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ABSTRACT

Our world can be succinctly and compactly described as structured scenes of ob-
jects and relations. A typical room, for example, contains salient objects such
as tables, chairs and books, and these objects typically relate to each other by
virtue of their correlated features, such as position, function and shape. Humans
exploit knowledge of objects and their relations for learning a wide spectrum of
tasks, and more generally when learning the structure underlying observed data.
In this work, we introduce relation networks (RNs) - a general purpose neural
network architecture for object-relation reasoning. We show that RNs are capable
of learning object relations from scene description data. Furthermore, we show
that RNs can act as a bottleneck that induces the factorization of objects from
entangled scene description inputs, and from distributed deep representations of
scene images provided by a variational autoencoder. The model can also be used
in conjunction with differentiable memory mechanisms for implicit relation dis-
covery in one-shot learning tasks. Our results suggest that relation networks are a
powerful architecture for solving a variety of problems that require object relation
reasoning.

1 INTRODUCTION

The ability to reason about objects and relations is important for solving a wide variety of tasks
(Spelke et al., 1992; Lake et al., 2016). For example, object relations enable the transfer of learned
knowledge across superficial (dis)similarities (Tenenbaum et al., 2011): the predator-prey relation-
ship between a lion and a zebra is knowledge that is similarly useful when applied to a bear and a
salmon, even though many features of these animals are very different.

In this work, we introduce a neural network architecture for learning to reason about – or model
– objects and their relations, which we call relation networks (RNs). RNs accomplish their goal
by adhering to a few fundamental design principles. Firstly, RNs are designed to be invariant to
permutations of object descriptions in their input. For example, RN representations of the object set
{table, chair, book} will be identical for arbitrary re-orderings of the elements of the set. Secondly,
RNs are designed to learn relations across multiple objects rather than within a single object – a
basic defining property of object relations. This design principle manifests itself in the use of shared
computations across groups of objects. In designing the RN architecture, we took inspiration from
the recently developed Interaction Network (IN) (Battaglia et al., 2016) which is more generally
concerned with modelling temporal interactions.

In principle, a deep network with a sufficiently large number of parameters and a large enough
training set should be capable of matching the performance of a RN. However, such networks would
have to learn both the permutation invariance of objects and the relational structure of the objects in
the execution of a desired computation. This quickly becomes unfeasible as the number of objects
and relations increase.

∗Denotes equal contribution.
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To test the ability of RNs to discover relations between objects, we turned to the classification of
scenes, wherein classification boundaries were defined by the relational structure of the objects in
the scenes. There are various ways of encoding scenes as observable data; for example, scene de-
scription data can consist of sets of co-occurring objects and their respective features (location, size,
color, shape, etc.). A typical room scene, then, might consist of the object set {table, chair, lamp}
and their respective descriptions (e.g., the table is large and red). Similar datasets have been used for
many decades in cognitive psychology to study human relation learning (Palmer, 1975). Here we
consider synthetic scene description data generated by hierarchical probabilistic generative models
of objects and object features.

We begin by motivating RNs as a general purpose architecture for reasoning about object relations.
Critically, we describe how RNs implement a permutation invariant computation on implicit groups
of factored “objects.” We then demonstrate the utility of RNs for classification of static scenes,
where classification boundaries are defined by the relations between objects in the scenes. Next,
we exploit RNs’ implicit use of factored object representations to demonstrate that RNs can induce
the factorization of objects from entangled scene inputs. Finally, we combine RNs with memory-
augmented neural networks (MANNs) (Santoro et al., 2016) to solve a difficult one-shot learning
task, demonstrating the ability of RNs’ to act in conjunction with other neural network architectures
to rapidly discover new object relations from entirely new scenes.

2 MODEL

2.1 DESCRIPTION AND IMPLEMENTATION

RNs are inspired by Interaction Networks (INs) (Battaglia et al., 2016), and therefore share similar
functional insights. Both operate under the assumption that permutation invariance is a necessary
requirement for problems with inputs that can be described with a graphical structure. However,
INs use relations between objects as input to determine object interactions, mainly for the purpose
of reasoning about dynamics. RNs compute object relations, and hence aim to determine object-
relational structure from static inputs.

