
Using Program Induction to Interpret Transition System Dynamics

Svetlin Penkov 1 Subramanian Ramamoorthy 1

Abstract

Explaining and reasoning about processes which
underlie observed black-box phenomena enables
the discovery of causal mechanisms, derivation
of suitable abstract representations and the for-
mulation of more robust predictions. We pro-
pose to learn high level functional programs in
order to represent abstract models which cap-
ture the invariant structure in the observed data.
We introduce the π-machine (program-induction
machine) – an architecture able to induce inter-
pretable LISP-like programs from observed data
traces. We propose an optimisation procedure for
program learning based on backpropagation, gra-
dient descent and A* search. We apply the pro-
posed method to two problems: system identifi-
cation of dynamical systems and explaining the
behaviour of a DQN agent. Our results show
that the π-machine can efficiently induce inter-
pretable programs from individual data traces.

1. Introduction
Learning models of transition systems has been a core con-
cern within machine learning, with applications ranging
from system identification of dynamical systems (Schmidt
& Lipson, 2009) and inference of human choice behaviour
(Glimcher, 2011; Brendel & Todorovic, 2011) to reverse
engineering the behaviour of a device or computer program
from observations and traces (Vaandrager, 2017). With the
increasing use of these learnt models in the inner loops
of decision making systems, e.g., in robotics and human-
machine interfaces, it has become necessary to ensure not
only that these models are accurate predictors of behaviour,
but also that their causal mechanisms are exposed to the
system designer in a more interpretable manner. There is
also the need to explain the model in terms of counterfac-
tual reasoning (Bottou et al., 2013), e.g., what would we

1The University of Edinburgh, Edinburgh, United Kingdom.
Correspondence to: Svetlin Penkov <sv.penkov@ed.ac.uk>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

expect the system to do if a certain variable were changed
or removed, or model checking (Baier & Katoen, 2008) of
longer term properties including safety and large deviations
in performance. We address these needs through a program
induction based framework.

We propose to learn high level functional programs in or-
der to represent abstract models which capture the invariant
structure in the observed data. Recent works have demon-
strated the usefulness of program representations in cap-
turing human-like concepts (Lake et al., 2015). Used in
this way, program-based representations boost generalisa-
tion and enable one-shot learning. Also, and arguably more
importantly, they are significantly more amenable to model
checking and human interpretability.

In this paper, we introduce the π-machine (program-
induction machine), an architecture which is able to induce
LISP-like programs from observed transition system data
traces in order to explain various phenomena. Inspired by
differentiable neural computers (Graves et al., 2014; 2016),
the π-machine, as shown in Figure 1, is composed of a
memory unit and a controller capable of learning programs
from data by exploiting the scalability of stochastic gra-
dient descent. However, the final program obtained after
training is not an opaque object encoded in the weights of a
controller neural network, but a LISP-like program which
provides a rigorous and interpretable description of the ob-
served phenomenon. A key feature of our approach is that
we allow the user to provide a set of predicates of interest
in order to specify the properties they are interested in un-
derstanding as well as the context in which the data is to
be explained. By exploiting the equivalence between com-
putational graphs and functional programs we describe a
hybrid optimisation procedure based on backpropagation,
gradient descent, and A* search which is used to induce
programs from data traces.

We evaluate the performance of the π-machine on two dif-
ferent problems. Firstly, we apply it to data from physics
experiments and show that it is able to induce programs
which represent fundamental laws of physics. The learn-
ing procedure has access to relevant variables, but it does
not have any other prior knowledge regarding physical laws
which it has discovered in the same sense as in (Schmidt &
Lipson, 2009) although far more computationally tractably.

Program Induction to Interpret Transition Systems

Secondly, we study the use of the proposed procedure
in explaining control policies learnt by a deep Q-network
(DQN). Starting from behaviour traces of a reinforcement
learning agent that has learnt to play the game of Pong,
we demonstrate how the π-machine learns a functional pro-
gram to describe that policy.

