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ABSTRACT

Context information plays an important role in human language understanding,
and it is also useful for machines to learn vector representations of language. In
this paper, we explore an asymmetric encoder-decoder structure for unsupervised
context-based sentence representation learning. As a result, we build an encoder-
decoder architecture with an RNN encoder and a CNN decoder, and we show that
neither an autoregressive decoder nor an RNN decoder is required. We further
combine a suite of effective designs to significantly improve model efficiency
while also achieving better performance. Our model is trained on two different
large unlabeled corpora, and in both cases transferability is evaluated on a set of
downstream language understanding tasks. We empirically show that our model
is simple and fast while producing rich sentence representations that excel in
downstream tasks.

1 INTRODUCTION

Learning distributed representations of sentences is an important and hard topic in both the deep
learning and natural language processing communities, since it requires machines to encode a
sentence with rich language content into a fixed-dimension vector filled with continuous values.
We are interested in learning to build a distributed sentence encoder in an unsupervised fashion
by exploiting the structure and relationship in a large unlabeled corpus. Since humans interpret
sentences by composing from the meanings of the words, we decompose the task of learning a
sentence encoder into two essential components: learning distributed word representations, and
learning how to compose a sentence representation from the representations of words in the given
sentence.

Numerous studies in human language processing have claimed that the context in which words and
sentences are understood plays an important role in human language understanding (Altmann &
Mirkovicl 2009; Binder & Desail 2011). The idea of learning from the context information (Turney:
& Pantel|, |2010) was recently successfully applied to vector representation learning for words in
Mikolov et al.|(2013)); [Pennington et al.[(2014)).

Collobert et al.| (201 1)) proposed a unified framework for learning language representation from the
unlabeled data, and it is able to generalize to various NLP tasks. Inspired by the prior work on
incorporating context information into representation learning, Kiros et al.|(2015)) proposed the Skip-
thought model, which is an encoder-decoder model for unsupervised sentence representation learning.
The paper exploits the semantic similarity within a tuple of adjacent sentences as supervision, and
successfully built a generic, distributed sentence encoder. Rather than applying the conventional
autoencoder model, the skip-thought model tries to reconstruct the surrounding 2 sentences instead of
the input sentence. The learned sentence representation encoder outperforms previous unsupervised
pretrained models on the evaluation tasks with no finetuning, and the results are comparable to the
models which were trained directly on the datasets in a supervised fashion.

The usage of 2 independent decoders in Skip-thought model matches our intuition that, given the
current sentence, inferring the previous sentence and inferring the next one should be different.
Recently, [Tang et al.| (2017) proposed the Skip-thought Neighbor model, which only decodes the next
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Figure 1: Our proposed model is composed of an RNN encoder, and a CNN decoder. During training,
a batch of sentences are sent to the model, and the RNN encoder computes a vector representation
for each of sentences; then the CNN decoder needs to reconstruct the paired target sequence, which
contains 30 contiguous words right after the input sentence, given the vector representation. 300 is
the dimension of word vectors. D is the dimension of sentence representation, and it varies along
with the change of the RNN encoder size. (Better view in color.)

sentence, and the performance on the downstream tasks is similar to that of their implementation of
the Skip-thought model.

In this paper, we follow the idea in the Skip-thought Neighbor model, which exploits the subsequent
context information for learning representation, and aim to bring asymmetry into structure design as
well. Our proposed model has an asymmetric encoder-decoder structure, which keeps an RNN as the
encoder and has a CNN as the decoder, and will be referred to as an “RNN-CNN” model. The key
components of our model design can be summarized as:

1. a bidirectional RNN encodes the input sentence, and a CNN decodes all words in the paired
target sequence at once, which speeds up the training process;

2. the supervision for training comes from inferring the next contiguous words given the current
sentence, which helps the model to learn from the context in an unsupervised fashion;

3. the mean+max pooling captures complex interactions among words, which augments the
transferability of the proposed model,;

4. tying word embeddings in the encoder with the word prediction layer in the decoder con-
strains the input and output space to be the same, which also reduces number of parameters
and regularizes the model.

We demonstrate the transferability of our model by evaluation on various downstream tasks, and the
performance shows that our model improves both results and training efficiency.

2 RNN-CNN MODEL

Our model is highly asymmetric in terms of both training pairs and model structure. Specifically, our
model has an RNN as the encoder, and a CNN as the decoder. During training, the encoder takes the -
th sentence s; as input, and then generates a fixed-dimension vector z; as the sentence representation;
the decoder is applied to reconstruct the next sentence or the subsequent few contiguous words ¢;.
The difference of the generated sequence and the target sequence is measured by cross-entropy loss.
An illustration is in Figure[T] (For simplicity, we omit the subscript ¢ in the section.)

