancy measure ρπ for a pol-
icy π is the distribution over states and actions visited when executing the policy given by
ρπ(s, a) = π(s, a)

∑
t γ

tPπ[st = s]. In soft-Q learning the policy is determined by learning the
soft-Q function Q(s, a). Given a policy π and a function Q(s, a) the soft value function is given by
Vπ(s) = Ea∼π(s,·)[Q(s, a)− log π(s, a)], and the soft Bellman operator is

(T πQ)(s, a) = r(s, a) + γEs′∼P(·|s,a)[Vπ(s′, a)].

The soft Bellman operator is contractive and defines a unique soft-Q function satisfying the soft
Bellman equation Q = T πQ. In soft-Q learning the goal is to learn a policy π which maximizes the
entropy-regularized reward

∑
t γ

t Est,at∼Pπ [r(st, at)− log(π(st, at))]. The optimal policy is given
by π(s, a) = expQ(s,a)∑

a′ expQ(s,a′) , where Q is the soft-Q function satisfying the soft Bellman equation
Q(s, a) = r(s, a) + γ Es′∼P(·|s,a)[log

∑
a′ Q(s′, a′)].

Robustness in Deep Reinforcement Learning: The first work focusing on adversarial robustness
of deep reinforcement learning policies was conducted by Huang et al. (2017). In particular, the
study conducted by Huang et al. (2017) utilizes the fast gradient sign method produced perturbations
(introduced by Goodfellow et al. (2015)) added to the state observations of the deep reinforcement
learning policies. On this line of research while some studies focus on investigating more efficient
ways of producing these adversarial perturbations introduced to state observations, some utilize
adversarial formulations (Carlini & Wagner, 2017) to investigate frequency vulnerabilities and
visualize the different patterns of non-robust features learnt by different deep reinforcement learning
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algorithms. Along these lines, some studies investigate the relationship between adversarial directions
and natural directions intrinsic to the MDP and demonstrate that adversarial training results in worse
generalization capabilities compared to vanilla training (Korkmaz, 2023). Following the research
focusing on investigating vulnerabilities of deep reinforcement learning policies towards adversarial
perturbations several other works focus on different strategies to make policies more robust towards
these malicious perturbations. More in particular, Gleave et al. (2020); Pinto et al. (2017) propose
to formulate the relationship between the adversary and the policy as a zero-sum Markov game.
In some of these studies the adversary is restricted to change environment dynamics (Pinto et al.,
2017), and in others the adversary is restricted to taking natural actions in the given environment
(Gleave et al., 2020). Some studies focused on detection of these adversarial (i.e. non-robust)
state observations by leveraging the curvature of the deep reinforcement learning manifold to make
robust decisions (Korkmaz & Brown-Cohen, 2023). While several studies focused on trying to
build robust deep reinforcement learning policies, quite recently several studies demonstrated that
deep reinforcement learning policies learn shared adversarial features across MDPs including the
state-of-the-art adversarially trained ones (Korkmaz, 2022; 2021).

Learning without Rewards: Reinforcement learning from human feedback (RLHF) resulted in
substantial progress in large language models (OpenAI, 2023). To ensure safety and aligned values
with human preferences, currently reinforcement learning from human feedback is the main method
used widely in large language models (Glaese et al., 2022; Zhu et al., 2023; Menick et al., 2022).
Quite recent work demonstrated the connection between learning from preferences and inverse
reinforcement learning, and further provided sample complexity bounds for these algorithms (Zhu
et al., 2023). Note that inverse reinforcement learning focuses on learning a reward function from
a set of expert trajectory observations. Hence, upon the construction of a reward function from
observations an optimal policy can be learnt via straightforward reinforcement learning. Another line
of research that centers on learning without a reward function focuses on the setting of learning a
functioning policy from a given set of observed expert trajectories via emulating expert behaviour.
Quite recently, Garg et al. (2021) proposed to learn a single Q function from expert demonstrations
to both represent the reward function and the policy. The proposal of learning a soft-Q function is
currently the only algorithm that can achieve a performance level that can match deep reinforcement
learning in high dimensional state representation MDPs. Furthermore, the authors argue that the fact
that inferred rewards are highly correlated with the ground truth rewards shows that the proposed
algorithms can also be used in inverse reinforcement learning. For this reason in the remainder part
of the paper we will refer to inverse reinforcement and imitation learning policies as inverse deep
neural policies.