2. Related work
Explainability and interpretability. The immense suc-
cess of deep neural network based learning systems and
their rapid adoption in numerous real world application do-
mains has renewed interest in the interpretability and ex-
plainability of learnt models (Gunning, 2016). There is
recognition that Bayesian rule lists (Letham et al., 2015;
Yang et al., 2016), decision trees and probabilistic graphi-
cal models are interpretable to the extent that they impose
strong structural constraints on models of the observed data
and allow for various types of queries, including introspec-
tive and counterfactual ones. In contrast, deep learning
models usually are trained ‘per query’ and have numerous
parameters that could be hard to interpret. Zeiler & Fergus
(2014) introduced deconvolutional networks in order to vi-
sualise the layers of convolutional networks and provide a
more intuitive understanding of why they perform well. Za-
havy et al. (2016) describe Semi-Aggregated Markov Deci-
sion Process (SAMDP) in order to analyse and understand
the behaviour of a DQN based agent. Methods for tex-
tual rationalisation of the predictions made by deep models
have also been proposed (Harrison et al., 2017; Hendricks
et al., 2016; Lei et al., 2016). While all of these works pro-
vide useful direction, more generic methods are required
which need not be hand-crafted to explain specific aspects
of individual models. In this sense, we follow the model-
agnostic explanation approach of Ribeiro et al. (2016), who
provide “textual or visual artefacts” explaining the predic-
tion of any classifier by treating it as a black-box. Simi-
larly to the way in which (Ribeiro et al., 2016) utilise local
classifiers composed together to explain a more complex
model, we present an approach to incrementally construct-
ing functional programs that explain a complex transition
system from more localised predicates of interest.

The π-machine treats the process which has generated the
observed data as a black-box and attempts to induce LISP-
like program which can be interpreted and used to explain
the data. We show that the proposed method can be applied
both to introspection of machine learning models and to the
broader context of autonomous agents.

Program learning and synthesis. Program learning and
synthesis has a long history, with the long-standing chal-
lenge being the high complexity deriving from the immense
search space. Following classic and pioneering work such

as by Shapiro (1983) who used inductive inference in a
logic programming setting, others have developed methods
based on a variety of approaches ranging from SAT solvers
(Solar-Lezama et al., 2006) to genetic algorithms (Schmidt
& Lipson, 2009), which tend to scale poorly hence of-
ten become restricted to a narrow class of programs. Re-
cently, deep neural networks have been augmented with
a memory unit resulting in models similar to the origi-
nal von Neumann architecture. These models can induce
programs through stochastic gradient descent by optimis-
ing performance on input/output examples (Graves et al.,
2014; 2016; Grefenstette et al., 2015) or synthetic execu-
tion traces (Reed & De Freitas, 2015; Cai et al., 2017; Ling
et al., 2017). Programs induced with such neural architec-
tures are encoded in the parameters of the controller net-
work and are, in general, not easily interpretable (particu-
larly from the point of view of being able to ask counter-
factual questions or performing model checking). Another
approach is to directly generate the source code of the out-
put program which yields consistent high level programs.
Usually, these types of approaches require large amounts of
labelled data - either program input/output examples (De-
vlin et al., 2017; Balog et al., 2016) or input paired with the
desired output program code (Yin & Neubig, 2017).

Determining how many input/output examples or execution
traces are required in order to generalise well is still an open
research problem. However, in this paper, we focus atten-
tion more on the explanatory power afforded by programs
rather than on the broader problems of generalisation in
the space of programs. While these characteristics are of
course related, we take a view similar to that of (Ribeiro
et al., 2016), arguing that it is possible to build from locally
valid program fragments which provide useful insight into
the black-box processes generating the data. By combin-
ing gradient descent and A* search the π-machine is able
to learn informative and interpretable high-level LISP-like
programs, even just from a single observation trace.