Encoder: The encoder is a bi-directional Gated Recurrent Unit (GRU) (Chung et al., [2014). We
experimented with both Long-short Term Memory (LSTM, Hochreiter & Schmidhuber|(1997))) and
GRU. Since LSTM didn’t give us significant performance boost, and generally GRU runs faster
than LSTM, in our experiments, we stick to using GRU in the encoder. Suppose that a sentence s
contains M words, which are w!, w?, ..., w™, and they are transformed by an embedding matrix E
to word vectors. The bi-directional GRU will take one word vector at a time, and run in both forward

and backward direction; both sets of hidden states are concatenated to form the hidden state matrix
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— —
H = [h!,h? ... hM] € RP*M where d is the dimension of the representations h™ = {hm; hm}

(vm € {1,2,..., M}).

Representation: We aim to provide a model with faster training speed with better transferability
than existing algorithms, thus we choose to apply a parameter-free composition function, which is a
concatenation of the outputs from a global mean pooling over time and a global max pooling over
time, on the computed sequence of hidden states. The composition function can be represented as

M
1 ;
7z = i E h’”;male.;mang.;...;madel, (1)

m=1

where max H. is the max operation on the d-th row of the matrix H, which outputs a scalar. Thus
the representation z has a dimension of 2d.

Decoder: The decoder is a 3-layer CNN to reconstruct the paired target sequence ¢, which needs to
expand z from length 1 to the length of ¢. Intuitively, the decoder could be a stack of deconvolution
layers. For fast training speed, we optimized the architecture to make it plausible to use fully-
connected layers and convolution layers in the decoder, since generally, convolution layers run faster
than deconvolution layers in modern deep learning frameworks.

Suppose that the target sequence ¢t has [N words, the first layer of deconvolution will expand z, which
could be considered as a sequence with length 1, into a feature map with length V. It can be easily
implemented as a concatenation of outputs from NV linear transformations in parallel. Then the second
and third layer are 1D-convolution layers with kernel size 3 and 1, respectively. The output feature

map V = [v!,v2, ..., vlV], where v € R, and e is dimension of the word vectors.

Note that our decoder is not an autoregressive model, and it brings us high training efficiency. We
will discuss the reason of choosing this decoder which we call a predict-all-words CNN decoder.

Objective: A softmax layer is applied after the decoder to produce a probability distribution over
words at each position, softmax(Ev™), and the training objective is to minimize the sum of the
negative log-likelihood over all positions in the target sequence ¢:

N
L= log P(w"|z). 2)
n=1
The loss function £ is summed over all sentences in the training corpus.

3 ARCHITECTURE DESIGN

We follow the idea of an encoder-decoder model with using the context information for learning
sentence representations in an unsupervised fashion. Since the decoder won’t be used after training,
and the quality of the generated sequences is not our main focus, it is important to study the design of
the decoder. Generally, a fast training algorithm is preferred, thus proposing a new decoder with high
training efficiency and also strong transferability is crucial for an encoder-decoder model.

3.1 CNN AS THE DECODER

Our design of the decoder is basically a 3-layer ConvNet, and it predicts all words in the next sequence
all at once. In contrast, existing work, such as Skip-thought Kiros et al.| (2015), and CNN-LSTM |Gan
et al.|(2017),use autoregressive RNNs as the decoders.

An autoregressive model is good at generating sequences with high quality, such as language and
speech. However, an autoregressive decoder seems to be unnecessary in an encoder-decoder model
for learning sentence representations, since it won’t be used after training, and it runs quite slow
during training. Therefore, we conducted experiments to test the necessity of using an autoregressive
decoder in learning sentence representations, and we had 2 findings.

