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Abstract

Autonomous driving has various visual perception tasks such as object detection,
motion detection, depth estimation and flow estimation. Multi-task learning (MTL)
has been successfully used for jointly estimating some of these tasks. Previous
work was focused on utilizing appearance cues. In this paper, we address the gap
of incorporating motion cues in a multi-task learning system. We propose a novel
two-stream architecture for joint learning of object detection, road segmentation
and motion segmentation. We designed three different versions of our network to
establish systematic comparison. We show that the joint training of tasks signifi-
cantly improves accuracy compared to training them independently even with a
relatively smaller amount of annotated samples for motion segmentation. To enable
joint training, we extended KITTI object detection dataset to include moving/static
annotations of the vehicles. An extension of this new dataset named KITTI MOD is
made publicly available via the official KITTI benchmark website 1. Our baseline
network outperforms MPNet which is a state of the art for single stream CNN-based
motion detection. The proposed two-stream architecture improves the mAP score
by 21.5% in KITTI MOD. We also evaluated our algorithm on the non-automotive
DAVIS dataset and obtained accuracy close to the state-of-the-art performance.
The proposed network runs at 8 fps on a Titan X GPU using a two-stream VGG16
encoder. Demonstration of the work is provided in 2.

1 Introduction

Autonomous driving is a rapidly advancing application area with the progress in deep learning.
There are two main paradigms in this area: (1) The mediated perception approach which semantically
reasons the scene [6][17] and then determines the driving decision based on it. (2) The behavior
reflex approach that learns end to end the driving decision [2] [22]. The behavior reflex methods
can benefit from semantic reasoning of the environment. For example, an auxiliary loss on semantic
segmentation [22] was used with end to end learning. On the other hand, in mediated perception
semantic reasoning is a central task, followed by the control decision separately. Semantic reasoning
of the scene includes object detection, motion detection, depth estimation, object tracking and others.
Multiple architectures for the joint reasoning of the different tasks were proposed [17][10]. A shared
encoder between these tasks were used, but their work utilizes appearance cues only. Previous

1http://www.cvlibs.net/datasets/kitti/eval_semantics.php
2https://www.youtube.com/watch?v=hwP_oQeULfc
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multi-task learning systems do not incorporate motion cues. Although tasks such as motion detection,
depth and flow estimation will benefit from it.

Motion detection in particular is a challenging problem because of the continuous camera motion
along with the motion of independent objects. Moving objects are the most critical in terms of
avoiding fatalities and enabling smooth maneuvering and braking of the car. Motion cues can
also enable generic object detection as it is not possible to train for all possible object categories
beforehand. Classical approaches in motion detection were focused on geometry based approaches
[19][14][13][12][21]. However, pure geometry based approaches have many limitations, motion
parallax issue is one such example. A recent trend [18][9][4][20][5] for learning motion in videos has
emerged. Nonetheless, this trend was focused on pixel-wise motion segmentation. Fragiadaki et. al.
suggested a method to segment moving objects [5] that uses a separate proposal generation. However,
proposal generation methods are computationally inefficient. Jain et. al. presented a method for
appearance and motion fusion in [9]. The work focuses on generic object segmentation. It was not
designed for static/moving vehicles classification. Tokmakov et. al. [18] used a one-stream fully
convolutional network with optical flow input to estimate the motion type. The approach works with
either optical flow only or concatenated image and flow as input. The concatenated input will not
benefit from the available pretrained weights, as they were trained on RGB only. Drayer et. al. [4]
described a video segmentation work that used tracked detections from R-CNN denoted as tubes.
This was followed by a spatio-temporal graph to segment objects. The main issue with this approach
is its running time of 8 seconds per frame. Thus, there is a need for an efficient and more accurate
solution.

In this paper, we propose a novel method for scene understanding that combines motion and appear-
ance cues. The motivation behind combining motion and appearance in a multi-task learning system
is to improve the benefit for relatively fewer data tasks. Tasks like motion segmentation which have
relatively smaller datasets improve through the joint training with detection. The contributions of this
work are as follows: (1) We present a novel multi-task learning system for autonomous driving that
fuses both appearance and motion cues. (2) This system is used to jointly detect vehicles and segment
motion. Another extension of the work had the previous two tasks along with road segmentation.
(3) We propose a method to generate automatically annotated data for this task from KITTI dataset
which we call KITTI MOD. This provides a benchmark for autonomous driving application, unlike
synthetic sequences [11].