3 THE OUTCOMES OF LACK OF EXPLORATION IN LEARNING WITHOUT
REWARDS

In this section we fundamentally explain and theoretically motivate the results observed and reported
in Section 5. Thus, this section is dedicated to explain the natural cases where training via the
state-of-the-art deep imitation learning algorithms leads to policies that are non-robust. Let each state
be given by a d-dimensional feature vector s ∈ Rd, and for each action a ∈ A there is a parameter
vector θa ∈ Rd. The state-action value function is parameterized as Qθ(s, a) = 〈θa, s〉. The inverse
Q-learning objective is given by

E(s,a)∼ρE
[
φ
(
Qθ(s, a)− γEs′∼P(·|s,a)[Vθ(s′)]

)]
(1)

− E(s,a)∼µ
[
φ
(
Vθ(s)− γEs′∼P(·|s,a)[Vθ(s′)]

)]
where Vθ(s) = log

∑
a expQθ(s, a), and let ρE be the occupancy measure of the expert policy, and

µ any valid occupancy measure. We will focus on the offline setting where µ = ρE i.e. only samples
from expert trajectories are used. Later we will discuss extensions to the online setting where µ is a
mixture of expert trajectories and previously sampled states from a replay buffer. Expert trajectories
will achieve higher rewards than the trajectories generated by an agent early on in the training process.
Thus, we show that this corresponds to states in expert trajectories having larger projection onto a
low-dimensional subspace.
Lemma 3.1. Let θ∗ be the parameters of the optimal soft-Q function Q∗(s, a) = 〈θ∗a, s〉, and
let Vθ∗ be the corresponding soft value function. Let B > 1 and s, s′ ∈ Rd be states such that
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Vθ∗(s) > BVθ∗(s′). Then there is a subspace W ⊆ Rd of dimension at most |A| and a linear
transformation L : Rd → R|A| with kernel W⊥ such that

‖Ls‖ > B√
|A|
‖Ls′‖ − log |A|

Proof. Let W be the span of θ∗a for a ∈ A. Let L to be the linear map defined by the matrix
with rows given by θ∗a. Clearly the kernel of L is the orthogonal complement W⊥. Recalling that
Vθ∗(s) = log

∑
a expQθ∗(s, a) we have

Vθ∗(s′) ≥ max
a∈A

Qθ∗(s
′, a) ≥ 1√

|A|

√∑
a∈A

Qθ∗(s′, a)2 =
1√
|A|
‖Ls′‖.

On the other hand

Vθ∗(s) ≤ max
a∈A

Qθ∗(s, a) + log |A| ≤
√∑
a∈A

Qθ∗(s, a)2 + log |A| = ‖Ls‖+ log |A|.

Combining the two inequalities with the assumption that Vθ∗(s) > BVθ∗(s′) completes the proof.

Lemma 3.1 states that for B �
√
|A|, the projection onto W of s is much larger than that of s′ (as

measured by the transformation L). Thus, the intuitive conclusion is that states with higher value
(e.g. states sampled from expert trajectories) have larger projection onto a low-dimensional subspace.
The inverse Q-learning algorithm updates the parameters θ by stochastic gradient descent, where the
average over ρE in Equation 1 is approximated by sampling from stored expert trajectories. In order
to qualitatively demonstrate how the use of expert trajectories leads to lower robustness we take the
conclusion of Lemma 3.1 and define a model for this setting which we refer to as subspace-contained
expert trajectories.
Definition 3.2. The set of expert trajectories ρE is subspace-contained if there exists a subspace
W ⊆ Rd of dimension l < d such that, when started in s0 ∈ W the expert policy πE always
transitions to states s ∈W . Consequently, s ∈W for all (s, a) in the support of ρE .

