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1 INTRODUCTION
Demonstrations provide a descriptive medium for specifying robotic tasks. Prior work has shown
that robots can acquire a range of complex skills through demonstration, such as table ten-
nis (Mülling et al., 2013), lane following (Pomerleau, 1989), pouring water (Pastor et al., 2009),
drawer opening (Rana et al., 2017), and multi-stage manipulation tasks (Zhang et al., 2018). How-
ever, the most effective methods for robot imitation differ significantly from how humans and ani-
mals might imitate behaviors: while robots typically need to receive demonstrations in the form of
kinesthetic teaching (Pastor et al., 2011; Akgun et al., 2012) or teleoperation (Calinon et al., 2009;
Rahmatizadeh et al., 2017; Zhang et al., 2018), humans and animals can acquire the gist of a behav-
ior simply by watching someone else. In fact, we can adapt to variations in morphology, context,
and task details effortlessly, compensating for whatever domain shift may be present and recovering
a skill that we can use in new situations (Brass & Heyes, 2005). Additionally, we can do this from
a very small number of demonstrations, often only one. How can we endow robots with the same
ability to learn behaviors from raw third person observations of human demonstrators?

Acquiring skills from raw camera observations presents two major challenges. First, the difference
in appearance and morphology of the human demonstrator from the robot introduces a systematic
domain shift, namely the correspondence problem (Nehaniv et al., 2002; Brass & Heyes, 2005).
Second, learning from raw visual inputs typically requires a substantial amount of data, with mod-
ern deep learning vision systems using hundreds of thousands to millions of images (Xiang et al.,
2017; Kim & Walter, 2017). In this paper, we demonstrate that we can begin to address both of these
challenges through a single approach based on meta-learning. Instead of manually specifying the
correspondence between human and robot, which can be particularly complex for skills where dif-
ferent morphologies require different strategies, we propose a data-driven approach. Our approach
can acquire new skills from only one video of a human. To enable this, it builds a rich prior over
tasks during a meta-training phase, where both human demonstrations and teleoperated demonstra-
tions are available for a variety of other, structurally similar tasks. In essence, the robot learns how
to learn from humans. After the meta-training phase, the robot can acquire new skills by combining
its learned prior knowledge with one video of a human performing the new skill.

The main contribution of this paper is a system for learning robotic manipulation skills from a single
video of a human by leveraging large amounts of prior meta-training data, collected for different
tasks. When deployed, the robot can adapt to a particular task with novel objects using just a single
video of a human performing the task with those objects. The video of the human need not be from
the same perspective as the robot, or even be in the same room. The robot is trained using videos of
humans performing tasks with various objects along with demonstrations of the robot performing the
same task. Our experiments on two real robotic platforms demonstrate the ability to learn directly
from RGB videos of humans, and to handle novel objects, novel humans, and videos of humans in
novel scenes. The full version of this paper is available online.1

2 DOMAIN-ADAPTIVE META-LEARNING
We develop a domain-adaptive meta-learning method, which will allow us to handle the setting of
learning from video demonstrations of humans. Our approach consists of two phases. First, in the
meta-training phase, the goal will be to acquire a prior over policies using both human and robot
demonstration data, that can then be used to quickly learn to imitate new tasks with only human
demonstrations. For meta-training, we will assume a distribution over tasks p(T ), a set of tasks
{Ti} drawn from p(T ) and, for each task, two small datasets containing several human and robot

1 The full paper is at https://arxiv.org/abs/1802.01557
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Figure 1: Illustration of the policy architecture. The policy consists of a sequence of five convolu-
tional (conv) layers, followed by a spatial soft-argmax and fully-connected (fc) layers.

demonstrations, respectively: (DhTi ,DrTi). After the meta-training phase, the learned prior can be
used in the second phase, when the method is provided with a human demonstration of a new task T
drawn from p(T ). The robot must combine its prior with the new human demonstration to infer pol-
icy parameters φT that solve the new task. While we will extend the model-agnostic meta-learning
(MAML) (Finn et al., 2017a) algorithm for this purpose, the key idea of our approach is applicable to
other meta-learning algorithms. Like the MAML algorithm, we will learn a set of initial parameters,
such that after one or a few steps of gradient descent on just one human demonstration, the model
can effectively perform the new task. Thus, the data Dtr

T will contain one human demonstration of
task T , and the data Dval

T will contain one or more robot demonstrations of the same task.

Algorithm 1 Domain-Adaptive Meta-Learning
Require: {(DhTi

,DrTi
)}: human and robot demonstra-

tion data for a set of tasks {Ti}
while training do

Sample task T ∼ {Ti} {or minibatch}
Sample video of human dh ∼ DhT
Compute policy parameters:
φT = θ − α∇θLψ(θ,dh)

Sample robot demo dr ∼ DrT
(θ, ψ)← (θ, ψ)− β∇θ,ψLBC(φT ,d

r)
end while
Return θ, ψ

Unfortunately, we cannot use a standard imita-
tion learning loss for the inner adaptation ob-
jective computed using Dtr

T , since we do not
have access to the human’s actions. Even if we
knew the human’s actions, they will typically
not correspond directly to the robot’s actions.
Instead, we propose to meta-learn an adapta-
tion objective that does not require actions, and
instead operates only on the policy activations.
During the meta-training phase, we will learn
both an initialization θ and the parameters ψ of
the adaptation objective Lψ which will operate
only on the activations of the policy. The parameters θ and ψ are optimized for choosing actions that
match the robot demonstrations in Dval