Suppose we have an object, o = (o1, o2, ..., on), represented as a vector of n features encoding
properties such as the object’s type, color, size, position, etc. A collection of m objects can be
gathered into a m× n matrix D, called the scene description. Although the term scene description
alludes to visual information, this need not be the case; scenes can be entirely abstract, as can the
objects that constitute the scene, and the features that define the objects.

We can imagine tasks (see section 3) that depend on the relations, r, between objects. One such
task is the discovery of the relations themselves. For example, returning to the predator and prey
analogy, the predator-prey relation can be determined from relative features between two animals –
such as their relative sizes, perhaps. Observation of the size of a single animal, then, does not inform
whether this animal is a predator or prey to any other given animal, since its size necessarily needs
to be compared to the sizes of other animals.

There are a number of possible functions that could allow for the discovery of object relations
(figure 1). Consider a function g, with parameters ψ. The function gψ can be defined to operate
on a particular factorization of D; for example, gψ(D), or gψ(D1,2, ..., Di,j,, ..., Dm,n). We are
interested in models defined by the composite function f ◦ g, where f is a function that returns a
prediction r̃.

One implementation of gψ would process the entire contents of D without exploiting knowledge
that the features in a particular row are related through their description of a common object, and
would instead have to learn the appropriate parsing of inputs and any necessary sub-functions:
r̃ = fφ(gψ(o

1
1, o

2
1, ..., o

n
m)). An alternative approach would be to impose a prior on the parsing

of the input space, such that g operates on objects directly: r̃ = fφ(gψ(o1), gψ(o2), ..., gψ(om)).
A third middle-ground approach – which is the approach taken by RNs – recognizes that relations
necessarily exist in the context of a set of objects that have some capacity to be related. Thus, the
computation of relations should entail some common function across these sets. For example, g may
operate on pairs of objects: r̃ = fφ(gψ(o1, o2), gψ(o1, o3), ..., gψ(om−1, om)).
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For RNs, g is implemented as a multi-layered perceptron (MLP) that operates on pairs of ob-
jects. The same MLP operates on all possible pairings of objects from D, to produce sum-
maries si,j . Depending on the complexity of the problem, any aggregation function a can be
chosen to operate on si,j . However, to ensure the input to f is order invariant, the aggregation
function should be commutative and associative, with summation being a natural choice. Thus,
r̃ = fφ(a(s1,2, s1,3, ..., sm−1,m)) = fφ(

∑
i,j si,j) = fφ(

∑
i,j gψ(oi, oj)). Training therefore en-

tails the optimization of two MLPs: fφ and gψ .

The order invariance of the aggregation function is a critical feature of the model, since without this
invariance, the model would be unable to take advantage of the shared gψ function that operates on
all permuted pairs of objects.

(a) No Prior (b) Object prior (c) Object pair prior

(+)

Figure 1: Model types. RNs are constructed to operate with an explicit prior on the input space (c).
Features from all pairwise combinations of objects act as input to the same mlp, gψ .

3 EXPERIMENTAL TASKS AND DATA

3.1 DATASETS

To probe a model’s ability to both infer relations from scene descriptions and implicitly use relations
to solve more difficult tasks – such as one-shot learning – we first developed datasets of scene
descriptions and their associated images. To generate a scene description, we first defined a graph of
object relations (see figure 2). For example, suppose there are four types of squares, with each type
being identified by its color. A graph description of the relations between each colored square could
identify the blue square as being a parent of the orange square. If the type of relation is “position,”
then this particular relation would manifest as blue squares being independently positioned in the
scene, and orange squares positioned in close proximity to blue squares. Similarly, suppose we
have triangles and circles as the object types, with color as the relation. If triangles are parents to
circles, then the color of triangles in the scene will be randomly sampled, while the color of a circle
will be derived from the color of the parent triangle. Datasets generated from graphs, then, impose
solutions that depend on relative object features. That is, no information can be used from within
object features alone – such as a particular coordinate position, or RGB color value.

Graphs define generative models that can be used to produce scenes. For scenes with position
relations, root node coordinates (opx, o

p
y), were first randomly chosen in a bounded space. Children

were then randomly assigned to a particular parent object, and their position was determined as a
function of the parent’s position: (ocx, o

c
y) = (opx + d cos(θc), opy + d sin(θc)). Here, θc ∼ U(θp −

π/3, θp + π/3), where θp is the angle computed for the parent. For root nodes, then θp ∼ U(0, 2π).
d is a computed distance: d = d0+d1, where d0 is a minimum distance to prevent significant object
overlap, and d1 is sampled from a half-normal distribution. This same pattern – inherit features from
parents and apply noise – is used to generate scenes from graphs that define other relations, such as
color. For the case of color, the inherited features are RGB values. Ultimately, scene descriptions
consisted of matrices with 16 rows, with each row describing the object type (four rows for each of
four types), position, color, and size.