While Lemma 3.1 shows that in general there will exist a subspace where higher value states have
larger projection than lower value states, Definition 3.2 posits the existence of a potentially lower-
dimensional subspace which entirely contains all the states encountered on expert trajectories. Due to
the fact that expert trajectories will tend to have higher values, Definition 3.2 is a natural strengthening
of Lemma 3.1 that furthermore enables a clean theoretical analysis of the effects of inverseQ-learning.
In particular, we show that the Q-values for states in the orthogonal complement of W will remain
unchanged during training with inverse Q-learning.

Proposition 3.3. Let the initial weights be θ(0) ∈ Rd. Let ρE be subspace-contained, and let
s ∈ W⊥ be a state in the orthogonal complement of W . Let θ be the weights after any number of
steps of training with inverse Q-learning. Then Qθ(s, a) = Qθ(0)(s, a) for all a ∈ A.

Proof. We first show that the (stochastic) gradient of the cost function in Equation 1 is contained in
W . For any s the gradient of the state-action value function is

∇θaQθ(s, a) = ∇θa〈θa, s〉 = s,∇θaQθ(s, a′) = ∇θa〈θa′ , s〉 = 0.

Further, the gradient of the value function is

∇θaV∗θ (s) = ∇θa log
∑
a

expQθ(s, a) = s
expQθ(s, a)∑
a′ expQθ(s, a

′)
.

Note that all the above gradients are multiples of the input state s. Next observe that the a component
gradient of the objective in Equation 1 is a linear combination of ∇θaQθ(s, a), ∇θaQθ(s, a′), and
∇θaV∗θ (s), where s always lies in the support of ρE . Thus, by Definition 3.2, the gradient update in
each step of inverse Q-learning lies in the subspace W , as it is a linear combination of states s ∈W .

Therefore, after any number of steps the weights θ will satisfy θa − θ(0)a ∈W . To complete the proof
observe that for s ∈W⊥ we have Qθ(s, a)−Qθ(0)(s, a) = 〈θa − θ

(0)
a , s〉 = 0.
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The initial weights θ(0) are usually set randomly or to some default value, and thus one does not
expect θ(0) to have any reasonable relationship to the optimal weights. Therefore, the intuitive
consequence of Proposition 3.3 is that the soft Q-function learned from expert trajectories assigns
random or arbitrary values to actions in states s ∈ W⊥. In fact, Proposition 3.3 leads directly
to the following corollary which shows that the rewards estimated by inverse Q-learning become
uncorrelated to the true rewards.
Corollary 3.4. Suppose each coordinate of θ(0) is an independent Gaussian random variable with
mean 0 and variance 1, and that the feature vectors corresponding to each state are normalized i.e.
‖s‖2 = 1. Then for each s ∈ W⊥ the expectation over θ(0) of the rewards rθ(s, a) estimated by
inverse Q-learning will be independent of the state s.

Proof. The reward estimates for inverse reinforcement learning are obtained by assuming that
the learned Q-function satisfies the soft Bellman equation i.e. that Qθ(s, a) = r(s, a) +
Es′∼P(·|s,a)[Vπθ (s′)]. Thus, given the estimated optimal state-action value function Qθ, one solves
for the rewards r(s, a) in the soft Bellman equation in order to obtain the reward estimate. Hence,
the reward estimated by inverse Q-learning in a state s ∈W⊥ is

rθ(s, a) = Qθ(s, a)− Es′∼P(·|s,a)[Vπθ (s′)] = Qθ(s, a)− Es′∼P(·|s,a)[log
∑
a′

expQθ(s
′, a′)]