2 Creation of KITTI MOD Dataset

Simultaneous annotation is required for jointly training the object detection and motion segmentation.
Thus we extended the KITTI object detection dataset to include motion segmentation. We imple-
mented a pipeline to automatically generate static/moving classification for objects which is then
manually verified. The procedure uses odometry information and annotated 3D bounding boxes for
vehicles. The odometry information that includes GPS/IMU readings provides a method to compute
the velocity of the moving camera. The 3D bounding boxes of the annotated vehicles are projected to
2D images and tagged with their corresponding 3D centroid. The 2D bounding boxes are associated
between consecutive frames using intersection over union. The estimated vehicles velocities are then
computed based on the associated 3D centroids. The computed velocity vector per bounding box is
compared to the odometry ground-truth to determine the static/moving classification of vehicles. The
objects that are then consistently identified on multiple frames as moving are kept. In this dataset, the
focus is on vehicles with car, truck, and van object categories.

An overview of the labeling procedure is shown in Figure 1. This is applied on six sequences from
KITTI raw data [7] to generate a total of 1750 frames. In addition to these frames, 200 frames from
KITTI scene flow are used to provide us with 1950 frames in total. This new dataset is referred to
as KITTI MOD throughout the paper. For some statistics on the dataset, the total number of static
vehicles is 5997, while the number of moving ones is 2383. An extension of the dataset is publicly
available [1] to act as a benchmark on motion detection on KITTI. Although there exists other motion
segmentation datasets such as [15][11][13]. However, they are either synthetic[11], relatively small
[13] or has limited camera motion [15] unlike what is present in autonomous driving scenes.
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Figure 1: Overview of the pipeline used to generate KITTI Moving Object Detection annotations.
Blue boxes for moving vehicles, green boxes for static ones.

3 Two-Stream Multi-task Learning System

In this section both motion and object detection networks are detailed. First a method for jointly
detecting vehicles and segmenting motion is presented. Then, a multi-task learning system combining
motion and appearance for motion segmentation, vehicle detection and road segmentation is described.

3.1 Joint Vehicle Detection and Motion Segmentation

In autonomous driving, static/moving classification on the object-level is more relevant than dense
pixel-level classification. A method that jointly detects vehicles in the scene while classifying them
into static/moving is presented. A detector similar to the detection decoder in [17] denoted as FastBox
is used. It is based on Yolo [16] used as a single shot detector utilizing the first 15 convolutional layers
from VGG16. This is followed by two 1x1 convolutional layers. The last layer outputs 39x12 grid
size representing each cell. The channels in the output layer include the bounding box coordinates,
size, and the confidence in the existence of a vehicle. The loss function used in detection combines
the L1 loss for the bounding box regression, with cross entropy for the confidence score.

A two-stream VGG16 encoder is used to output the combined motion and appearance features. This
is followed by two decoders for vehicle detection and motion segmentation. This network is referred
to as moving object detection network (MODNet). This method follows a similar approach to the
work in [17]. However, in our approach we present motion cues as another valuable input to any
multi-task learning network in auto-driving. Our work also has similarities to the work in [9], but
their work included one task only for video segmentation. This is one of the main strengths of our
work; In the same forward pass motion segmentation and vehicle detection are predicted. This is
crucial for real-time performance in autonomous driving scenarios. Inside the segmentation network
for each skip connection a summation junction is used to combine motion and appearance features.

Ltotal = Lmoseg + Lseg + Ldet (1a)

Lmoseg = − 1

|I|
∑
i∈I

∑
c∈Cmotion

pi(c) log qi(c) (1b)

Lseg = − 1

|I|
∑
i∈I

∑
c∈Cseg

pi(c) log qi(c) (1c)

Ldet =
1

|S|
∑
s∈S

1obj(|xqs − xps
|+ |yqs − yps

|+ |wqs − wps
|+ |hqs − hps

|)

− 1

|S|
∑
s∈S

∑
c′∈Cvehicle

ps(c
′) log qs(c

′) (1d)
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Figure 2: MODNet Two Stream Multi-Task Learning Architecture for joint motion segmentation,
object detection and road segmentation. Optical Flow and RGB input, RGB image with overlay:
(Yollow) motion segmentation. (Blue) detected bounding boxes. (Green) segmented road.