Finding I: It is not necessary to input the correct words into an autoregressive decoder in terms
of learning good sentence representations.
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Decoder | SICK-r SICK-E  STS14 | MSRP (Acc/Fl) | SST TREC
auto-regressive RNN as decoder
Baseline 0.8530 82.6 0.51/0.50 74.1/81.7 82.5 838.2
Always Sampling 0.8576 83.2 0.55/0.53 74.7/81.3 80.6 87.0
Uniform Sampling | 0.8559 82.9 0.54/0.53 74.0/81.8 81.0 87.4
auto-regressive CNN as decoder
Baseline 0.8510 82.8 0.49/0.48 74.7/82.8 81.4 82.6
Always Sampling 0.8535 83.3 0.53/0.52 75.0/81.7 81.4 87.6
Uniform Sampling | 0.8568 83.4 0.56/0.54 74.7/181.4 83.0 88.4
predict-all-words RNN as decoder
RNN 0.8508 82.8 0.58/0.55 [ 74.2182.8 81.6 88.8
predict-all-words CNN as decoder
CNN 0.8530 82.6 0.58/0.56 75.6/82.9 82.8 89.2
CNN-Max 0.8465 82.6 0.50/0.47 73.3/81.5 79.1 82.2
Double-sized RNN Encoder
CNN 0.8631 83.9 0.58/0.55 74.7/83.1 834 90.2
CNN-Max 0.8485 83.2 0.47/0.44 72.91/80.8 82.2 86.6

Table 1: The models here all have a bi-directional GRU as the encoder (dimensionality 300 in each
direction). The default way of producing the representation is a concatenation of outputs from a global
mean-pooling and a global max-pooling, while “--Max” refers to the model with only global max-
pooling. Bold numbers are the best results among all presented models. We found that 1) inputting
correct words to an autoregressive decoder is not necessary; 2) predict-all-words decoders work
roughly the same as autoregressive decoders; 3) mean+max pooling provides stronger transferability
than the max-pooling alone does. The table supports our choice of the predict-all-words CNN decoder
and the way of producing vector representations from the bi-directional RNN encoder.

The experimental design was inspired by [Bengio et al| (2015). The model we designed for the
experiment has a bi-directional GRU as the encoder, and an autoregressive decoder, including both
RNN and CNN. We started by analyzing the effect of different sampling strategies of the input words
on learning an auto-regressive decoder.

We compared 3 autoregressive decoding settings: 1) using ground-truth words (Baseline), 2) using
previously predicted words (Always Sampling), and 3) using uniformly sampled words from the
dictionary (Uniform Sampling). The 3 decoding settings were named by Bengio et al.|(2015). The
results are presented in the Table [I]

Generally, the three different decoding settings didn’t make much of a difference in terms of the
performance on selected downstream tasks, with RNN or CNN as the decoder. The results tell us
that, in terms of learning good sentence representations, the autoregressive decoder doesn’t require
the correct ground-truth words as the inputs.

Finding II: The model with an autoregressive decoder works roughly the same as the model
with a predict-all-words decoder.

With Finding I, we noticed that the correct ground-truth input words to the autoregressive decoder is
not necessary in terms of learning sentence representations. Therefore, it makes sense to test whether
we need an autoregressive model at all.

In our model, the CNN decoder predicts all words at once during training, which is different from
autoregressive decoders, and we call it a predict-all-words CNN decoder. We want to compare the
performance of the predict-all-words decoders and that of the autoregressive decoders separate from
the RNN/CNN distinction, thus we designed a predict-all-words CNN decoder and RNN decoder.

The predict-all-words CNN decoder is described in Section [2] which is a stack of 3 convolutional
layers, and all words are predicted once at the output of the decoder. The predict-all-words RNN
decoder is built based on our CNN decoder. To keep the number of parameters roughly the same, we
replaced the last 2 convolutional layers with a bidirectional GRU.
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The results are also presented in the Table[I} The performance of the predict-all-words RNN decoder
does not significantly differ from that of any one of the autoregressive RNN decoders, and the same
observation was observed in CNN decoders.

These two findings actually support our choice of using a predict-all-words CNN as the decoder, and
it brings the model higher training efficiency and strong transferability.

3.2 MEAN+MAX POOLING

Since the encoder is a bi-directional RNN in our model, we have multiple ways to select/compute on
the generated hidden states to produce a sentence representation. In Skip-thought (Kiros et al., 2015)
and SDAE (Hill et al.| [2016), only the hidden state at the last time step produced by the RNN encoder
is regarded as the vector representation for a given sentence, which may not be the most expressive
vector for representing the input sentence.

We followed the idea proposed in|Chen et al.|(2016). They built a model for supervised SNLI task
(Bowman et al.| |2015)) that concatenates the outputs from a global mean pooling and a global max
pooling to serve as a sentence representation, and showed a performance boost on the SNLI dataset.
Also, |Conneau et al.| (2017)) found that the model with global max pooling function has stronger
transferability than the model with a global mean pooling function after supervised training on SNLI.