= Qθ(0)(s, a)− Es′∼P(·|s,a)[log
∑
a′

expQθ(0)(s
′, a′)]

where the last line follows from Proposition 3.3. Because θ(0) has independent Gaussian coordinates,
its distribution is rotationally invariant i.e. Uθ(0)a has the same distribution as θ(0)a for any rotation
matrix U . Let U be any rotation such that U> sends s to the first standard basis vector e1. It is always
possible to choose such a rotation because ‖s‖ = 1. Then by rotational invariance Qθ(0)(s, a) =
〈θ(0)a , s〉 has the same distribution as 〈Uθ(0)a , s〉 = 〈θ(0)a , U>s〉 = 〈θ(0)a , e1〉 = Qθ(0)(e1, a). Thus the
expectation of the rewards estimated by inverse Q-learning is given by

Eθ(0)∼N (0,I) [rθ(s, a)] = Eθ(0)∼N (0,I) [Qθ(0)(s, a)]

− Es′∼P(·|s,a)

[
Eθ(0)∼N (0,I)

[
log

∑
a′∈A

expQθ(0)(s
′, a′)

]]

= Eθ(0)∼N (0,I) [Qθ(0)(e1, a)]− Es′∼P(·|s,a)

[
Eθ(0)∼N (0,I)

[
log

∑
a′∈A

expQθ(0)(e1, a
′)

]]

= Eθ(0)∼N (0,I) [Qθ(0)(e1, a)]− Eθ(0)∼N (0,I)

[
log

∑
a′∈A

expQθ(0)(e1, a
′)

]
.

This completes the proof as the above expression for Eθ(0)∼N (0,I) [rθ(s, a)] does not depend on the
state s.

In general, the inverse Q-learning policy still may perform well. Indeed, if following the learned
policy causes the agent to only encounter states s ∈W , then performance in the standard setting will
be unaffected by inaccuracy in states s ∈ W⊥. However, the robustness of the policy may still be
affected, as a slight deviation from the optimal path may cause the policy to transition into s ∈W⊥
where the Q-function is completely untrained. We now formalize the above intuition regarding the
consequences of Proposition 3.3. Let π∗ be the optimal soft policy and let Qθ be the soft Q-function
obtained by training with inverse Q-learning with corresponding soft policy πθ. We assume that
πθ(s, a) = π∗(s, a) for all s ∈W i.e. training with inverse Q-learning has succeeded in accurately
learning the optimal soft policy in W . The optimal policy π∗ started at s0 ∈ S never transitions out
of S. However, π∗ receives the same expected cumulative rewards R when started in either s0 ∈W
or s′ ∈W⊥. Taking non-optimal actions in a p fraction of states s ∈W and utilizing π∗ in all other
states results in a transition to s′ ∈W⊥. There are no transitions from s′ ∈W⊥ to s ∈W . We now
show that under these assumptions, slight deviations from the optimal policy have no impact on the
optimal policy π∗, but cause the inverse deep neural policy πθ to perform at the same level as an
untrained policy.
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Table 1: The performance drop results with algorithm and MDP independent adversarial direction
Arandom

alg+M and MDP independent adversarial direction Arandom
M for vanilla trained deep reinforcement

learning policy and inverse deep neural policy in Pong.

Training Method Adversarial Setting RoadRunner BankHeist TimePilot

Deep Inverse-Q Learning Arandom
alg+M 1.0±0.0 0.9153±0.01128 0.9880±0.0112

Vanilla Trained Arandom
M 0.0819±0.0500 0.0265±0.01284 0.2963±0.0573

Training Method Adversarial Setting JamesBond CrazyClimber Gaussian

Deep Inverse-Q Learning Arandom
alg+M 1.0±0.0 0.9857±0.006 0.04285±0.01572

Vanilla Trained Arandom
M -0.0024±0.0037 0.06024±0.02970 0.0451±0.0182

Proposition 3.5. Taking non-optimal actions in a p fraction of states does not change the reward
received by the optimal policy π∗, but causes the inverse reinforcement learning policy πθ to receive
the same rewards received by πθ(0) .

