
Under review as a conference paper at ICLR 2017

IMPROVED ARCHITECTURES FOR COMPUTER GO

Tristan Cazenave
Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE
75016 PARIS, FRANCE
Tristan.Cazenave@dauphine.fr

ABSTRACT

AlphaGo trains policy networks with both supervised and reinforcement learning
and makes different policy networks play millions of games so as to train a value
network. The reinforcement learning part requires massive amount of computa-
tion. We propose to train networks for computer Go so that given accuracy is
reached with much less examples. We modify the architecture of the networks in
order to train them faster and to have better accuracy in the end.

1 INTRODUCTION

Deep Learning for the game of Go with convolutional neural networks has been addressed by Clark
& Storkey (2015). It has been further improved using larger networks Maddison et al. (2014); Tian
& Zhu (2015). AlphaGo Silver et al. (2016) combines Monte Carlo Tree Search with a policy and a
value network.

Deep neural networks are good at recognizing shapes in the game of Go. However they have weak-
nesses at tactical search such as ladders and life and death. The way it is handled in AlphaGo is to
give as input to the network the results of ladders. Reading ladders is not enough to understand more
complex problems that require search. So AlphaGo combines deep networks with MCTS Coulom
(2006). It trains a value network in order to evaluate positions. When playing, it combines the eval-
uation of a leaf of the Monte Carlo tree by the value network with the result of the playout that starts
at this leaf. The value network is an important innovation due to AlphaGo. It has helped improving
a lot the level of play.

One of the problems about training a value network is that millions of games have to be played by
the policy network against different versions of itself in order to create the data used to train the
value network. It is therefore interesting to find a way to learn with less training examples so as to
reduce the bottleneck of playing millions of games. Learning with less examples also often implies
that in the end the accuracy of the network on the training set is greater.

Residual Networks improve the training of very deep networks He et al. (2015). These networks can
gain accuracy from considerably increased depth. On the ImageNet dataset a 152 layers networks
achieves 3.57% error. It won the 1st place on the ILSVRC 2015 classification task. The principle of
residual nets is to add the input of the layer to the output of each layer. With this simple modification
training is faster and enables deeper networks.

Residual networks were recently successfully adapted to computer Go Cazenave (2016a). As a
follow up to this paper, we propose improved architectures for residual networks. We use enriched
inputs, more comprehensive training and testing examples and experiment with deeper networks
that give better accuracy and stronger play.

The second section details different layer architectures for computer Go, the third section gives
experimental results, and the last section concludes.

2 DIFFERENT LAYERS FOR COMPUTER GO

The usual layer used in computer Go program such as AlphaGo Maddison et al. (2014) and Dark-
Forest Tian & Zhu (2015) is composed of a convolutional layer and of a ReLU layer as shown in
figure 1.

1



Under review as a conference paper at ICLR 2017

ReLU

Output

Convolution

Input

Figure 1: A usual layer.

The residual layer used for image classification adds the input of the layer to the output of the layer
using addition and identity. It is shown in figure 2.

Input

Convolution

ReLU

Convolution

Addition

ReLU

Output

Figure 2: A residual layer for Image Classification.

The residual layer we use for Computer Go is shown in figure 3 Cazenave (2016a). It simply adds
the input of a layer to the output of the 3 × 3 convolutional layer. It then uses a ReLU layer before
the output. The output of a residual layer is the input of the next residual layer.

In the code of the open source DarkForest Go program, Spatial Batch Normalization Ioffe & Szegedy
(2015) is used after the ReLU layer as shown in figure 4.

2



Under review as a conference paper at ICLR 2017

Input

Convolution

Addition

ReLU

Output

Figure 3: A residual layer for computer Go.

ReLU

Convolution

Input

Output

SBN

Figure 4: A layer of DarkForest.

Inspired by DarkForest we tried to add Spatial Batch Normalization after the ReLU layer in our
residual layer. The layer that gave the best results is given in figure 5. It simply adds a Spatial Batch
Normalization after the ReLU layer and outside of the residual block. This is a new architecture that
we propose and test in this paper.

The Torch Collobert et al. (2011) code used for the hidden layers is simply:

convnet:add (nn.ConcatTable ()
:add (cudnn.SpatialConvolution (nplanes, nplanes,3, 3, 1, 1, 1, 1))
:add (nn.Identity ()))
:add (nn.CAddTable (true))
:add (cudnn.ReLU ())
:add (cudnn.SpatialBatchNormalization (nplanes))

3



Under review as a conference paper at ICLR 2017

Convolution

Addition

ReLU

Input

SBN

Output

Figure 5: A residual layer with Spatial Batch Normalization.