Custom datasets were required to both explicitly test solutions to the task of inferring object re-
lations, and to actively control for solutions that do not depend on object relations. For example,
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consider the common scenario of child objects positioned close to a parent object, analogous to
chairs positioned around a table. In this scenario, the count information of objects (i.e., that there
are more child objects than parent objects) is non-relational information that can nonetheless be
used to constrain the solution space; the prediction of the relation between objects doesn’t entirely
depend on explicitly computed relations, such as the relative distance between the child objects and
the parent objects. To return to the kitchen scene analogy, one wouldn’t need to know the relative
distance of the chairs to the table; instead, knowing the number of chairs and number of tables could
inform the relation, if it is known that less frequently occurring objects tend to be parents to more
frequently occurring objects. Although information like object count can be important for solving
many tasks, here we explicitly sought to test models’ abilities to compute and operate on object
relations.

The datasets will be made freely available.

Position

Color

Mix

Relation Type Object Types Example ClusterExample Graph

Position Color

Size

Example Relations

Distance

Figure 2: Objects and relations. Relation types (column one) between object types (column two)
can be described with directed graphs (column three). Shown in the fourth column are cropped
clusters from example scenes generated by a model based on the directed graph shown in column
three. In the last column are example of relations that can be used to inform class membership; for
example, the distances between pairs objects, or the differences in color between pairs of objects
that may inform the particular graphical structure, and hence generative model, used to generate the
scene.

3.2 TASK DESCRIPTIONS

The tasks on which we assessed the RN’s performance fell into three categories. The first category
involved the classification of scenes. In this task, the network was given a scene description as input,
with the target being a binary vector description of the edges between object types (which constitute
the nodes of the graph – see figure 2). Training data consisted of 5000 samples derived from 5,
10, or 20 unique classes (i.e., graphs), with testing data comprising withheld within-class samples.
Although the target was a vector description of the generating graph, this task was fundamentally
one of classification, and the use of one-hot vector labels could have constituted equivalent training.
Nonetheless, since class membership can only be determined from the relational structure of the
objects within a particular sample, the ability to classify subsumes the ability to infer the relations.

The second category of tasks tested the ability of the RN to classify scenes – and hence, reason about
object relations – from unstructured input domains (see figure 3). Since RNs operate on factored
object representations, this task specifically probed the ability of RNs to induce the learning of object
factorizations from entangled scene descriptions. In the first set of experiments we broke the highly
structured scene description input by passing it through a fixed permutation matrix. To decode the
entangled state we used a linear layer whose output provided the input to the RN. We then asked
the network to classify scenes, as in the previous tasks. In the second set of experiments we pushed
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this idea further, and tested the ability of the RN to operate on distributed representations of image
depictions of scenes. The images were passed through a variational autoencoder (VAE), and the
latent variables were provided as input to a RN.

RN

gradient

stopped gradient

VAE

linear layer

(a) Entagled scene description (b) Distributed latent representation

RN

permuted scene description

linear layer

disentangled scene

Figure 3: Scene entangling. To test the ability of the RN to operate on entangled scene representa-
tions, we multiplied a flattened vector representation of the scene description by a fixed permutation
matrix B (a), or passed image depictions of the scenes through a VAE and used the latent code as
input to a RN with an additional linear layer (b).