Proof. After taking non-optimal actions in a p fraction of states, the optimal policy π∗ transitions
to s′ ∈W⊥, and by assumption never transitions out. However, π∗ receives the same rewards after
transitioning to s′ ∈W⊥ as it would have from remaining in W . The policy πθ is equal to π∗ on W .
Thus, taking non-optimal actions in a p fraction of states causes a transition to W⊥. However, by
Proposition 3.3 πθ(s′, a) = πθ(0)(s

′, a) for all s ∈W⊥. By assumption there are no transitions out
of W⊥, so πθ receives the same rewards as πθ(0) .

4 PROBING THE INVERSE REINFORCEMENT LEARNING MANIFOLD VIA
ADVERSARIAL DIRECTIONS

Section 3 is dedicated to provide theoretically motivated fundamental reasoning behind the non-
robustness of the deep inverse Q-learning algorithm laid out in Section 4 and in Section 5. Hence, in
this section we describe the methods used to cause deviations from the optimal trajectory in order to
understand the robustness of policies trained with inverse reinforcement learning. To achieve this
there are two main approaches we will take, one is based on moving along the adversarial directions
in the deep neural policy manifold, and the second is to directly slightly push the policy from its
optimal course of trajectory. These are described below in more detail. For the adversarial directions
we utilize the methodology described in Korkmaz (2022). Precisely,
Definition 4.1. Algorithm and MDP independent adversarial direction Arandom

alg+M: Given a
random state s(M) sampled from a random episode of e of an MDP M from a policy
π(s(M), ·), the minimum length adversarial direction v(s(M), π(s(M), ·)) is computed satisfying,
argmaxa π(s(M), a) 6= argmaxa π(s(M)+v(s(M), π(s(M), ·)), a). The computed adversarial
direction v(s(M), π(s(M), ·)) norm-bounded by κ > 0 is added to the visited states of another
policy π′(s(M′), ·)) trained with a completely different algorithm, in a distinct MDPM′. Hence,
the state obtained moving along the adversarial direction is

sv = s(M′) + κ
v(s(M), π(s(M), ·))
‖v(s(M), π(s(M), ·))‖

.

Note that ifMalg 6=M′alg this means that the policies are trained with the same algorithm but in
distinct MDPs; thus, the adversarial direction is computed fromM and transferred to a distinct MDP
M′. The setting ofMalg 6=M′alg will be referred as Arandom

M .
Definition 4.2. The δ-deviation from the optimal trajectory: For a policy π(s, a) and state s let
aw(s) = argminaQ(s, a) denote the worst action in state s. The notation Aaw refers to a setting in
which in state s the policy is set to take action aw(s), rather than the optimal action selected by the
policy π(s, a) for a δ-fraction of the visited states where delta is δ � 1. The notation Arandom refers
to the setting in which the policy π(s, a) is set to take an action uniformly at random a ∼ UA in s for
a δ-fraction of the visited states where delta is δ � 1.

Both Definition 4.1 and Definition 4.2 will be used in Section 5 to lay out precise non-robustness
of inverse deep neural policies and their comparison to vanilla trained deep reinforcement learning
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Table 2: The performance drop results with algorithm and MDP independent adversarial direction
Arandom

alg+M and MDP independent adversarial direction Arandom
M for vanilla trained deep reinforcement

learning policies and inverse deep neural policies in Seaquest.