In our proposed RNN-CNN model, we empirically show that the mean+max pooling provides stronger
transferability than the max pooling does, and the results are presented in Table[I] The concatenation
of a mean-pooling and a max pooling function is actually a parameter-free composition function, and
the computation load is negligible compared to heavy matrix multiplications. Also, the non-linearity
of the max pooling function augments the mean pooling function for building a representation that
captures a more complex composition of the syntactic information.

3.3 TYING WORD EMBEDDINGS AND WORD PREDICTION LAYER

We choose to share the parameters in the word embedding layer in RNN encoder and the word
prediction layer in CNN decoder. The tying was proposed in both [Press & Wolf] (2017) and |Inan
et al.| (2016)), and it generally helps to learn a better language model. In our model, the tying also
drastically reduces the number of parameters, which could prevent overfitting.

Furthermore, we initialize the word embeddings with pretrained word vectors, such as word2vec
(Mikolov et al., [2013) and GloVe (Pennington et al.| 2014), since it has been shown that these
pretrained word vectors can serve as good initialization for deep learning models, and more likely
lead to better results than random samples from a uniform distribution.

3.4 STUDY OF THE HYPERPARAMETERS IN OUR MODEL DESIGN

We studied hyperparameters in our model design based on 3 out of 10 downstream tasks, including
SICK-r, SICK-E (Marelli et al.,[2014), and STS14 (Agirre et al., 2014)). The first model we created,
which is reported in Section 2] is a decent design, and the following variations didn’t give us much
performance change except small improvements with increasing the dimensionality of the encoder.
However, we think it is worth mentioning the effect of hyperparameters in our model design. We
present the Table in the supplementary material and we summarize it as follows:

1. Decoding the next sentence worked similarly as decoding the subsequent contiguous words.

2. Decoding subsequent 30 words, which was adopted from the Skip-thought training code[]_l
gave us a reasonable good performance. More words for decoding didn’t give us a significant
performance gain, while it took longer to train.

3. Adding more layers into the decoder and enlarging the dimension of the convolutional
layers indeed sightly improved the performance on the 3 downstream tasks, but as training
efficiency is one of our main concerns, we decided it wasn’t worth sacrificing training
efficiency for the minor performance improvement.

"https://github.com/ryankiros/skip-thoughts/blob/master/training/train.py
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4. Increasing the dimensionality of the RNN encoder improved the model performance, and the
additional training time brought by it was less than that by adding more layers and enlarging
the dimension of the convolutional layers in the CNN decoder. We reported results from
both smallest and largest models in Table 2]

4 EXPERIMENT SETTINGS

The large corpus we used for unsupervised training is the BookCorpus dataset Zhu et al.| (2015),
which contains 74 million sentences from 7000 books in total. For stable training, we use ADAM
(Kingma & Ba, [2014) algorithm for optimization, and gradient clipping (Pascanu et al.,|2013) when
the norm of gradient exceeds a certain value. Since we didn’t find any significant difference between
word2vec and GloVe as initialization in terms of the performance, we stick to using the word vectors
from word2vec to initialize the word embedding layer in our models.

The vocabulary for unsupervised training contains the top 20k most frequent words in BookCorpus. In
order to generalize the model trained with a relatively small, fixed vocabulary to the much larger set of
all possible English words, Kiros et al.| (2015) proposed a word expansion method that learns a linear
projection from the pretrained word embeddings word2vec to the learned RNN word embeddings.
Thus, the model benefits from the generalization ability of the pretrained word embeddings.

The downstream tasks for evaluation include semantic relatedness (SICK) (Marelli et al.| [2014]),
paraphrase detection (MSRP) (Dolan et al.,|2004)), question-type classification (TREC) (Li & Roth,
2002)), and 5 benchmark sentiment and subjective datasets, which includes movie review sentiment
(MR, SST) (Pang & Leel 2005; [Socher et al.l [2013)), customer product reviews (CR) (Hu & Liul
2004), subjectivity/objectivity classification (SUBJ) (Pang & Lee, [2004), opinion polarity (MPQA)
(Wiebe et al.,2005)), and semantic textual similarity (STS14) (Agirre et al.,|2014). After unsupervised
training on the BookCorpus dataset, we fix the parameters in the encoder, and apply it as a sentence
representation extractor on the 10 tasks.

In order to compare the effect of different corpora, we also trained 2 models on Amazon Book Review
dataset (without ratings) which is the largest subset of the Amazon Review dataset (McAuley et al.|
2015) with 142 million sentences after tokenization, about twice as large as BookCorpus.