The final category of tasks tested the implicit use of discovered relations to solve difficult overar-
ching problem: one-shot learning (Vinyals et al., 2016; Santoro et al., 2016; Lake et al., 2015). In
the one-shot learning task, sequences of samples were fed to a memory-augmented neural network
(MANN) with a relational network pre-processor. Sequences – or episodes – consisted of 50 ran-
dom samples generated from five unique graphs, from a pool of 1900 total classes, presented jointly
with time-offset label identifiers, as per Hochreiter et al. (2001) and Santoro et al. (2016). Critically,
the labels associated with particular classes change from episode-to-episode. So, the network must
depend on within-episode knowledge to perform the task; it must learn the particular label assigned
to a class within an episode, and learn to assign this label to future samples of the same class, within
the same episode. Labels are presented as input in a time-offset manner (that is, the correct label for
the sample presented at time t is given as input to the network at time t+1) to enable learning of an
arbitrary binding procedure. Unique information from a sample – which is necessarily something
pertaining to the relations of the contained objects – must be extracted, bound to its associated label,
and stored in memory. Upon subsequent presentations of samples from this same class, the network
must query its memory, and use stored information to infer class membership. There is a critical
difference in this task compared to the first. In this task, identifying class labels constantly change
episode-to-episode. So, the network cannot simply encode mappings from certain learned relational
structures to class labels. Instead, the only way the network can solve the task is to develop an
ability to compare and contrast extracted relational structures between samples as they occur within
an episode. Please see the appendix for more details on the task setup.

4 ADDITIONAL MODEL COMPONENTS AND TRAINING DETAILS

4.1 VARIATIONAL AUTOENCODER

For inferring relations from latent representations of pixels we used a variational autoencoder (VAE)
(Kingma & Welling, 2013) with a convolutional neural network (CNN) as the feature encoder and
deconvolutional network as the decoder (see figure 3b). The CNN consisted of two processing
blocks. The input to each block was sent through four dimension preserving parallel convolution
streams using 8 kernels of size 1x1, 3x3, 5x5, and 7x7, respectively. The outputs from these con-
volutions were passed through a batch normalization layer, rectified linear layer and concatenated.
This was then convolved again with a down-sampling kernel of size 3x3, halving the dimension size
of the input, and, except for the final output layer, again passed through batch normalization and
rectified linear layers. The entire CNN consisted of two of these blocks positioned serially. There-

5



Under review as a conference paper at ICLR 2017

fore, input images of size 32x32 were convolved to feature-maps of size 8x8. The feature decoder
consisted of these same blocks, except convolution operations were replaced with deconvolution
operations.

The final feature maps provided by the CNN feature encoder were then passed to a linear layer,
whose outputs constituted the observed variables x for the VAE. x, which was decomposed into
µ and σ, was then used with an auxiliary Gaussian noise variable ε to infer the latent variables
z = µ + εσ. These latent variables were then decoded to generate the reconstruction x̂, as per the
conventional implementation of VAEs. However, z was also fed as input to a linear layer, which
projected it to a higher dimensional space – the scene description D (see figure 3b). Importantly,
this connection – from z to D – did not permit the backward flow of gradients to the VAE. This
prevented the VAE architecture from contributing to the RN’s disentangling solution.

4.2 MEMORY-AUGMENTED NEURAL NETWORK

For implicit discovery of relations from scene descriptions, the RN was used as a pre-processor for
a memory-augmented neural network (MANN). The MANN was implemented as in Santoro et al.
(2016), and the reader is directed here for full details on using networks augmented with external
memories. Briefly, the core MANN module consists of a controller – a long-short term memory
(LSTM) (Hochreiter & Schmidhuber, 1997) – that interacts with read and write heads, which in turn
interact with an external memory store. The external memory store consists of a number of memory
slots, each of which contains a vector “memory.” During reading, the LSTM takes in an input and
produces a query vector, which the read head uses to query the external memory store using a cosine
distance across the vectors stored in the memory slots, and returns a weighted sum of these vectors
based on the cosine distance. During writing, the LSTM outputs a vector that the write head uses to
write into the memory store using a least recently used memory access mechanism (Santoro et al.,
2016).

4.3 TRAINING DETAILS

The sizes of the RN – in terms of number of layers and number of units for both fφ and gψ –
were {200, 200}, {500, 500}, {1000, 1000}, or {200, 200, 200}. The MLP baseline models used
equivalent sizes. We experimented with different sizes for the summary vector si,j , which is the
output from the RN. Performance is generally robust to the choice of size, with similar results
emerging for 100, 200, or 500. The MANN used a LSTM controller size of 200, 128 memory slots,
40 for the memory size, and 4 read and write heads.

The Adam optimizer was used for optimization (Kingma & Ba, 2014), with learning rate of 1e−4 for
the scene description tasks, and a learning rate of 1e−5 for the one-shot learning task. The number
of iterations varied for each experiment, and are indicated in the relevant figures. All figures show
performance on a withheld test-set, constituting 2-5% of the size of the training set. The number of
training samples was 5000 per class for scene description tasks, and 200 per class (for 100 classes)
for the pixel disentangling experiment. We used minibatch training, with batch-sizes of 100 for the
scene description experiments, and 16 (with sequences of length 50) for the one-shot learning task.