Training Method Adversarial Setting RoadRunner BankHeist TimePilot

Deep Inverse-Q Learning Arandom
alg+M 0.93439±0.0075 0.9882±0.03457 0.95037±0.01454

Vanilla Trained Arandom
M 0.28496±0.09693 0.18527±0.14817 0.46938±0.08672

Training Method Adversarial Setting JamesBond CrazyClimber Gaussian

Deep Inverse-Q Learning Arandom
alg+M 0.916947±0.01371 0.76282±0.02146 0.05277±0.0821

Vanilla Trained Arandom
M 0.308188±0.12931 0.180897±0.13982 0.05536±0.12091

policies. Note that the initial and fundamental objective of inverse reinforcement learning on inferring
a reward function from observed trajectories opened a new channel on the value alignment problem
Ng & Russell (2000); Russell (1998). More precisely, the current unethical behaviour observed
in large language models that are trained with RLHF (i.e. learning a reward function from human
preferences to align language agents with human values) is one of the concrete substantial safety
concerns that is tightly connected to what we highlight in our paper. Thus, the vulnerabilities
described in Section 5 carry critical importance due to the fact that the results reported demonstrate
that simpler algorithms such as vanilla deep reinforcement learning are more robust compared to
algorithms that are specifically focused on resolving the value-alignment problem. In particular, the
fact that the policy’s perception on the environmental (i.e. ground truth) rewards is broken as reported
in Section 5.2 further demonstrates that the value-alignment problem is far beyond being solved, and
in fact most critically, the claimed alignment is extremely fragile.

5 THE COST OF LEARNING FROM EXPERT DEMONSTRATIONS

In this paper the straightforward vanilla trained deep reinforcement learning policies are trained with
Deep Double Q-Network (DDQN) initially proposed by Hasselt et al. (2016) with the architecture
introduced in Wang et al. (2016). The state-of-the-art imitation and inverse reinforcement learning
policy is trained via the inverse Q-learning algorithm described in Section 2. The experiments are
conducted in the Arcade Learning Environment (ALE) Bellemare et al. (2013) with OpenAI wrappers
Brockman et al. (2016). The results are averaged over 10 episodes and the standard error of the mean
is included in all the tables and figures presented in the paper. The normalized performance drop of
the policies is computed as P = (Scoremax − Scoreset)/(Scoremax − Scoremin). Here Scoremax is the
score obtained by the baseline trained policy following the learned policy with a clean run in a given
environment, Scoreset is the score obtained by the policy in the test time, and Scoremin is the score
obtained by the trained policy when the policy chooses the worst possible action in each state. Scores
represent the cumulative rewards obtained by the policy, and are recorded at the end of an episode.
Note that Abase refers to the unmodified run of the policy in an unmodified MDP.

As described in detail in Section 2 the inverse Q-learning algorithm learns both an optimal policy and
a reward function from observed trajectories; thus, the fact that inverse-Q learning simultaneously
learns both a reward function and an optimal policy is the reason that throughout the paper imitation
learning and inverse reinforcement learning will be used interchangeably. Note that the inverse
Q-learning algorithm is the only algorithm that can achieve equivalent performance with vanilla
trained deep reinforcement learning policies in MDPs with high-dimensional observations. Table 1
and Table 2 report the performance drop results with the environment and algorithm independent
random state adversary Arandom

alg+M and the environment independent random state adversary Arandom
M

for vanilla trained deep reinforcement learning policies and inverse deep neural policies in Arcade
Learning Environment (ALE). Recall that Arandom

alg+M represents the adversarial setting in which the
adversarial direction is computed from a completely different MDP and from a completely different
trained policy. Note that in these experiments the `2-norm bound κ level is set to the magnitude
where simple Gaussian noise with the `2-norm κ has insignificant effect on the policy performance.