3.2 Joint Vehicle Detection, Motion and Road Segmentation

Another multi-task learning system is designed that includes three tasks. These are vehicle detection,
road segmentation, and motion segmentation. The system provides us with free space information
along with alerts to moving detected vehicles. In a similar fashion a shared fusion encoder is used
to incorporate both motion and appearance. The output from the shared encoder is used as input
to another FCN8s decoder. Thus, in one forward pass vehicle bounding boxes, motion masks and
segmented road are predicted. The loss function used in the different multi-task learning system
presented alternates between segmentation and detection losses. These losses are shown in Equation
1, where q denotes predictions and p denotes ground-truth. The pixel locations are termed as I , while
S is the number of grid cells. Cmotion is the set of classes for motion segmentation as foreground or
background, while Cvehicle is the classes for vehicle classification. The detection loss regresses with
L1 loss on the coordinates within the cell. Only cells with a positive confidence score are considered
in the regression loss. The road segmentation loss is similar to the motion, with two classes. Joint
training is performed similarly to [17] where gradients are back-propagated from both tasks on their
corresponding mini-batch inputs. This method of joint training leverages the performance of tasks
with comparably fewer data. This provides another motivation for the shared motion and appearance
encoders. It is worth noting, that motion relevant annotations such as motion masks or optical flow
ground-truth are relatively small in real datasets. The tasks for training are selected in an alternate
fashion with equal probabilities.

4 Experiments

4.1 Experimental Setup

Throughout experiments, the Adam optimizer is used with learning rate 1e−5. L2 regularization is
used in the loss function to avoid overfitting the data, with 5e−4 factor. Dropout with probability
0.5 is used to 1x1 convolutional layers. The encoder is initialized with VGG pretrained weights
on Imagenet. Transposed convolution layers are initialized to bilinear upsampling. Input image
resolution used is 1248x384.

The evaluation metrics used in segmentation are precision, recall, F-score and mean intersection over
union (IoU). The evaluation metric used for detection is mean average precision(mAP) and average
precision (AP) for static/moving classes. Average precision of car class is also measured showing
different difficulties for easy, medium, and hard setup as in KITTI benchmark [8]. Note that it is
important to evaluate the static/moving classification standalone without including errors from the
detection itself. The average precision used is computed on the detected bounding boxes that match
bounding boxes from the ground truth. Thus, evaluation is for static/moving classification standalone,
without penalizing errors from FastBox detection.
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4.2 Experimental Results

4.2.1 Joint Motion Segmentation and Vehicle Detection

Detailed experiments on motion segmentation with vehicle detection is conducted on KITTI MOD.
Table 1 shows the evaluation of the separate and joint training for motion segmentation and vehicle
detection. The detection evaluation for the separate setup is taken from [17] since their pre-trained
weights are used in this setup. It clearly shows that the joint training improves the motion segmentation
with 8.2% approximately in F-score. The detection on the easy evaluation is only affected by 2.5%
and on the hard evaluation is approximately the same. It is worth noting that joint training of both
tasks improves results when there is limited training data.

Table 1: Quantitative comparison on KITTI MOD data for separate MODNet against jointly trained
MODNet.

Object Detection Motion Segmentation
moderate easy hard Precision Recall F-score IoU

MODNet- Separate 83.35 92.8 67.59 44.34 69.84 54.25 37.22
MODNet- Joint 80.74 89.52 67.72 56.18 70.32 62.46 45.41

Figure 3: Qualitative evaluation on KITTI MOD data for our proposed two-stream multi-task learning
network MODNet. top row: Input Optical Flow, middle row output of 2 tasks: overlay motion mask
(green), bottom row output of 3 tasks: overlay motion mask (yellow), road segmentation (green) and
detected bounding boxes (blue).