5 RESULTS

5.1 SUPERVISED LEARNING OF RELATIONAL STRUCTURE FROM SCENE DESCRIPTIONS

Here, we trained RNs on variations of the classification task described in section 3.2 and contrasted
their performance with that of MLPs of different sizes and depths. First, we compared the perfor-
mance of these models on scenes where the relational structure was defined by position (figure 4a).
After 200,000 iterations the RNs reached a cross entropy loss of 0.01 on a withheld test set, with
MLPs of similar size failing to match (figure 4a, top). In fact, the smallest RN performed signifi-
cantly better than the largest MLP. The performance of the MLPs remained poor even after 1 million
iterations (cross entropy loss above 0.2 – not shown). This result was consistent for datasets with 5,
10 and 20 scene classes (figure 4a, bottom).
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These results were obtained using targets that explicitly described the relations between objects
types (binary vector indicating the edges of the graph). Using one-hot vectors as output targets
resulted in very similar results, with the RNs’ accuracy reaching 97% (see figure 7 in appendix).
Our reasoning for using graph descriptions as targets relates to the potential of the RN model to
represent relations between individual pairs of object types independent of other relations that might
be present in a scene. Explicitly targeting the individual relations could in principle allow the model
to learn the particular components that form the overall scene structure. Indeed, when trained to
classify hundreds of scene classes, the RN was then able to generalize to unobserved classes (see
figure 8 in appendix). (Note: this generalization to unseen classes would be impossible with the use
of one-hot labels, since there is no training information that may inform the vector label a particular
unseen class). Additionally, the ability to generalize to unobserved classes suggests that the RN
is able to generalize in a combinatorially complex object-relation space because of its ability to
learn compositional structure. It is able to use pieces (i.e., specific relations) of learned information
and combine them in unique, never-before-seen ways, which is a hallmark feature of compositional
learning.
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Figure 4: Scene classification tasks. Differently sized RNs performed well when trained to classify
10 scene classes based on position relations (a), reaching a cross entropy loss below 0.01 (a, top),
and on tasks that contained 5, 10 or 20 classes (a, bottom). The MLPs performed poorly regardless
of network size and the number of classes. When relational structure depended on the color of the
objects (color task, b) all RN configurations performed well classifying 5, 10 or 20 classes, similar to
what we observed on the position task. MLPs with similar number of parameters performed poorly.

We repeated this experiment using relational structure defined by the color of the objects, with po-
sition being randomly sampled for each object (figure 4b). Again, RNs reached a low classification
error on withheld data (below 0.01), whereas the MLP models did not (error above 0.2; figure 4b,
top). This was observed across datasets with 5, 10 and 20 classes (figure 4b, bottom).

5.2 INFERRING OBJECT RELATIONS FROM NON-SCENE DESCRIPTION INPUTS

There are a number of difficulties that present when inferring object relations. Firstly, one cannot
naively apply a deep neural network to infer relations; instead, a particular type of architecture –
possibly one that is permutation invariant to some component of its input space – may be necessary.
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Secondly, the discovery of the very things that can possess relations – which was assumed knowledge
in previous experiments – is difficult.

We showed the ability of a RN to solve the first problem, and here, we gain insight on the second
problem. A particular feature – or constraint – of RNs is their computation on implicit groups of
factored objects. We tested, then, whether this constraint could act as a learning signal to induce
the factorization of objects from entangled scenes. Specifically, we tested whether RNs can learn
with two types of inputs that do not have nicely factored object representations: entangled scene
descriptions and pixel images.

5.2.1 INFERRING RELATIONS FROM ENTANGLED SCENE DESCRIPTIONS

In this task we probed the network’s ability to classify scenes from entangled scene descriptions.
Intuitively, the RN should behave as an architectural bottleneck that can aid the disentangling of
objects by a perceptual model to produce factored object representations on which it can operate. To
entangle data we started from the scene description D, and reshaped it into a vector of size mn (i.e.,
a concatenated vector of objects [o1; o2; o3; ..; om]). This vector was then projected using a random
permutation matrix B of size mn × mn. We chose a permutation matrix for two reasons. First,
because it preserved all the information of the input without adding any additional scaling between
the factors. Second, because it was invertable using a matrix multiplication, and hence produced
an interpretable solution found by the model. We used a learnable matrix U of size mn × mn –
implemented as a linear layer without biases, positioned after the permutation and before the RN
(see figure 3). Thus, this layer provided the m objects to the RN. Figure 5a shows the performance
of the model on this task.