In particular, the results reported in Table 1 and 2 are for an adversarial direction that is computed
from a vanilla trained policy in one MDPM, and added to the observations in a different MDPM′
of the inverse Q-learning policy and the vanilla trained policy respectively. This corresponds to the
Arandom

alg+M setting for the inverse Q-learning policy, and Arandom
M for the vanilla policy. Of particular

7



Under review as a conference paper at ICLR 2024

Table 3: Pearson and Spearman correlation coefficient between true cumulative rewards obtained from
the environment and cumulative reward prediction made by the state-of-the-art inverse deep neural
policy for a baseline run Abase, with Aaw , δ-deviation Arandom, and with Arandom

alg+M where δ = 0.003.

Seaquest Abase δ-deviation Aaw δ-deviation Arandom Arandom
alg+M

Pearson 0.857880±0.025528 -0.44787±0.140356 0.324616±0.22191 0.202436±0.24088
Spearman 0.688300±0.1257206 -0.35129±0.20131 0.023051±0.12057 0.023701±0.20764

BeamRider Abase δ-deviation Aaw δ-deviation Arandom Arandom
alg+M

Pearson 0.654375±0.005274 -0.27414±0.026496 -0.10209±0.076554 -0.22879±0.199385
Spearman 0.688300±0.1257206 -0.34725±0.022020 -0.11846±0.092472 -0.43719±0.115118

Breakout Abase δ-deviation Aaw δ-deviation Arandom Arandom
alg+M

Pearson 0.850592±0.013398 -0.12104±0.083332 0.248250±0.046503 -0.09089±0.092005
Spearman 0.7665362±0.04679 -0.13360±0.030187 0.243274±0.012255 -0.25481±0.089637

significance is the fact that, even though the perturbation is specifically computed from a vanilla
trained policy and for a vanilla trained policy, the impact of the adversarial direction is much larger on
the inverse-Q learning policy than on the vanilla policy. Thus, the results in Table 1 and 2 demonstrate
that the inverse Q-learning policies are more susceptible to the shared adversarial directions across
both MDPs and algorithms compared to vanilla trained reinforcement learning policies.

5.1 THE CATASTROPHIC RESULTS OF SMALL DIVERGENCE FROM THE OPTIMAL POLICY

In this section we investigate effects of small deviations from the optimal policy followed by the
inverse deep neural policy. To achieve this, we will use Aaw with aw = argmina′∈AQ(s, a′) for a
random small fraction of visited states in a given episode, the Arandom setting explained in Definition
4.2, and the Arandom

alg+M setting explained in Definition 4.1. Either moving along adversarial directions
towards the non-robust region in the deep neural policy manifold or concrete changes in the actions
taken by the policy will cause slight deviation from the optimal course of the inverse deep neural
policy. Figure 1 reports the true rewards obtained from the environment and the reward predictions of
inverse Q-learning, the Pearson correlation coefficient between inverse Q-learning reward predictions
and environment rewards, and the performance drop computed from environment rewards and the
inverse Q-learning predictions with respect to δ-deviation from optimal trajectory with Aaw and
Arandom. Thus, the results in Figure 1 demonstrate the outcome of slight deviation of the optimal
trajectory and its effects on the reward predictions of the inverse Q-learning policy and the true
rewards obtained from the environment. The fact that small deviations from the optimal policy result
in significant decrease in both the rewards obtained, and the accuracy of the predicted rewards for
the inverse deep neural policy, provide empirical verification of Corollary 3.4 given as a theoretical
justification in Section 3. In particular, this lends credence to the claim that the lower exploration of
state space and being limited to expert trajectories cause the inverse deep neural policies to overfit
to the expert’s beliefs and experience significant performance loss under subtle departures from the
policy’s optimal course. Notably, when δ is initially increased from zero, the performance drop of
the inverse Q-learning reward predictions is negative. That is, despite a decrease in performance
caused by the deviation, the inverse Q-learning policy believes it will actually receive larger rewards
than it did before. In fact, as the true environment rewards decrease, their Pearson correlation with
the predicted rewards also decreases, indicating that in general small deviations cause the policy to
form an inaccurate view of the rewards it will obtain. Overall, while the cost of learning from expert
demonstrations instead of exploration is demonstrated in Table 1, the fact that during training the
inverse Q-learning policy is not exposed to a more diverse set of observations in the state space is the
foundational reason for the results observed in Figure 1.

