
Published as a conference paper at ICLR 2018

EIGENOPTION DISCOVERY THROUGH THE
DEEP SUCCESSOR REPRESENTATION

Marlos C. Machado1∗ , Clemens Rosenbaum2, Xiaoxiao Guo3
Miao Liu3, Gerald Tesauro3, Murray Campbell3
1 University of Alberta, Edmonton, AB, Canada
2 University of Massachusetts, Amherst, MA, USA
3 IBM Research, Yorktown Heights, NY, USA

ABSTRACT

Options in reinforcement learning allow agents to hierarchically decompose a task
into subtasks, having the potential to speed up learning and planning. However,
autonomously learning effective sets of options is still a major challenge in the
field. In this paper we focus on the recently introduced idea of using representa-
tion learning methods to guide the option discovery process. Specifically, we look
at eigenoptions, options obtained from representations that encode diffusive infor-
mation flow in the environment. We extend the existing algorithms for eigenop-
tion discovery to settings with stochastic transitions and in which handcrafted
features are not available. We propose an algorithm that discovers eigenoptions
while learning non-linear state representations from raw pixels. It exploits recent
successes in the deep reinforcement learning literature and the equivalence be-
tween proto-value functions and the successor representation. We use traditional
tabular domains to provide intuition about our approach and Atari 2600 games to
demonstrate its potential.

1 INTRODUCTION

Sequential decision making usually involves planning, acting, and learning about temporally ex-
tended courses of actions over different time scales. In the reinforcement learning framework, op-
tions are a well-known formalization of the notion of actions extended in time; and they have been
shown to speed up learning and planning when appropriately defined (e.g., Brunskill & Li, 2014;
Guo et al., 2017; Solway et al., 2014). In spite of that, autonomously identifying good options is
still an open problem. This problem is known as the problem of option discovery.

Option discovery has received ample attention over many years, with varied solutions being pro-
posed (e.g., Bacon et al., 2017; Şimsek & Barto, 2004; Daniel et al., 2016; Florensa et al., 2017;
Konidaris & Barto, 2009; Mankowitz et al., 2016; McGovern & Barto, 2001). Recently, Machado
et al. (2017) and Vezhnevets et al. (2017) proposed the idea of learning options that traverse direc-
tions of a latent representation of the environment. In this paper we further explore this idea.

More specifically, we focus on the concept of eigenoptions (Machado et al., 2017), options learned
using a model of diffusive information flow in the environment. They have been shown to improve
agents’ performance by reducing the expected number of time steps a uniform random policy needs
in order to traverse the state space. Eigenoptions are defined in terms of proto-value functions (PVFs;
Mahadevan, 2005), basis functions learned from the environment’s underlying state-transition graph.
PVFs and eigenoptions have been defined and thoroughly evaluated in the tabular case. Currently,
eigenoptions can be used in environments where it is infeasible to enumerate states only when a
linear representation of these states is known beforehand.

In this paper we extend the notion of eigenoptions to stochastic environments with non-enumerated
states, which are commonly approximated by feature representations. Despite methods that learn
representations generally being more flexible, more scalable, and often leading to better perfor-
mance, current algorithms for eigenoption discovery cannot be combined with representation learn-
∗Corresponding author: machado@ualberta.ca

1

Published as a conference paper at ICLR 2018

ing. We introduce an algorithm that is capable of discovering eigenoptions while learning represen-
tations. The learned representations implicitly approximate the model of diffusive information flow
(hereafter abbreviated as the DIF model) in the environment. We do so by exploiting the equivalence
between PVFs and the successor representation (SR; Dayan, 1993). Notably, by using the SR we
also start to be able to deal with stochastic transitions naturally, a limitation of previous algorithms.

We evaluate our algorithm in a tabular domain as well as on Atari 2600 games. We use the tabular
domain to provide intuition about our algorithm and to compare it to the algorithms in the litera-
ture. Our evaluation in Atari 2600 games provides promising evidence of the applicability of our
algorithm in a setting in which a representation of the agent’s observation is learned from raw pixels.