The input layer of our network is also residual. It uses a 5 × 5 convolutional layer in parallel to a
1×1 convolutional layer and adds the outputs of the two layers before the ReLU layer. It is depicted
in figure 6.

Input

Addition

ReLU

Output

5x5 Convolution 1x1 Convolution

Figure 6: The first residual layer of the network for computer Go.

The output layer of the network is a 3 × 3 convolutional layer with one output plane followed by a
SoftMax. All the hidden layers use 256 feature planes and 3× 3 filters.

4



Under review as a conference paper at ICLR 2017

3 EXPERIMENTAL RESULTS

In this section we will explain how we conducted the experiments evaluating deep residual networks.
We first present the data that was used for training and testing. We then describe the input planes
of the networks and the training and testing phases with results given as percentages on the test set.
We finish the section describing our Go playing program Golois.

3.1 DATA

Our training set consists of games played between 2000 and 2014 on the Kiseido Go Server (KGS)
by players being 6 dan or more. We exclude handicap games. Each position is rotated and mirrored
to its eight possible symmetric positions. It results in 160 000 000 positions in the training set.
When training reaches the last position of the training set it starts again with the first one. The test
set contains the games played in 2015. The positions in the test set are not mirrored and there are
100 000 different positions in the test set.

The dataset is similar to the AlphaGo and the DarkForest datasets, all the games we have used for
training are part of these two other datasets. AlphaGo also uses games by weaker players in its
dataset Maddison et al. (2014), instead we only use games by 6 dan or more, it probably makes the
dataset more difficult and more meaningful. The AlphaGo dataset is not available, also it would help
to have the 30 000 000 games played by AlphaGo against itself so as to train a value network but
this dataset is not available either.

3.2 INPUT AND OUTPUT PLANES

The networks use 42 19× 19 input planes: three planes for the colors of the intersections, one plane
for the third line, one plane filled with one if there is a ko, one plane with a one for the ko move,
one plane with the ownership of each intersection computed after one hundred random playouts, one
plane for the criticality Coulom (2009), one plane for the AMAF values, ten planes for the liberties
of the friend and of the enemy colors (1, 2, 3, 4, ≥ 5 liberties), twelve planes for the liberties of the
friend and of the enemy colors if a move of the color is played on the intersection (1, 2, 3, 4, 5, ≥ 6
liberties), one plane to tell if a friend move on the intersection is captured in a ladder, one plane to
tell is an enemy move on the intersection is captured in a ladder, one plane to tell if a string can be
captured in a ladder, one plane to tell if a string can escape a ladder, one plane to tell if a friend move
threatens to capture in a ladder, one plane to tell if an enemy move threatens to capture in a ladder,
and five planes for each of the last five moves.

The output of a network is a 19× 19 plane and the target is also a 19× 19 plane with a one for the
move played and zeros elsewhere.

3.3 TRAINING

Networks were trained with a minibatch of either 50 or 100 and an initial learning rate of 0.2 ×
minibatch = 20.0. The error criterion is the mean square error and the training algorithm is SGD
with a momentum of 0.9. All networks use 256 feature planes, a 5 × 5 convolutional layer for the
input layer and then only 3× 3 convolutional layers.

The different network architectures we experimented with are:

• netα, the usual 13 layers convolutional network as used in AlphaGo Maddison et al. (2014);
Silver et al. (2016),
• netdark, with 13 layers and convolutional layers followed by ReLU and Spatial Batch

Normalization as used in DarkForest Tian & Zhu (2015),
• net13, a residual 13 layers network,
• net20, a residual 20 layers network,
• net13/sbn, a residual 13 layers network with Spatial Batch Normalization.

We used Torch Collobert et al. (2011) for training the networks. Training a 13 layers network on
5,000,000 examples with Torch, CUDA 8.0 and CUDNN takes approximately three hours on a GTX

5



Under review as a conference paper at ICLR 2017

1080 GPU. This is 9 times faster than our previous experiments with a K40 Cazenave (2016a). The
evolution of the percentage on the test set is given in table 1. Each line corresponds to 5,000,000
more training examples.