5.2 BREAKING THE LINK BETWEEN IMITATION AND INVERSE REINFORCEMENT LEARNING

Table 3 shows the Pearson and Spearman correlation coefficients between cumulative rewards
obtained from the environment and the cumulative reward prediction of the deep imitation learning
policy for the algorithm and MDP independent adversarial direction Arandom

alg+M, δ-deviation Aaw , and
δ-deviation Arandom in Seaquest, BeamRider and Breakout MDPs with δ-deviation from the optimal
trajectory setting with δ = 0.003. The results in Table 3 demonstrate that even a slight change in the
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Cumulative Rewards Pearson Correlation Coefficient Performance Drop

Figure 1: The effects of δ-deviation from the optimal trajectory with Arandom and Aaw . Left:
Cumulative rewards obtained from the environment, and inverse Q-learning reward predictions.
Center: Pearson correlation coefficient. Right: Performance drop based on true environment rewards
and inverse Q-learning reward predictions. Up: δ-deviation Arandom. Down: δ-deviation Aaw .

trajectory (i.e. a change in the trajectory with frequency of 0.003) is more than enough to break the
correlation between true rewards obtained from the environment and the reward predictions of the
inverse deep neural policy. Hence, without the correlation between true obtained rewards and reward
predictions it is evident that the state-of-the-art inverse-Q learning policy cannot be utilized as an
inverse reinforcement learning algorithm. These results also correspond well with the theoretical
predictions of Corollary 3.4, where the estimated rewards for states that deviate subtly from expert
trajectories are uncorrelated with their true rewards. The fact that subtle deviations from the optimal
trajectory break the beliefs of the inverse deep neural policy on the MDP rewards, raises significant
questions regarding misalignment. The agent’s beliefs on the MDP rewards define what the task
is and how the task should be solved. The fact that the deep imitation learning policy’s beliefs
experience an extreme shift under slight deflections from its optimal path is evidence that the policy
has a completely different vision on what the objective is and how the task should be solved (i.e.
the misalignment problem) (Wiener, 1960; Good, 1965). While these results may raise questions
and concerns on the safety and AI-alignment of the deep imitation and deep inverse reinforcement
learning policies respectively, one of our main objectives is to layout the exact fundamental trade-off
made with learning from expert demonstrations instead of exploring the MDP.

6 CONCLUSION

In this paper we study the resilience of policies trained without rewards in high-dimensional state
representation MDPs. We essentially seek answers for the following questions: (i) Does learning
without a reward function in complex state representation MDPs cause learning non-robust features
independent from the MDP it is trained in and the algorithms it is trained with? (ii) How is the
policy robustness affected by the state-of-the-art algorithms that can learn without rewards compared
to vanilla trained deep reinforcement learning? (iii) What is the cost of learning from expert
demonstrations instead of learning purely from exploration? To answer these questions we first
theoretically motivate that learning from expert demonstrations instead of from pure exploration
comes with a cost. Moving along the adversarial directions independent from both the MDP and
algorithm in the neural policy manifold we demonstrate that straightforward vanilla trained deep
reinforcement learning policies are more robust compared to the state-of-the-art algorithms that
can learn without rewards. Following these findings we provide theoretical explanations on the
non-robustness of learning without exploration. We further demonstrate that the subtle deviations
from the optimal trajectories completely break the correlation between the predicted rewards and
the ground truth rewards of the MDP for inverse reinforcement learning policies. Furthermore, we
elucidate the relationship between the change in the policy’s beliefs on the MDP rewards and the
misalignment problem. Most importantly, we highlight that the alignment problem is far beyond
being resolved and the algorithms proposed to solve this problem are learning extremely fragile
unaligned values.
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