The two-stream motion segmentation network is used to provide motion masks which are then
combined with FastBox [17] detections. The output segmentation and vehicles’ static/moving
classification is evaluated on KITTI MOD data. Table 2 shows the results from the joint detection
and motion segmentation. The two-stream MODNet shows the best mAP on KITTI MOD data.
This is compared against one of the state-of-the-art methods MPNet [18]. MPNet with optical flow
input is evaluated on KITTI MOD and combined with proposals as mentioned in their method. Its
pretrained weights are used as is, then its output motion segmentation is used with vehicle detection.
If intersection over union is larger than 0.5, the detected vehicle is considered moving. This is applied
for both our approach and MPNet. It is worth noting that our method for evaluating static/moving
classification does not depend on the object detection itself as explained earlier.

Our proposed approach outperforms MPNet with 21.5% in mAP. This shows that autonomous driving
scenarios, exhibit different challenges compared to generic object segmentation. The continuous
camera motion and the existence of multiple objects in the scene makes it more challenging. The
reasons behind our improvement is two fold. The KITTI MOD training data provide a better
representation for motion than the synthetic data used in MPNet. The usage of both optical flow and
RGB in a two-stream network that utilizes pretrained VGG16 weights improves the results even more.
The two-stream image pair is worse in mAP compared to (RGB+OF), but it is more computationally
efficient. The joint detection and motion segmentation method provides an efficient way to solve
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both tasks. Our method runs at 8 fps on a TITANX GPU. This outperforms other approaches in the
literature in terms of computational efficiency. The running time for approaches that estimate scene
flow can be up to 50 minutes, while the approach in [4] takes up to 8 seconds per frame.

Table 2: Quantitative evaluation on KITTI MOD data for our proposed joint detection and motion
segmentation network.

AP Static AP Moving mAP
MPNet[18] 50.23 31.84 41.03
MODNet (image pair) 60.7 44.29 52.5
MODNet (RGB+OF)- Separate 65.28 56.86 61.07
MODNet (RGB+OF)- Joint 58.6 66.54 62.57

Figure 4: Qualitative evaluation on DAVIS for our proposed two-stream motion segmentation network.
RGB Image, Optical Flow and Overlay Motion mask in green.

Table 3: Quantitative evaluation on Davis[15] data Val 2016 using mean IoU. Approaches highlighted
in blue are without CRF post-processing, and in red after post-processing.

MSG[3] FST[14] BMM[21] MPNet[18] MPNet[18]+CRF ours ours+CRF
mIoU 53.3 55.8 62.5 62.66 70.0 63.88 66.0

4.2.2 Generic Motion Segmentation on DAVIS

To additionally compare against the state of the art in segmentation, our method is evaluated on the
Davis[15] benchmark. MODNet is trained on DAVIS training data and evaluated on the validation
set. Then it is compared to the unsupervised methods on DAVIS video segmentation benchmark.
Note that on DAVIS the term unsupervised denotes that no masks from the initial frame is used as
initialization. MPNet is one of the unsupervised methods that works with one stream only and optical
flow as input. It is evaluated with and without applying conditional random fields as a post processing,
and with the usage of optical flow only. Table 3 shows that our method outperforms the state of the
art on DAVIS in unsupervised motion segmentation, except for MPNet+CRF. The improvement over
MPNet alone is only 1.5%. MPNet+CRF performs better than ours+CRF, but conditional random
field runs in 1.15 seconds per frame. This was measured using input image resolution of 480x854
on an Intel core i5 CPU at 2.30 GHZ. Hence, the usage of CRF as postprocessing is impractical for
real-time autonomous driving tasks.

The DAVIS data has very simple camera motion compared to KITTI. Another difference between
KITTI sequences and DAVIS is that moving objects cover large portions of the scene. Thus, using
optical flow can be sufficient for segmentation. Figure 4 shows the optical flow and segmentation
output from our approach on DAVIS data.

5 Conclusion

In this paper, we design a novel multi-task learning system for autonomous driving that combines
motion and appearance cues. The system jointly estimates the motion mask, object detection, and road
segmentation. Experimental results show that the combined appearance and motion cues in a multi-
task learning system outperforms other architectures. Our approach outperforms the single-stream
state-of-the-art MPnet by 21.5% in mAP on the extended KITTI dataset (KITTI MOD).
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