3. Problem definition
Consider the labelled transition system Ω(S,A, δ) where
S is a non-empty set of states, A is a non-empty set of ac-
tions, each parametrised by θ ∈ RD, and δ : S × A → S
is the state transition function. We define an observa-
tion trace T as a sequence of observed state-action pairs
(st, at(θt)) ∈ S×A generated by the recursive relationship
st+1 = δ (st, at(θt)) for 1 ≤ t ≤ T . We are interested in
inducing a LISP-like functional program ρ which when ex-
ecuted by an abstract machine is mapped to an execution
trace Tρ such that Tρ and T are equivalent according to an
input specification.

We represent the abstract machine as another labelled tran-
sition system Π(M, I, ε) where M is the set of possible

Program Induction to Interpret Transition Systems

Figure 1. Overall architecture of the π-machine. The current best candidate solution (1) is used to propose new, structurally more
complex candidates (2). Each one of the new candidate programs ρ is optimised (3) through gradient descent by comparing its execution
trace to the observation trace (4). The observation trace in this case is a demonstration of a tower building task. During execution, the
program has access to memory (5) which stores both state variables and induced parameters. All new candidate programs are scored
based on their performance and complexity and are inserted in the candidate solutions priority queue (6). Once the execution trace of a
candidate matches the observation trace the final solution is returned (7).

memory state configurations, I is the set of supported in-
structions and ε :M×I →M specifies the effect of each
instruction. We consider two types of instructions – primi-
tive actions which emulate the execution of a ∈ A or arith-
metic functions f ∈ F such that I = A∪F . Furthermore,
a set of observed state variablesMv ⊆ S, which vary over
time, are stored in memory together with a set of induced
free parametersMp. The variables inMv form a context
which the program will be built on. A custom detector Dv ,
operating on the raw data stream, could be provided for
each variable, thus enabling the user to make queries with
respect to different contexts and property specifications.

The execution of a program containing primitive actions
results in a sequence of actions. Therefore, we represent
a program ρ as a function which maps a set of input vari-
ables xv ⊂ Mv and a set of free parameters xp ⊂ Mp

to a finite sequence of actions â1(θ̂1), . . . âT ′(ˆθT ′). We are
interested in inducing a program which minimises the total
error between the executed and the observed actions:

L(ρ) =

min(T,T ′)∑
t=1

σact(ât, θ̂t, at, θt) + σlen(T, T ′) (1)

The error function σact determines the difference between
two actions, while σlen compares the lengths of the gen-
erated and observed action traces. By providing the error
functions σact and σlen one can target different aspects of
the observation trace to be explained as they specify when
two action traces are equivalent.

4. Method
The proposed program induction procedure is based on two
major steps. Firstly, we explain how a given functional pro-
gram can be optimised such that the lossL(ρ) is minimised.
Secondly, we explain how the space of possible program
structures can be searched efficiently by utilising gradient
information. An architectural overview of the π-machine
is provided in Figure 1.

4.1. Program optimisation

Neural networks are naturally expressed as computational
graphs which are the most fundamental abstraction in com-
putational deep learning frameworks (Tokui et al., 2015;
Bergstra et al., 2010; Abadi et al., 2016). Optimisation
within a computational graph is usually performed by push-
ing the input through the entire graph in order to calculate
the output (forward pass) and then backpropagating the er-
ror signal to update each parameter (backward pass). A key
observation for the development of the π-machine is that
computational graphs and functional programs are equiva-
lent as both describe arbitrary compositions of pure func-
tions applied to input data. Therefore, similarly to a compu-
tational graph, a functional program can also be optimised
by executing the program (forward pass), measuring the er-
ror signal and then performing backpropagation to update
the program (backward pass).