Both training and evaluation of our models were conducted in PyTorch || and we used SentEval
provided by |Conneau et al.|(2017) to evaluate the transferability of models with different settings.
All the models were trained for the same number of iterations with the same batch size, and the
performance was measured at the end of training for each of the models.

5 RELATED WORK AND COMPARISON

Table 2] presented the results on 10 evaluation tasks of our proposed RNN-CNN models, and related
work. “small RNN-CNN” refers to the model with the dimension of representation as 1200, and
“large RNN-CNN” refers to that as 4800. The results of our model on SNLI can be found in Table

Our work was inspired by analyzing the Skip-thought model (Kiros et al., 2015). Skip-thought
model successfully applied this form of learning from the context information into unsupervised
representation learning for sentences, in which the model learns to encode the current sentence and
decode the surrounding 2 sentences, and then, Ba et al.[|(2016) augmented the LSTM with proposed
layer-normalization (Skip-thought+LN), which improved the skip-thought model generally on all
downstream tasks. Instead of applying RNNs in the model, Hill et al.| (2016) proposed the FastSent
model which only learns source and target word embeddings, and it is a generalization of CBOW
(Mikolov et al.,|2013)) to sentence-level learning, and the composition function over word embeddings
is a summation operation. Later on, Gan et al.[(2017) applied a CNN as the encoder, which is called
the CNN-LSTM model. The proposed composition model follows the idea of encoding the current
sentence and predicting itself and the next sentence; the proposed hierarchical model leverages
the context information from both sentence-level and paragraph-level, while learning to encode
the current sentence and predict the next one, the model has another RNN to process the sentence
representation one at a time at paragraph-level.

2http://pytorch.org/
3https://github.com/facebookresearch/SentEval
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Model ‘ Hrs ‘ SICK-r SICK-E  STS14 MSRP | TREC MR CR SUBJ MPQA SST
Unsupervised training with unordered sentences

Unigram-TFIDF - - - - 73.6/81.7| 85.0 73.7 79.2 903 824 -
ParagraphVec 4 - - 0.42/0.43 72.9/81.1] 594 602 669 763 70.7 -
word2vec BOW 2 0.8030 78.7 0.65/0.64 72.5/81.4| 83.6 777 79.8 90.9 883 79.7
fastText BOW - 0.8000 77.9 0.63/0.62 72.4/81.2| 81.8 76,5 789 91.6 874 788
GloVe BOW - 0.8000 78.6 0.54/0.56 72.1/80.9| 83.6 78.7 785 91.6 87.6 79.8
SDAE 72 - - 0.37/0.38 73.7/80.7| 784 74.6 78.0 90.8 86.9 -
Unsupervised training with ordered sentences - BookCorpus

DiscSent 8 - - - 75.0/ - 87.2 - - 93.0 - -
FastSent 2 - - 0.63/0.64 72.2/80.3| 76.8 70.8 784 88.7 80.6 -
FastSent+AE 2 - - 0.62/0.62 71.2/79.1] 804 71.8 76.5 88.8 81.5 -
Skip-thought 336 0.8580 823 0.29/0.35 73.0/82.0] 92.2 765 80.1 93.6 87.1 82.0
Skip-thought+LN 720 0.8580 79.5 0.44/0.45 - 884 794 831 937 893 829
combine CNN-LSTM - 0.8618 - - 76.5/83.8| 92.6 77.8 82.1 93.6 894 -
small RNN-CNN+ 20 0.8530 82.6 0.58/0.56 75.6/82.9| 89.2 77.6 803 923 87.8 828
large RNN-CNN} 34 0.8698 85.2 0.59/0.57 75.1/83.2] 92.2 79.7 819 94.0 83.7 84.1
Unsupervised training with ordered sentences - Amazon Book Review

small RNN-CNN+ 21 0.8476 82.7 0.53/0.53 73.8/81.5| 84.8 833 83.0 947 882 878
large RNN-CNN} 33 0.8616 84.3 0.51/0.51 75.7/82.8| 90.8 853 86.8 953 89.0 883
Unsupervised training with ordered sentences - Amazon Review

BYTE m-LSTM [ 720 [ 0.7920 - - 75.0/82.8) - 869 914 946 885 -
Supervised training - Transfer learning