We see that all proposed layers improve much on the usual layer. The DarkForest layer is slightly
better than the residual layer with the same number of layers but slightly worse than the residual
network using 20 layers. The layer combining residuals and Spatial Batch Normalization is the best
overall.

The 20 layers residual network was trained longer than the other networks. It used a 0.2 learning
rate until 210,000,000 examples and then halved the learning rate every 35,000,000 examples until
340,000,000 examples (line 68 of the table). It reached a 58.001% accuracy on the test set. It is
greater than previous results reaching either 57.0% with 128 planes Silver et al. (2016), or 57.3%
with 512 planes Tian & Zhu (2015). The main difference with previous work is the architecture,
we use less training examples as previous work since we only use KGS games without handicap by
players greater than 6 dan.

In order to further enhance accuracy we used bagging. The input board is mirrored to its 8 possible
symmetries and the same 20 layers network is run on all 8 boards. The outputs of the 8 networks
are then summed. Bagging improves the accuracy up to 58.485%. The use of symmetries is similar
to AlphaGo.

Table 1: Evolution of the accuracy on the test set
netα netdark net13 net20 net13/sbn

1 0.896 47.132 46.978 47.389 47.819
2 0.675 49.179 48.555 48.821 49.493
3 1.121 50.260 50.302 50.601 50.826
4 1.454 51.076 51.186 51.449 51.471
5 43.719 51.230 51.088 51.722 51.689
6 46.334 51.832 51.602 51.797 52.219
7 47.875 52.188 52.258 52.375 52.611
8 48.629 52.384 52.384 52.618 52.756
9 49.308 52.705 52.697 53.029 53.085

10 49.698 52.748 52.856 53.157 53.145
11 50.196 53.244 53.189 53.566 53.441
12 50.367 53.114 53.201 53.514 53.718
13 50.954 53.471 53.442 53.794 53.708
14 51.337 53.661 53.720 53.827 53.985
15 51.489 53.969 53.844 54.063 53.984
16 51.572 53.983 53.635 54.282 54.021
17 51.981 54.145 54.009 54.438 54.349
18 51.922 54.134 54.051 54.539 54.314
19 52.056 54.183 54.164 54.631 54.485
20 52.294 54.408 54.226 54.541 54.522
... ...
68 58.001

Encouraged by these results and in order to address the reviewers comments we ran additional tests.
Instead of generating files for training as in the previous experiments we use dynamic minibatches
of size 50 that take 50 random states in the training set, each randomly mirrored to one of its eight
symmetric states. As preparing the minibatch can take a significant time compared to the training
time, we optimized the ladder code and we removed the Monte Carlo related input features.

The updating of the learning rate is performed using algorithm 1. A step corresponds to 5000 training
examples. Every 1000 steps the algorithm computes the average error over the last 1000 steps and
the average error over the step minus 2000 and the step minus 1000. If the decrease in the average
error is less than 0.05% then the learning rate is divided by 2. The initial learning rate is set to 0.2.
The algorithm stays at least 4000 steps with the same learning rate before dividing it by 2.

6



Under review as a conference paper at ICLR 2017

Algorithm 1 The algorithm used to update the training rate
if nbExamples % 5000 == 0 then
step← step+ 1
if step % 1000 == 0 then

error1000←
∑
last 1000 steps(errorStep)

error2000←
∑
step − 2000 to step − 1000(errorStep)

if step - lastDecrease > 3000 then
if error2000 - error1000 < 0.0005 * error2000 then
rate← rate

2
lastDecrease← step

end if
end if

end if
end if

Figure 7: Evolution of the error on the test set.

The comparison of the evolution of the test error of the 13 layers network and of the 20 layers
network is given in figure 7. These two networks use residual layers and spatial batch normalization.
We observe that the 20 layers network is consistently better and ends with a significantly reduced
error. This also results in a better accuracy as depicted in figure 8. The 20 layers network ends
with an accuracy of 57.687% without bagging. The 13 layers networks ends with an accuracy of
57.024%. We also trained a 13 layers networks with 512 planes, it is slightly better than the 13
layers network with 256 planes but worse than the 20 layers network with 256 planes. In previous
experiments networks with more than 13 layers were considered worse than 13 layers networks.
Using our architecture enables to efficiently train networks deeper than 13 layers.

7



Under review as a conference paper at ICLR 2017

Figure 8: Evolution of the accuracy on the test set.