Program Induction to Interpret Transition Systems

Forward pass. When a program is executed
it is interpreted to a sequence of instructions
i1, . . . , in ∈ I which are executed by recursively
calling ε(. . . ε(ε(M1, i1), i2) . . . , in). M1 is the initial
memory state initialised with the observed variables from
s1 and any induced parameters. The π-machine keeps a
time counter t which is initialised to 1 and is automatically
incremented whenever a primitive action instruction is
executed. If the instruction ik is a primitive action, ik ∈ A,
then the π-machine automatically sets ât = ik and invokes
the error function σact(ât, θ̂t, at, θt), where θ̂t has been
calculated by previous instructions. If the error is above a
certain threshold emax the program execution is terminated
and the backward pass is initiated. Otherwise, the time
counter is incremented and the values of the variables
in Mv are automatically updated to the new observed
state. Essentially, the π-machine simulates the execution
of each action reflecting any changes it has caused in the
observed state. Alternatively, if the currently executed
instruction ik is a function, ik ∈ F , then the resulting value
is calculated and ik, together with its arguments, is added
to a detailed call trace χ maintained by the π-machine.
Importantly, each function argument is either a parameter
or a variable read from memory at time t or the result of
another function. All this information is kept in χ which
eventually contains the computational tree of the program.

Backward pass. The gradients of the loss function L(ρ)
with respect to the program inputs xv and xp are required
to perform a gradient descent step. Crucially, programs ex-
ecuted by the π-machine are automatically differentiated.
The π-machine performs reverse-mode automatic differen-
tiation, similarly to Autograd (Maclaurin et al., 2015), by
traversing the call trace χ, and post-multiplying Jacobian
matrices. We assume that the Jacobian matrix with respect
to every input argument of any function f ∈ F or any spec-
ified error function σact is known a priori. Let f ∈ F
be a function whose output needs to be differentiated with
respect to the input arguments. There are three types of
derivatives, which need to be considered in order to tra-
verse backwards the entire tree of computations:

1. Let g ∈ F , then ∂f
∂g is the Jacobian matrix of f with

respect to the output of g and can be directly calcu-
lated.

2. Let p ∈ xp, then the gradient ∂f∂p is calculated by mul-
tiplying the corresponding Jacobian matrix of f with
the value of p.

3. Let v ∈ xv , then the gradient ∂f
∂v

∣∣∣
t=tr

is calculated

by multiplying the corresponding Jacobian of f with
the value of the variable at the time it was read from
memory tr.

Gradient descent step. Once the gradient∇pL(ρ) of the
loss function with respect to each input parameter p ∈ xp
is calculated we utilise AdaGrad (Duchi et al., 2011) to up-
date the values of all parameters after each program exe-
cution. The gradient ∇vL(ρ) with respect to each input
variable v ∈ xv is also available. However, a variable
cannot be simply updated in the direction of the gradient
as it represents a symbol, not just a value. Variables can
only take values from memory which is automatically up-
dated according to the observation trace during execution.
Nevertheless, the gradient provides important information
about the direction of change which we utilise to find vari-
ables that minimise the loss. Whenever the memory state
is automatically updated, a KD-tree is built for each type
of variable stored in memory. We assume that the vari-
ables in memory are real vectors with different length. So,
we represent the KD-tree which stores all D-dimensional
variables in memory at time t as KDt . If a d-dimensional
variable v is to be optimised it is replaced with a temporary
parameter ptemp initialised with vt which is the value of v
read from memory at the respective time step t. The tempo-
rary parameter ptemp is also updated with AdaGrad (Duchi
et al., 2011). After each descent step, the nearest neighbour
of the updated value p′temp is determined by querying the
KD-tree with Kdt (p′temp). If the result of the query is a dif-
ferent d-dimensional variable u then the temporary param-
eter is immediately set to ptemp = ut. As this often shifts
the solution to a new region of the error space the gradi-
ent history for all parameters p ∈ xp is reset. Eventually,
when a solution is to be returned, the temporary parameters
are substituted with their closest variables according to the
respective KDt . The forward and backward passes are re-
peated until the error is below the maximum error threshold
emax or a maximum number of iterations is reached. After
that the optimised program ρ∗ is scored according to its er-
ror and complexity, and pushed to a priority queue holding
potential solutions.