NMT En-to-Fr 72 - - 0.43/0.42 - 828 647 70.1 849 815 -
CaptionRep BOW 24 - - 0.46/0.42 - 722 619 693 774 708 -
DictRep BOW 24 - - 0.67/0.70 68.4/76.8| 81.0 76.7 787 90.7 872 -
BiLSTM-Max(SNLI) <24 | 0.8850 84.6 0.68/0.65 75.1/82.3| 88.7 799 84.6 92.1 89.8 833
BiLSTM-Max(AlNLI) | <24 | 0.8840 86.3 0.70/0.67 76.2/83.1| 882 81.1 86.3 924 90.2 84.6
Supervised task-dependent training - No transfer learning

NB-SVM - - - - - - 794 81.8 932 863 83.1
AdaSent - - - - - 924 83.1 863 955 933 -
Tree-LSTM - 0.8680 - - - - - - - - -
TF-KLD - - - - 80.4/85.9| - - - - - -

Table 2: Related Work and Comparison. As presented in the table, our designed asymmetric
RNN-CNN model has strong transferability, and is overall better than existing unsupervised models in
terms of fast training speed and good performance on evaluation tasks. The table presents the model
comparison. “f”’s refer to our models, and “small/large” refers to the dimension of representation as
1200/4800. “%+” indicates that DiscSent model was trained with additional data from Wikipedia and
the Gutenberg project. Bold numbers are the best ones among the models with same training and
transferring setting, and underlined numbers are best results among all unsupervised representation
learning models. For STS14, the performance measures are Pearson’s and Spearman’s score. For
MSREP, the performance measures are accuracy and F1 score.

Our model falls in the same category as it is an encoder-decoder model. However, we aim to propose
an efficient and effective model. Instead of decoding the surrounding 2 sentences as in Skip-thought,
FastSent and the compositional CNN-LSTM, our model only decodes the subsequent sequence with
a fixed length. Compared with hierarchical CNN-LSTM, our model showed that, with a proper
model design, this next-words context information is sufficient in learning sentence representations.
Particularly, our proposed small RNN-CNN model runs roughly 3 times faster than our implemented
Skip-thought model on the same GPU machine during training.

Another unsupervised approach is to learn a discriminative model by distinguishing whether a target
sentence is in the context of the source sentence, and also the discourse information. DiscSent
(Jernite et al.l |2017)) proposed to learn a classifier on top of the representations, which judges 1)
whether the two sentences are adjacent to each other, 2) whether the two sentences are in the correct
order, and 3) whether the second sentence starts with a conjunction phrase. DisSent (Nie et al.|
2017) pointed out that human annotated explicit discourse relations is also good for learning sentence
representations. It is a very promising research direction since the proposed models are generally
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computational efficient and have clear intuition. However, the performance on the downstream tasks
is still worse than encoder-decoder models.

Proposed by Radford et al.|(2017), BYTE m-LSTM model uses a multiplicative LSTM unit (Krause
et al.| 2016) to learn a language model on Amazon Review data|McAuley et al.|(2015)). The model
works reasonably well on the downstream tasks, since the RNNs are able to produce a distributed
representation for the given left-context information, such as a sentence or a document. In our
experiment, we also trained our RNN-CNN model on the Amazon Book review, which is the largest
subset of the Amazon review dataset, and indeed, we had a performance gain on all single-sentence
classification tasks. The performance gain in our experiment and also in BYTE m-LSTM was
brought by the matching between the corpus domain and the domain of downstream tasks, and it
raises 2 questions 1) which corpus is good for learning sentence representations, and 2) whether the
downstream tasks are comprehensive to cover sufficient aspects of a sentence.

Previously mentioned models are learned from ordered sentences, but unordered sentences can also
be used for learning representations of sentences. ParagraphVec (Le & Mikolov, 2014) learns a
fixed-dimension vector for each sentence by predicting the words within the given sentence. However,
after training, the representation for a new sentence is hard to derive, since it requires optimizing
the sentence representation towards an objective. SDAE (Hill et al., [2016) learns the sentence
representations with a denoising auto-encoder model. The noise was added in the encoder by
replacing words with a fixed token, and swapping two words, both with a specific probability. Our
proposed RNN-CNN model trains faster than SDAE does, since the CNN decoder runs faster than the
RNN decoder in SDAE, and since we utilized the sentence-level continuity as a supervision which
SDAE doesn’t, our model largely performs better than SDAE.