2 BACKGROUND

In this section we discuss the reinforcement learning setting, the options framework, and the set of
options known as eigenoptions. We also discuss the successor representation, which is the main
concept used in the proposed algorithm.

2.1 REINFORCEMENT LEARNING AND OPTIONS

We consider the reinforcement learning (RL) problem in which a learning agent interacts with an
unknown environment in order to maximize a reward signal. RL is often formalized as a Markov
decision process (MDP), described as a 5-tuple: 〈S,A, p, r, γ〉. At time t the agent is in state st ∈ S
where it takes action at ∈ A that leads to the next state st+1 ∈ S according to the transition
probability kernel p(s′|s, a). The agent also observes a reward Rt+1 generated by the function
r : S×A→ R. The agent’s goal is to learn a policy π : S×A→ [0, 1] that maximizes the expected
discounted return Gt

.
= Eπ,p

[∑∞
k=0 γ

kRt+k+1|st
]
, where γ ∈ [0, 1] is the discount factor.

In this paper we are interested in the class of algorithms that determine the agent’s policy by being
greedy with respect to estimates of value functions; either w.r.t. the state value vπ(s), or w.r.t. the
state-action value function qπ(s, a). Formally, vπ(s) = Eπ,p[Gt|s] =

∑
a π(a|s)qπ(s, a). Notice

that in large problems these estimates have to be approximated because it is infeasible to learn a value
for each state-action pair. This is generally done by parameterizing qπ(s, a) with a set of weights θ
such that q(s, a,θ) ≈ qπ(s, a). Currently, neural networks are the most successful parametrization
approach in the field (e.g., Mnih et al., 2015; Tesauro, 1995). One of the better known instantiations
of this idea is the algorithm called Deep Q-network (DQN; Mnih et al., 2015), which uses a neural
network to estimate state-action value functions from raw pixels.

Options (Sutton et al., 1999) are our main topic of study. They are temporally extended actions that
allow us to represent courses of actions. An option ω ∈ Ω is a 3-tuple ω = 〈Iω, πω, Tω〉 where
Iω ⊆ S denotes the option’s initiation set, πω : S × A → [0, 1] denotes the option’s policy, and
Tω ⊆ S denotes the option’s termination set. We consider the call-and-return option execution
model in which a meta-policy µ : S → Ω dictates the agent’s behavior (notice A ⊆ Ω). After the
agent decides to follow option ω from a state in Iω , actions are selected according to πω until the
agent reaches a state in Tω . We are interested in learning Iω, πω , and Tω from scratch.

2.2 PROTO-VALUE FUNCTIONS AND EIGENOPTIONS

Eigenoptions are options that maximize eigenpurposes rei , intrinsic reward functions obtained from
the DIF model (Machado et al., 2017). Formally,

rei (s, s′) = e>
(
φ(s′)− φ(s)

)
, (1)

where φ(·) denotes a feature representation of a given state (e.g., one-hot encoding in the tabular
case) and e denotes an eigenvector encoding the DIF model at a specific timescale. Each intrinsic
reward function, defined by the eigenvector being used, incentivizes the agent to traverse a different
latent dimension of the state space.

In the tabular case, the algorithms capable of learning eigenoptions encode the DIF model through
the combinatorial graph Laplacian L = D−1/2(D − W)D−1/2, where W is the graph’s weight
matrix and D is the diagonal matrix whose entries are the row sums of W . The weight matrix

2

Published as a conference paper at ICLR 2018

Figure 1: Successor representation, with respect to the uniform random policy, of state A (left). This
example is similar to Dayan’s (1993). The red color represents larger values while the blue color
represents smaller values (states that are temporally further away).

is a square matrix where the ij-th entry represents the connection between states i and j. Notice
that this approach does not naturally deal with stochastic or unidirectional transitions because W
is generally defined as a symmetric adjacency matrix. Importantly, the eigenvectors of L are also
known as proto-value functions (PVFs; Mahadevan, 2005; Mahadevan & Maggioni, 2007).