4.2. Structure search

We represent the space of possible program structures as a
graph G = (TAST , E) where each node Ti ∈ TAST is a
valid program abstract syntax tree (AST). There is an edge
from Ti to Tj if and only if Tj can be obtained by replacing
exactly one of the leaves in Ti with a subtree Ts of depth
1. The program induction procedure always starts with an
empty program. So, we frame structure search as a path
finding problem, solved through the use of A* search.

Score function. The total cost function we use is
ftotal(ρ) = C(ρ) + L(ρ), where L(ρ) is the loss function
defined in equation (1) and C(ρ) is a function which mea-
sures the complexity of the program ρ. C(ρ) can be viewed
as the cost to reach ρ and L(ρ) as the distance to the desired

Program Induction to Interpret Transition Systems

Figure 2. The π-machine explaining the behaviour of a pendulum (top) and a linear oscillator(bottom). The best 3 solutions for each
system are shown in the middle.

goal. The complexity functionC(ρ) is the weighted sum of
(i) maximum depth of the program AST; (ii) the number of
free parameters; (iii) the number of variables used by the
program; the weights of which we set to wC = [10, 5, 1].
These choices ensure that short programs, maximally ex-
ploiting structure of the observation trace, are preferred.

Neighbours expansion. When the current best candidate
solution is popped from the priority queue, we check if it
matches the observation trace according to the input spec-
ification. If so, the candidate can be returned as the final
solution, otherwise it is used as a seed to propose new can-
didate solutions. Typically in A* search, all neighbouring
nodes are expanded and pushed to the priority queue, which
is not feasible in our case, though. Therefore, we utilise the
available gradients in order to perform a guided proposal
selection. Each leaf in the abstract syntax tree Tρ of a seed
candidate solution ρ corresponds to a parameter or a vari-
able. According to the definition of G we need to select
exactly 1 leaf to be replaced with a subtree Ts of depth 1.
We select leaf l ∈ Tρ according to:

l = arg max
x∈xp∪xv

‖∇xL(ρ)‖2 (2)

After that, all possible replacement subtrees are con-
structed. An AST subtree Ts of depth 1 represents a func-
tion call. We prune the number of possible functions in
F by ensuring type consistency. Each leaf of Ts can be a
parameter or a variable. So, all possible combinations are
considered. New variable leaves are initialised to a ran-
dom variable with suitable type from memory, while new
parameter leaves are sampled from the multivariate normal
distributionN (0, 0.1). As a result, if nf functions are type
compatible with l and each function takes na arguments
at most, then there are 2na · nf replacement subtrees, re-
sulting in that many new candidates. All newly proposed
candidates are optimised in parallel, scored by ftotal and
pushed to the priority queue.

5. Experimental results
The π-machine is implemented in Clojure, which is a LISP
dialect supporting powerful data structures and homoiconic
syntax. All experiments are run on an Intel Core i7-4790
processor with 32GB RAM and use the following list of
functions, F : vector addition, subtraction and scaling.

Physical systems. Firstly, we apply the π-machine to
model learning for physical systems. The transition dy-
namics of a second order dynamical system is written as
ẍ(t) = k1x(t) + k2ẋ(t), where x(t) is the state of the
system at time t and k1, k2 are system coefficients. We
have recreated an experiment described in Schmidt & Lip-
son (2009), where the authors show the learning of physical
laws associated with classical mechanical systems includ-
ing the simple pendulum and linear oscillator. A diagram
of these two systems is shown in Figure 2 (left). We set
A = {accel(θ)} where θ ∈ R for both experiments. The
observation trace for each system is generated by simulat-
ing the dynamics for 1s at 100Hz. We specify the action
error function as σact = ‖θ̂ − θ‖2 and set σlen = 0. In
both experiments x ∈ R and v = ẋ ∈ R represent linear
position and velocity.