T . After meta-training, the parameters θ and ψ are retained,
while the data is discarded. A human demonstration dh is provided for a new task T (but not a robot
demonstration). To infer the policy parameters for the new task, we use gradient descent starting
from θ using the learned loss Lψ and one human demonstration dh: φT = θ − α∇θLψ(θ,dh).
We optimize for task performance during meta-training using a behavioral cloning objective that
maximizes the probability of the expert actions in Dval. In particular, for a policy parameter-
ized by φ that outputs a distribution over actions πφ(·|o, s), the behavioral cloning objective is
LBC(φ,d

r)=LBC(φ,{o1:T , s1:T ,a1:T })=
∑
t log πφ(at|ot, st) Putting this together with the inner

gradient descent adaptation, the meta-training objective is the following:

min
θ,ψ

∑
T ∼p(T )

∑
dh∈Dh

T

∑
dr∈Dr

T

LBC(θ − α∇θLψ(θ,dh),dr).

To learn from a video of a human, we need an adaptation objective Lψ that can effectively capture
relevant information in the video, such as the intention of the human and the task-relevant objects.
While a standard imitation losses are applied to each time step independently, the learned adaptation
objective must solve a harder task, since it must provide the policy with suitable gradient informa-
tion without access to true actions. As discussed previously, this is still possible, since the policy is
trained to output good actions during meta-training. The learned loss must simply supply the gradi-
ents needed to modify the perceptual components of the policy to attend to the right objects in the
scene, so that the action output actually performs the right task. However, determining which be-
havior is being demonstrated and which objects are relevant will require examining multiple frames
at the same time to determine the human’s motion. To incorporate this temporal information, our
learned adaptation objective therefore couples multiple time steps together, operating on policy ac-
tivations from multiple time steps. Since temporal convolutions have been shown to be effective at
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Figure 2: Example placing (left), pushing (middle), and pick-and-place (right) tasks, from the
robot’s perspective. The top shows human demos and the bottom shows robot demos.

processing temporal and sequential data (Van Den Oord et al., 2016), we choose to adopt a convo-
lutional network to represent the adaptation objective Lψ , using multiple layers of 1D convolutions
over time. Our algorithm is summarized in Algorithm 1 and Figure 1.

3 EXPERIMENTS

We run our experiments with a PR2 arm, with robot demonstrations collected via teleoperation and
RGB images collected from a consumer-grade camera (unless noted otherwise). We compare the
following meta-learning approaches: (1) a contextual policy that takes as input the robot’s observa-
tion and the final image of the human demo and outputs the predicted action, (2) a DA-LSTM policy
that directly ingests the human demonstration video and the current robot observation and outputs
the predicted robot action, a domain-adaptive version of the algorithm by Duan et al. (2017), (3) our
approach with a linear, per-timestep adaptation objective, and (4) our approach with the temporal
adaptation objective. For measuring generalization, we use held-out objects in all of our evaluations
that were not seeing during meta-training, and new human demonstrators. As illustrated in Figures 2
and 3, we consider three different task settings: placing a held object into a container while avoiding
two distractor containers, pushing an object amid one distractor, and picking an object and placing
it into a target container amid two distractor containers.

One-shot success placing pushing pick & place
DA-LSTM 33.3% 33.3% 5.6%
contextual 36.1% 16.7% 16.7%
DAML, linear loss 76.7% 27.8% 11.1%
DAML, temporal loss (ours) 93.8% 88.9% 80.0%

One-shot pushing success seen bg novel bg 1 novel bg 2
DAML, temporal loss (ours) 81.8% 66.7% 72.7%

Table 1: Top: placing, pushing, and pick-and-place, using hu-
man demos from the perspective of the robot. Bottom: pushing,
using human demos with a different scene and camera. All use
held-out objects and a novel human demonstrator.

In our first experiment, we collect hu-
man demonstrations from the perspec-
tive of the robot’s camera. For placing
and pushing, we only use RGB images,
whereas for pick-and-place, RGB-D is
used. During evaluation, we collected
one human demonstration per test ob-
ject, and evaluated the policy inferred
from the video. We report the results in
Table 1. Our results show that, across
the board, the robot is able to learn to
interact with the novel objects using just
one video of a human demo with that object, with pick-and-place being the most difficult task. We
find that the DA-LSTM and contextual policies struggle, likely because they require more data to
effectively infer the task. This finding is consistent with previous work (Finn et al., 2017b). Our
results also indicate the importance of integrating temporal information when observing the human
demonstration, as the linear loss performs poorly compared to using a temporal adaptation objective.

Figure 3: Human and robot demonstrations used
for meta-training for the experiments with large
domain shift. We used ten different diverse back-
grounds for collecting human demonstrations.

Now, we consider a challenging setting with
human demonstrations collected in a different
room with a different camera and camera per-
spective from that of the robot, as seen in Fig-
ure 3. We use a mounted cell-phone camera
and ten different table textures. We consider the
pushing task, as described previously. We eval-
uate performance on novel objects, a new hu-
man demonstrator, and with one seen and two
novel backgrounds. The results for this experi-
ment are summarized at the bottom Table 1. As
seen in the supplementary video, we find that
the robot is able to successfully learn from the
demonstrations with a different viewpoint and background. Performance degrades when using a
novel background, which causes a varied shift in domain, but the robot is still able to perform the
task about 70% of the time. Videos of all results are at sites.google.com/view/daml
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