In settings in which states cannot be enumerated, the DIF model is represented through a matrix
of transitions T , with row i encoding the transition vector φ(st) − φ(st−1), where φ(·) denotes
a fixed linear feature representation known beforehand (i can be different from t if transitions are
observed more than once). Machado et al. (2017) justifies this sampling strategy with the fact that,
in the tabular case, if every transition is sampled once, the right eigenvectors of matrix T converge
to PVFs. Because transitions are added only once, regardless of their frequency, this algorithm is not
well suited to stochastic environments. In this paper we introduce an algorithm that naturally deals
with stochasticity and that does not require φ(·) to be known beforehand. Our algorithm learns the
environment’s DIF model while learning a representation of the environment from raw pixels.

2.3 THE SUCCESSOR REPRESENTATION

The successor representation (SR; Dayan, 1993) determines state generalization by how similar its
successor states are. It is defined to be the expected future occupancy of state s′ given the agent’s
policy is π and its starting state is s. It can be seen as defining state similarity in terms of time. See
Figure 1 for an example. The Euclidean distance between state A and state C is smaller than the
Euclidean distance between state A and state B. However, if one considers the gray tiles to be walls,
an agent in state A can reach state B much quicker than state C. The SR captures this distinction,
ensuring that state A is more similar to state B than it is to state C.

Let 1{·} denote the indicator function, the SR, Ψπ(s, s′), is formally defined, for γ < 1, as :

Ψπ(s, s′) = Eπ,p

[∞∑
t=0

γt1{St=s′}

∣∣∣S0 = s

]
.

This expectation can be estimated from samples with temporal-difference error (Sutton, 1988):

Ψ̂(s, j) ← Ψ̂(s, j) + η

[
1{s=j} + γΨ̂(s′, j)− Ψ̂(s, j)

]
, (2)

where η is the step-size. In the limit, the SR converges to Ψπ = (I−γTπ)−1. This lets us decompose
the value function into the product between the SR and the immediate reward (Dayan, 1993):

vπ(s) =
∑
s′∈S

Ψπ(s, s′)r(s′).

The SR is directly related to several other ideas in the field. It can be seen as the dual approach
to dynamic programming and to value-function based methods in reinforcement learning (Wang
et al., 2007). Moreover, the eigenvectors generated from its eigendecomposition are equivalent to
proto-value functions (Stachenfeld et al., 2014; 2017) and to slow feature analysis (Sprekeler, 2011).

3

Published as a conference paper at ICLR 2018

Alg. 1 Eigenoption discovery through the SR

Ψ̂← LEARNREPRESENTATION()
E ← EXTRACTEIGENPURPOSES(Ψ̂)
for each eigepurpose ei ∈ E do
〈Iei , πei , Tei〉 ← LEARNEIGENOPTION(ei)

end for

Alg. 2 LEARNREPRESENTATION() with the SR
for a given number of steps n do

Observe s ∈ S, take action a ∈ A selected ac-
cording to π(s), and observe a next state s′ ∈ S
for each state j ∈ S do

Ψ̂(s, j)← Ψ̂(s, j)+

η
(
1{s=j} + γΨ̂(s′, j)− Ψ̂(s, j)

)
end for

end for
return Ψ̂

Such equivalences play a central role in the algorithm we describe in the next section. The SR may
also have an important role in neuroscience. Stachenfeld et al. (2014; 2017) recently suggested that
the successor representation is encoded by the hippocampus, and that a low-dimensional basis set
representing it is encoded by the enthorhinal cortex. Interestingly, both hippocampus and entorhinal
cortex are believed to be part of the brain system responsible for spatial memory and navigation.