The three best solutions found by the π-machine for each
system are shown in Figure 2 (middle). The best solution
for each system correctly represents the underlying laws of
motion. The program describing the behaviour of the pen-
dulum was induced in 18 iterations, while the linear oscil-
lator program needed 146 iterations. The total number of
possible programs with AST depth of 2, given the described
experimental setup, is approximately 1.7 × 104. The aver-
age duration of an entire iteration (propose new programs,
optimise and evaluate) was 0.6s. Schmidt & Lipson (2009)
achieve similar execution times, but distributed over 8 quad
core computers (32 cores in total). The experimental re-
sults demonstrate that the π-machine can efficiently induce
programs representing fundamental laws of physics.

Program Induction to Interpret Transition Systems

Figure 3. The π-machine explaining the behaviour of a DQN agent playing ATARI Pong. The best 3 solutions are shown in the middle.

Deep Q-network. This experiment is based on our view
that the core deep neural network based policy learner and
the explanation layer play complementary roles. There
are numerous advantages to performing end-to-end pol-
icy learning, such as DQN-learning from raw video, how-
ever, there is also a need to explain the behaviour of the
learnt policy with respect to user-defined properties of in-
terest. We consider explaining the behaviour of a DQN
agent playing the ATARI Pong game and are interested in
the question: how does the network control the position of
the paddle in order to hit the ball when it is in the right
side of the screen. A diagram of the experimental setup
is shown in figure 3 (left). The behaviour of the DQN
is observed during a single game. Since the environment
is deterministic, the state transition function, which gener-
ates the observation trace for this experiment, is the pol-
icy π(s) that the DQN has learnt. We would like to ex-
plain the behaviour of the DQN in terms of the position
of the opponent, the ball and the DQN agent (so, not just
in terms of RAM memory values, for instance). Therefore,
the observation trace contains those positions which are ex-
tracted from each frame by a predefined detector. We set
A = {move(θ)} where θ ∈ R and represent the discrete
actions of the network left, right, nop as move(1),
move(−1), move(0) respectively. We specify the action
error function as σact = ‖θ̂ − θ‖2 and set σlen = 0.

The best 3 programs found by the π-machine are shown
in Figure 3 (middle), where it took 38 iterations for the
best one (average iteration duration 3.2s). By inspecting
the second solution it becomes clear that the neural net-
work behaviour can be explained as a proportional con-
troller minimising the vertical distance between the agent
and the ball. However, the best solution reveals even more
structure in the behaviour of the DQN. The coefficient in
front of the agent position is slightly larger than the one in
front of the ball position which results in a small amount
of damping in the motion of the paddle. Thus, it is evi-

dent that the DQN not only learns the value of each game
state, but also the underlying dynamics of controlling the
paddle. Furthermore, we have tested the performance of
an agent following a greedy policy defined by the induced
program. In our experiments over 100 games this agent
achieved a score of 11.1(±0.17). This is not quite the score
of 18.9(±1.3) obtained by an optimised DQN, but it is bet-
ter than human performance 9.3 (Mnih et al., 2015). This
difference of course emanates from the predefined detec-
tor not capturing all aspects of what the perceptual layers
in DQN have learnt, so improved detector choices should
yield interpretable programs that also attain performance
closer to the higher score of the black-box policy.

6. Discussion
The π-machine can be viewed as a framework for auto-
matic network architecture design (Zoph & Le, 2017; Ne-
grinho & Gordon, 2017), as different models can be ex-
pressed as concise LISP-like programs. Deep learning
methods for limiting the search space of possible programs,
which poses the greatest challenge, have been proposed
(Balog et al., 2016), but how they can be applied to more
generic frameworks such as the π-machine is an open ques-
tion. The specification of variable detectors not only ad-
dresses this issue, but enables the user to make targeted and
well grounded queries about the observed data trace. Such
detectors can also be learnt from raw data in an unsuper-
vised fashion (Garnelo et al., 2016; Kim & Canny, 2017).

7. Conclusion
In conclusion, we propose a novel architecture, the π-
machine, for inducing LISP-like functional programs from
observed data traces by utilising backpropagation, stochas-
tic gradient descent and A* search. The experimental re-
sults demonstrate that the π-machine can efficiently induce
interpretable programs from short data traces.