During learning we visualized the absolute value of BU (figure 5a, inset). We noticed a block
structure emerging, illustrating the identification of different objects. Note, white pixels denote a
value of 0, and black denote a value of 1. BU was of size mn ×mn, making the multiplication of
a flattened D with BU produce a vector of size mn. This vector was then reshaped into a matrix of
size m× n, and provided as input to the RN. The block structure of BU suggests that the object k,
as perceived by the network, was a linear transformation (given by the block) of a different object l
from the ground truth input in D. Of particular interest is the gradual discovery of new objects over
time. Because the model is order invariant, there is no pressure to recover the ground truth order of
the objects. Similarly, the particular order of features that define the object were not disentangled,
since there is no real pressure for this to happen. Therefore, RNs managed to successfully force the
identification of different objects without imposing a particular form, or order of the features within
objects.

5.2.2 INFERRING RELATIONS FROM PIXELS

Image depictions from 100 unique classes (using the position-relation dataset; see figure 11 in ap-
pendix) were passed through a VAE, whose latent variables were provided as input to a linear layer,
which acted as a disentangler, and which sent its output to a RN. Both the VAE and RN were trained
concurrently – however, gradients from the RN were not propagated to the VAE portion of the
model so as to prevent any of the VAE components from contributing to the solution of the RN’s
task. Thus, this experiment explicitly tested the ability of the RN to operate on distributed represen-
tations of scenes. It should be noted that this task is unique from the previous entangling tasks, as
the VAE may be capable of providing both disentangled object representations, as well as relational
information, in its compressed latent code. Nonetheless, the results from this task suggest a capacity
for RNs to operate on distributed representations, which opens the door to the possible conjunction
of RNs with perceptual neural network modules (figure 5b).

5.3 IMPLICIT USE OF RELATIONS FOR ONE-SHOT LEARNING

Here, we assess the potential to use RNs in conjunction with memory-augmented neural networks
to quickly – and implicitly – discover object relations and use that knowledge for one-shot learning.

We trained a MANN with a RN pre-processor to do one-shot classification of scenes, as described in
section 3.2. In order to solve this task, the network must store representations of the scenes (which,
if class representations are to be unique, should necessarily contain relational information), and the
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Figure 5: Inferring relational structure from entangled scenes. A RN is able to extract and
operate on objects from an entangled scene description (a). Inset shows BU from one example
seed. Different seeds produced unique block structures corresponding to different permutations. A
RN is also able to extract and operate on objects from a distributed latent representation of the scene
(b). Distributed latent representations are inferred latent variables from VAE processing of image
depictions of the scenes.

episode-unique label associated with the scene. Once a new sample of the same class is observed,
it must use inferred relational information from this sample to query its memory and retrieve the
appropriate label.

During training, a sequence of 50 random samples from 5 random classes (out of a pool of 1900)
were picked to constitute an episode. The test phase consisted of episodes with scenes from 5
randomly selected and previously unobserved classes (out of a pool of 100). After 500,000 episodes
the network showed high classification accuracy when presented with just the second instance of a
class (76%) and performance reached 93% and 96% by the 5th and 10th instance, respectively (figure
6a). As expected, since class labels change from episode-to-episode, performance is at chance for
the first instance of a particular class.

Although samples from a class are visually very dissimilar, a RN coupled to an external memory
was able to do one-shot classification. This suggests that the network has the capacity to quickly
extract information about the relational structure of objects, which is what defines class membership,
and does so without explicit supervision about the object-relation structure. Replacing the RN pre-
processor with an MLP resulted in chance performance across all instances (figure 6b), suggesting
that the RN is a critical component of this memory-augmented model.

6 CONCLUSIONS

RNs are a powerful architecture for reasoning about object-relations. They operate under the as-
sumption that relations exist between pairs of objects, or entities. This assumption affords the ability
to classify scenes wherein class boundaries are defined by object relations, as well as the ability to
induce factored object representations from entangled scene descriptions.