Supervised transfer learning is also promis-
ing when we are able to get large enough la-

Model | SNLI (Acc %) beled data. |[Conneau et al.| (2017) applied a
Unsupervised Transfer Learning bi-directional LSTM as the sentence encoder
Skip-thought (Vendrov et al)) | 81.5 with multiple fully-connected layers to deal
large RNN-CNN BookCorpus 81.7 with both SNLI (Bowman et al., [2015), and
large RNN-CNN Amazon 81.5 MultiNLI (Williams et al,[2017). The trained
Supervised Training model demonstrates a very impressive transfer-

ESIM (Chen et al.) 86.7 ability on all downstream tasks, including both
DIIN (Gong et al.) 88.9 supervised and unsupervised. The direct and

) ) discriminative training signal pushes the RNN
Table 3: We implemented the same classifier as  encoder to focus on the semantics of a given sen-

mentioned in [Vendrov et al.| (2015)) on top of the tence, which learns to a boost in performance,
features computed by our model. Our proposed 41 beats all other methods. Our RNN-CNN
RNN-CNN model gets similar result on SNLI as  0del trained on Amazon Book Review data
Skip-thought, but with much less training time. has better results on supervised classification

tasks than BILSTM-Max does, while the per-
formance of ours on semantic relatedness tasks is inferior to BILSTM-Max. We argue that labeling a
large amount of training data is time-consuming and costly; unsupervised learning could potentially
provide a great initial point for human labeling making it less costly and more efficient.

6 CONCLUSION

Inspired by learning to exploit the contextual information present in adjacent sentences, we proposed
an asymmetric encoder-decoder model with a suite of techniques for improving context-based
unsupervised sentence representation learning. Since we believe that a simple model will be faster in
training and easier to analyze, we opt to use simple techniques in our proposed model, including 1)
an RNN as the encoder, and a predict-all-words CNN as the decoder, 2) learning by inferring next
contiguous words, 3) mean+max pooling, and 4) tying word vectors with word prediction. With
thorough discussion and extensive evaluation, we justify our decision making for each component in
our RNN-CNN model. In terms of the performance and the efficiency of training, we justify that our
model is a fast and simple algorithm for learning generic sentence representations from unlabeled
corpora. Further research will focus on how to maximize the utility of the context information, and
how to design simple architectures to best make use of it.



Under review as a conference paper at ICLR 2018

REFERENCES

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M. Cer, Mona T. Diab, Aitor Gonzalez-Agirre,
Weiwei Guo, Rada Mihalcea, German Rigau, and Janyce Wiebe. Semeval-2014 task 10: Multilin-
gual semantic textual similarity. In SemEval@COLING, 2014.

Gerry Altmann and Jelena Mirkovic. Incrementality and prediction in human sentence processing.
Cognitive science, 33 4:583-609, 2009.

Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR, abs/1607.06450, 2016.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In NIPS, 2015.

Jeffrey R Binder and Rutvik H Desai. The neurobiology of semantic memory. Trends in cognitive
sciences, 15 11:527-36, 2011.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference. In EMNLP, 2015.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and Hui Jiang. Enhancing and combining sequential
and tree Istm for natural language inference. arXiv preprint arXiv:1609.06038, 2016.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel P.
Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning Research,
12:2493-2537, 2011.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data. In EMNLP,
2017.

William B. Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large paraphrase
corpora: Exploiting massively parallel news sources. In COLING, 2004.

Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li, Xiaodong He, and Lawrence Carin. Learning
generic sentence representations using convolutional neural networks. In EMNLP, 2017.

Yichen Gong, Heng Luo, and Jian Zhang. Natural language inference over interaction space. CoRR,
abs/1709.04348, 2017.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed representations of sentences
from unlabelled data. In HLT-NAACL, 2016.

Sepp Hochreiter and Juergen Schmidhuber. Long short-term memory. Neural Computation, 9:
1735-1780, 1997.

Minqging Hu and Bing Liu. Mining and summarizing customer reviews. In KDD, 2004.

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: A
loss framework for language modeling. CoRR, abs/1611.01462, 2016.

Yacine Jernite, Samuel R. Bowman, and David Sontag. Discourse-based objectives for fast unsuper-
vised sentence representation learning. CoRR, abs/1705.00557, 2017.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jamie Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Skip-thought vectors. In NIPS, 2015.

Ben Krause, Liang Lu, Iain Murray, and Steve Renals. Multiplicative Istm for sequence modelling.
CoRR, abs/1609.07959, 2016.



Under review as a conference paper at ICLR 2018

Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and documents. In ICML,
2014.

Xin Li and Dan Roth. Learning question classifiers. In COLING, 2002.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto
Zamparelli. A sick cure for the evaluation of compositional distributional semantic models. In
LREC, 2014.

Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based
recommendations on styles and substitutes. In SIGIR, 2015.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In NIPS, 2013.

Allen Nie, Erin D. Bennett, and Noah D. Goodman. Dissent: Sentence representation learning from
explicit discourse relations. CoRR, abs/1710.04334, 2017.

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summariza-
tion based on minimum cuts. In ACL, 2004.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In ACL, 2005.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In ICML, 2013.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In EMNLP, 2014.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In EACL, 2017.

Alec Radford, Rafal J6zefowicz, and Ilya Sutskever. Learning to generate reviews and discovering
sentiment. CoRR, abs/1704.01444, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
2013.

Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang, and Virginia R. de Sa. Rethinking skip-thought:
A neighborhood based approach. In Repl4NLP, ACL Workshop, 2017.

Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space models of semantics.
J. Artif. Intell. Res., 37:141-188, 2010.

Ivan Vendrov, Jamie Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-embeddings of images
and language. CoRR, abs/1511.06361, 2015.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. Annotating expressions of opinions and emotions
in language. Language Resources and Evaluation, 39:165-210, 2005.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. CoRR, abs/1704.05426, 2017.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. ICCV, pp. 19-27, 2015.

10



Under review as a conference paper at ICLR 2018

SUPPLEMENTARY

Anonymous authors
Paper under double-blind review

Encoder Decoder Hrs | SICK-r SICK-E ~ STS14 | YORP | gop  TREC
type dim type dim (Acc/F1)

Dimension of Sentence Representation: 1200

CNN 600-1200-300 20 0.8530  82.6 0.58/0.56 | 75.6/82.9 | 82.8 89.2

RNN 2x300 CNNT 600-1200-300 21 0.8515 82.7 0.58/0.56 | 75.3/82.5 | 82.9 852

* CNN(10) 600-1200-300 11 0.8474 829 0.57/0.55 | 74.2/81.6 | 82.8 88.0

CNN(50) 600-1200-300 27 0.8533 82.5 0.57/0.55 | 74.7/82.2 | 81.5 86.2

RNN 2x300 | RNN 600 26 0.8530  82.6 0.51/0.50 | 74.1/81.7 | 81.0 89.0

CNN4x3008 | CNN 600-1200-300 8 0.8117  80.5 0.44/0.42 | 72.7/80.7 | 784 85.0

RNN 2x300 CNN  600-1200-2400-300 28 0.8570  84.0 0.58/0.56 | 74.3/81.5 | 82.8 88.2

X CNN 1200-2400-300 27 0.8541 83.0 0.59/0.57 | 74.3/82.2 | 829 89.0
Dimension of Sentence Representation: 2400

RNN 2x600 | CNN 600-1200-300 25 0.8631 83.9 0.58/0.55 | 74.7/83.1 | 83.4 90.2

RNN 2x600 | RNN 600 32 0.8647  84.2 0.52/0.51 | 74.0/81.2 | 84.2 87.6

CNN3x800f | RNN 600 8 0.8132 - - 71.9/81.9 - 86.6
Dimension of Sentence Representation: 4800

RNN2x1200 | CNN 600-1200-300 34 0.8698  85.2 0.59/0.57 | 75.1/83.2 | 84.1 92.2

Skip-thought (Kiros et al.,2015) 336 | 0.8584 823 0.29/0.35 | 73.0/82.0 | 82.0 92.2

Skip-thought+LN (Ba et al.} 2016) 720 | 0.8580  79.5 0.44/0.45 - 829 884

Table 1: Architecture Comparison. As shown in the table, our designed asymmetric RNN-CNN
model (row 1,9, and 12) works better than other asymmetric models (CNN-LSTM, row 11), and
models with symmetric structure (RNN-RNN, row 5 and 10). In addition, with larger encoder size,
our model demonstrates stronger transferability. The default setting for our CNN decoder is that
it learns to reconstruct 30 words right next to every input sentence. “CNN(10)” represents a CNN
decoder with the length of outputs as 10, and “CNN(50)” represents it with the length of outputs
as 50. “f” indicates that the CNN decoder learns to reconstruct next sentence. “%” indicates the
results reported in |Gan et al.| as future predictor. The CNN encoder in our experiment, noted as
“§”, was based on AdaSent in|Zhao et al.|and [Conneau et al.. Bold numbers are best results among
models at same dimension, and underlined numbers are best results among all models. For STS14,
the performance measures are Pearson’s and Spearman’s score. For MSRP, the performance measures
are accuracy and F1 score.
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