Program Induction to Interpret Transition Systems

References
Abadi, Martı́n, Agarwal, Ashish, Barham, Paul, Brevdo,

Eugene, Chen, Zhifeng, Citro, Craig, Corrado, Greg S,
Davis, Andy, Dean, Jeffrey, Devin, Matthieu, et al. Ten-
sorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467,
2016.

Baier, Christel and Katoen, Joost-Pieter. Principles of
Model Checking. The MIT Press, 2008.

Balog, Matej, Gaunt, Alexander L, Brockschmidt, Marc,
Nowozin, Sebastian, and Tarlow, Daniel. Deep-
coder: Learning to write programs. arXiv preprint
arXiv:1611.01989, 2016.

Bergstra, James, Breuleux, Olivier, Bastien, Frédéric,
Lamblin, Pascal, Pascanu, Razvan, Desjardins, Guil-
laume, Turian, Joseph, Warde-Farley, David, and Ben-
gio, Yoshua. Theano: A cpu and gpu math compiler in
python. In Proc. 9th Python in Science Conf, pp. 1–7,
2010.

Bottou, Léon, Peters, Jonas, Candela, Joaquin Quinonero,
Charles, Denis Xavier, Chickering, Max, Portugaly,
Elon, Ray, Dipankar, Simard, Patrice Y, and Snelson, Ed.
Counterfactual reasoning and learning systems: the ex-
ample of computational advertising. Journal of Machine
Learning Research, 14(1):3207–3260, 2013.

Brendel, William and Todorovic, Sinisa. Learning spa-
tiotemporal graphs of human activities. In Computer vi-
sion (ICCV), 2011 IEEE international conference on, pp.
778–785. IEEE, 2011.

Cai, Jonathon, Shin, Richard, and Song, Dawn. Making
neural programming architectures generalize via recur-
sion. In International Conference on Learning Repre-
sentations (ICLR), April 2017.

Devlin, Jacob, Uesato, Jonathan, Bhupatiraju, Surya,
Singh, Rishabh, Mohamed, Abdel-rahman, and Kohli,
Pushmeet. Robustfill: Neural program learning under
noisy i/o. arXiv preprint arXiv:1703.07469, 2017.

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

Garnelo, Marta, Arulkumaran, Kai, and Shanahan, Murray.
Towards deep symbolic reinforcement learning. arXiv
preprint arXiv:1609.05518, 2016.

Glimcher, Paul. Foundations of Neuroeconomic Analysis.
Oxford University Press, 2011.

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural
turing machines. arXiv preprint arXiv:1410.5401, 2014.

Graves, Alex, Wayne, Greg, Reynolds, Malcolm, Harley,
Tim, Danihelka, Ivo, Grabska-Barwińska, Agnieszka,
Colmenarejo, Sergio Gómez, Grefenstette, Edward, Ra-
malho, Tiago, Agapiou, John, et al. Hybrid computing
using a neural network with dynamic external memory.
Nature, 538(7626):471–476, 2016.

Grefenstette, Edward, Hermann, Karl Moritz, Suleyman,
Mustafa, and Blunsom, Phil. Learning to transduce with
unbounded memory. In Advances in Neural Information
Processing Systems, pp. 1828–1836, 2015.

Gunning, David. DARPA Explainable
Artificial Intelligence (XAI) Program.
http://www.darpa.mil/program/
explainable-artificial-intelligence,
2016. [Online; accessed 14-June-2017].

Harrison, Brent, Ehsan, Upol, and Riedl, Mark O. Ra-
tionalization: A neural machine translation approach to
generating natural language explanations. arXiv preprint
arXiv:1702.07826, 2017.

Hendricks, Lisa Anne, Akata, Zeynep, Rohrbach, Marcus,
Donahue, Jeff, Schiele, Bernt, and Darrell, Trevor. Gen-
erating visual explanations. In European Conference on
Computer Vision, pp. 3–19. Springer, 2016.