3.4 GOLOIS

We made the 20 layers network with bagging and a 58.485% accuracy play games on the KGS
internet Go server. The program name is Golois3 and it is quite popular, playing 24 hours a day
against various opponents. It is ranked 3 dan.

Playing on KGS is not easy for bots. Some players take advantage of the bot behaviors such as being
deterministic, so we randomized play choosing randomly among moves that are evaluated greater
than 0.95 times the evaluation of the best move and that have a greater evaluation than the best
move when augmented by 0.05. Other players intentionally play the bot with a wrong handicap that
disadvantages the bot if it loses and does not increase its rank if it wins. Golois plays on par with
other 3 dan human players and can even occasionally win a game against a 5 dan. Golois3 plays its
moves almost instantly thanks to its use of a K40 GPU. It gives five periods of 15 seconds per move
to its human opponents.

In comparison, AlphaGo policy network and DarkForest policy network reached a 3 dan level using
either reinforcement learning Silver et al. (2016) or multiple output planes giving the next moves to
learn and 512 feature planes Tian & Zhu (2015).

Golois sometimes loses games due to the lack of tactical search. Especially against very strong
players. In order to improve the level of play we plan to train a value network and to add the results
of tactical searches as input features.

Two previous versions of Golois played before Golois3 on the KGS Go server. The first version is
named Golois and it is described in Cazenave (2016b). Golois is ranked 1 kyu. The second version is
named Golois2 and it is described in Cazenave (2016a). Golois2 is ranked 1 dan. The improvements
due to changing the training set, the input features and the architecture described in this paper have
enabled Golois3 to reach the 3 dan level.

The 20 layers network of the second set of experiments also plays on KGS under the name Golois4.
It is ranked 3 dan.

8



Under review as a conference paper at ICLR 2017

4 CONCLUSION

The usual architecture of neural networks used in computer Go can be much improved. Adding
Spatial Batch Normalization as in DarkForest enables to train the networks faster. Adapting residual
networks also helps training the network faster. It also enables to successfully train deeper networks.
A residual network with 20 layers scores 58.001% on the KGS test set. It is greater than previously
reported accuracy. Using bagging of mirrored inputs it even reaches 58.485%. The 20 layers network
with bagging plays online on KGS and reached a 3 dan level playing almost instantly. Combining
residual networks with Spatial Batch Normalization enables to train networks faster and to efficiently
train deeper networks.

Training deeper networks faster for better results is important for the next development phase of
Golois, namely training a value network. We also plan to add the results of elaborate tactical searches
as input to the network. Both for the policy and the value network.

ACKNOWLEDGMENTS

The author would like to thank Nvidia and Philippe Vandermersch for providing a K40 GPU that was
used in some experiments. This work was also granted access to the HPC resources of MesoPSL
financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-
29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la
Recherche.

REFERENCES

Tristan Cazenave. Residual networks for computer Go. submitted to IEEE TCIAIG, 2016a.

Tristan Cazenave. Combining tactical search and deep learning in the game of Go. In IJCAI 2016
Workshop on Deep Learning for Artificial Intelligence (DLAI), NYC, USA, 2016b.

Christopher Clark and Amos Storkey. Training deep convolutional neural networks to play go. In
Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 1766–
1774, 2015.

Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like environment
for machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376, 2011.

Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In H. Jaap
van den Herik, Paolo Ciancarini, and H. H. L. M. Donkers (eds.), Computers and Games, 5th
International Conference, CG 2006, Turin, Italy, May 29-31, 2006. Revised Papers, volume 4630
of Lecture Notes in Computer Science, pp. 72–83. Springer, 2006.

Rémi Coulom. Criticality: a monte-carlo heuristic for go programs. Invited talk at the University of
Electro-Communications, Tokyo, Japan, pp. 198–203, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, pp. 448–456, 2015.

Chris J Maddison, Aja Huang, Ilya Sutskever, and David Silver. Move evaluation in go using deep
convolutional neural networks. arXiv preprint arXiv:1412.6564, 2014.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Yuandong Tian and Yan Zhu. Better computer go player with neural network and long-term predic-
tion. arXiv preprint arXiv:1511.06410, 2015.

9


	Introduction
	Different Layers for Computer Go
	Experimental Results
	Data
	Input and Output Planes
	Training
	Golois

	Conclusion