RNs have the potential to successfully operate with perceptual modules to extract object representa-
tions on which to operate. This ability to operate with different neural network modules also extends
to the domain of one-shot learning, wherein they are able to pair with MANNs to perform one-shot
structure learning.

The utility of RNs as a relation-reasoning module suggests that they have the potential to be useful
for solving tasks that require reasoning not only about object-object relations, but also about verb-
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(a) MANN with RN pre-processor (b) MANN with MLP pre-processor
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Figure 6: One-shot classification of scenes. A MANN with a RN pre-processor is able to accurately
classify unobserved scenes after the presentation of a single instance of the same class (a). A MANN
with a MLP pre-processor performs at chance (b).

object relations, as in human-object interaction datasets (Chao et al., 2015) or question-answering
tasks that involve reasoning between multiple objects (Krishna et al., 2016).

The ability of RNs to induce a disentangling of their input potentially allows for great flexibility in
the discovery of the “objects” that are to be factored. In our case, objects were defined a priori, but
this needn’t necessarily be the case. Depending on the task, they may not even constitute physically
consistent groups of matter. Combinations of objects can be grouped to become one “cluster” object,
or, the notion of what constitutes an object can instead be determined by a deep neural network,
which may come up with a very flexible interpretation for “object-ness” in a scene. Developing a
way to process various types of input to produce “objects” with which RNs can operate is an exciting
direction of future research.
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APPENDIX

ADDITIONAL SCENE CLASSIFICATION EXPERIMENTS
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Figure 7: Scene classification with one-hot vector labels. Performance of RNs and MLPs on
position task with 20 classes and using one-hot vectors as output targets.
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Figure 8: Scene classification on withheld classes. Differently sized RNs were trained to classify
scenes from a pool of 490 classes. The plot shows the cross entropy loss on a test set composed of
samples from 10 previously unseen classes.

ONE-SHOT LEARNING TASK SETUP

The one-shot learning task proceeds as in Hochreiter et al. (2001) and Santoro et al. (2016). In this
task, parameters θ are updated to reduce the expected learning cost across a distribution of datasets
p(D):

θ∗ = argminθED∼p(D)[L(D; θ)]

In our case, datasets consist of sequences, or episodes, of input-output pairs, where inputs are scene
descriptions D and outputs are target labels y (see figure 9). So, {(Dt, yt)}Tt=1 ∈ D. All D from
all datasets are constructed using the same generative process for producing scene descriptions,
as described in the main text. The main differentiating factor between datasets, then, is the labels
associated with each scene description. From dataset-to-dataset, scenes from a particular scene-class
are assigned a unique, but arbitrary target label. This implies that scenes from the same scene class
will not necessarily have the same label from episode-to-episode (or equivalently, from dataset-to-
dataset), but will indeed have the same label within episodes.

12



Under review as a conference paper at ICLR 2017

In this training setup, labels are provided as input at subsequent timesteps. So, a given input at a
particular timestep is (Dt, yt−1), where yt−1 is the correct target label for the previous timestep’s
scene description. This allows the MANN to learn a binding strategy (Santoro et al., 2016) (see
figure 9 and 10): it will produce a representation for a particular input and bind it with the incoming
label, and will then store this bound information in memory for later use. Importantly, the label
is presented in a time offset manner; if labels were instead presented at the same timestep as the
corresponding sample, then the network could learn to cheat, and use the provided label information
to inform its output.

This particular setup has been shown to allow for a particular meta-learning strategy (Hochreiter
et al., 2001; Santoro et al., 2016); the network must learn to bind useful scene representations with
arbitrary, episode-specific labels, and use this bound information to infer class membership for sub-
sequent samples in the episode. This task poses a particular challenge for RNs; they must have the
capacity to quickly extract useful representations of scene classes to enable rapid, within-episode
comparisons to other scene representations. The representation extracted for a single example must
contain useful, general information about the class if it is to provide information useful for subse-
quent classification. As seen in the results, one-shot accuracy is quite high, implying that the RN
and MANN combination can extract useful representations of scene classes given a single example,
and use this stored representation to successfully classify future examples from the same class. This
implies that the network is necessarily extracting relational information from input scenes, since
only this information can allow for successful one-shot learning across samples.
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Figure 9: One-shot learning task setup
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