Kim, Jinkyu and Canny, John. Interpretable learning for
self-driving cars by visualizing causal attention. arXiv
preprint arXiv:1703.10631, 2017.

Lake, Brenden M., Salakhutdinov, Ruslan, and Tenen-
baum, Joshua B. Human-level concept learning through
probabilistic program induction. Science, 350(6266):
1332–1338, 2015.

Lei, Tao, Barzilay, Regina, and Jaakkola, Tommi.
Rationalizing neural predictions. arXiv preprint
arXiv:1606.04155, 2016.

Letham, Benjamin, Rudin, Cynthia, McCormick, Tyler H,
Madigan, David, et al. Interpretable classifiers using
rules and bayesian analysis: Building a better stroke pre-
diction model. The Annals of Applied Statistics, 9(3):
1350–1371, 2015.

Ling, Wang, Yogatama, Dani, Dyer, Chris, and Blun-
som, Phil. Program Induction by Rationale Gener-
ation:Learning to Solve and Explain Algebraic Word
Problems. arXiv preprint arXiv:1705.04146, 2017.

Maclaurin, Dougal, Duvenaud, David, and Adams, Ryan P.
Autograd: Effortless gradients in numpy. In ICML 2015
AutoML Workshop, 2015.

http://www.darpa.mil/program/explainable-artificial-intelligence
http://www.darpa.mil/program/explainable-artificial-intelligence

Program Induction to Interpret Transition Systems

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei A, Veness, Joel, Bellemare, Marc G,
Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K,
Ostrovski, Georg, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–
533, 2015.

Negrinho, Renato and Gordon, Geoff. Deeparchitect: Au-
tomatically designing and training deep architectures.
arXiv preprint arXiv:1704.08792, 2017.

Reed, Scott and De Freitas, Nando. Neural programmer-
interpreters. arXiv preprint arXiv:1511.06279, 2015.

Ribeiro, Marco, Singh, Sameer, and Guestrin, Carlos. Why
should i trust you?: Explaining the predictions of any
classifier. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), 2016.

Schmidt, Michael and Lipson, Hod. Distilling free-form
natural laws from experimental data. Science, 324
(5923):81–85, 2009.

Shapiro, Ehud Y. Algorithmic Program Debugging. MIT
Press, Cambridge, MA, USA, 1983.

Solar-Lezama, Armando, Tancau, Liviu, Bodik, Rastislav,
Seshia, Sanjit, and Saraswat, Vijay. Combinatorial
sketching for finite programs. ACM SIGOPS Operating
Systems Review, 40(5):404–415, 2006.

Tokui, Seiya, Oono, Kenta, Hido, Shohei, and Clayton,
Justin. Chainer: a next-generation open source frame-
work for deep learning. In Proceedings of workshop on
machine learning systems (LearningSys) in the twenty-
ninth annual conference on neural information process-
ing systems (NIPS), 2015.

Vaandrager, Frits. Model learning. Commun. ACM, 60(2):
86–95, January 2017.

Yang, Hongyu, Rudin, Cynthia, and Seltzer, Margo.
Scalable bayesian rule lists. arXiv preprint
arXiv:1602.08610, 2016.

Yin, Pengcheng and Neubig, Graham. A syntactic neu-
ral model for general-purpose code generation. arXiv
preprint arXiv:1704.01696, 2017.

Zahavy, Tom, Ben-Zrihem, Nir, and Mannor, Shie. Gray-
ing the black box: Understanding dqns. arXiv preprint
arXiv:1602.02658, 2016.

Zeiler, Matthew D and Fergus, Rob. Visualizing and under-
standing convolutional networks. In European confer-
ence on computer vision, pp. 818–833. Springer, 2014.

Zoph, Barret and Le, Quoc. Neural architecture search with
reinforcement learning. In International Conference on
Learning Representations (ICLR), April 2017.