3 EIGENOPTION DISCOVERY

In order to discover eigenoptions, we first need to obtain the eigenpurposes through the eigenvectors
encoding the DIF model in the environment. This is currently done through PVFs, which the agent
obtains by either explicitly building the environment’s adjacency matrix or by enumerating all of
the environment’s transitions (c.f. Section 2.2). Such an approach is fairly effective in deterministic
settings in which states can be enumerated and uniquely identified, i.e., the tabular case. However,
there is no obvious extension of this approach to stochastic settings. It may be hard for the agent to
explicitly model the environment dynamics in a weight matrix. The existent alternative, to enumerate
the environment’s transitions, may have a large cost. These issues become worse when states cannot
be enumerated, i.e., the function approximation case. The existing algorithm that is applicable to
the function approximation setting requires a fixed representation as input, not being able to learn a
representation while estimating the DIF model.

In this paper we introduce an algorithm that addresses the aforementioned issues by estimating the
DIF model through the SR. Also, we introduce a new neural network that is capable of approximat-
ing the SR from raw pixels by learning a latent representation of game screens. The learned SR is
then used to discover eigenoptions, replacing the need for knowing the combinatorial Laplacian. In
this section we discuss the proposed algorithm in the tabular case, the equivalence between PVFs
and the SR, and the algorithm capable of estimating the SR, and eigenoptions, from raw pixels.

3.1 THE TABULAR CASE

The general structure of the algorithms capable of discovering eigenoptions is fairly straightforward,
as shown in Alg. 1. The agent learns (or is given) a representation that captures the DIF model
(e.g., the combinatorial Laplacian). It then uses the eigenvectors of this representation to define
eigenpurposes (EXTRACTEIGENPURPOSES), the intrinsic reward functions described by Equation 1
that it will learn how to maximize. The option’s policy is the one that maximizes this new reward
function, while a state s is defined to be terminal with respect to the eigenpurpose ei if qei

∗ (s, a) ≤ 0
for all a ∈ A. The initiation set of an option ei is defined to be S \ Tei

.

In the tabular case, our proposed algorithm is also fairly simple. Instead of assuming the matrix Ψ̂
is given in the form of the graph Laplacian, or trying to estimate the graph Laplacian from samples
by stacking the row vectors corresponding to the different observed transitions, we estimate the
DIF model through the successor representation (c.f. Alg. 2). This idea is supported by the fact
that, for our purposes, the eigenvectors of the normalized Laplacian and the eigenvectors of the
SR are equivalent. Below we formalize this concept and discuss its implications. We show that the
eigenvectors of the normalized Laplacian are equal to the eigenvectors of the SR scaled by γ−1D1/2.

4

Published as a conference paper at ICLR 2018

The aforementioned equivalence ensures that the eigenpurposes extraction and the eigenoption
learning steps remain unchanged. That is, we still obtain the eigenpurposes from the eigendecom-
position1 of matrix Ψ̂, and we still use each eigenvector ei ∈ E to define the new learning problem
in which the agent wants to maximize the eigenpurpose, defined in Equation 1.

Importantly, the use of the SR addresses some other limitations of previous work: 1) it deals with
stochasticity in the environment and in the agent’s policy naturally; 2) its memory cost is indepen-
dent on the number of samples drawn by the agent; and 3) it does not assume that for every action
there is another action the agent can take to return to the state it was before, i.e., W is symmetric.

3.2 RELATIONSHIP BETWEEN PVFS AND THE SR

As aforementioned, PVFs (the eigenvectors of the normalized Laplacian) are equal to the eigenvec-
tors of the successor representation scaled by γ−1D1/2. To the best of our knowledge, this equiv-
alence was first explicitly discussed by Stachenfeld et al. (2014). We provide below a more formal
statement of such an equivalence, for the eingevalues and the eigenvectors of both approaches. We
use the proof to further discuss the extent of this interchangeability.

Theorem. Stachenfeld et al. (2014): Let 0 < γ < 1 s.t. Ψ = (I−γT)−1 denotes the matrix encod-
ing the SR, and let L = D−1/2(D −W)D−1/2 denote the matrix corresponding to the normalized
Laplacian, both obtained under a uniform random policy. The i-th eigenvalue (λSR,i) of the SR and
the j-th eigenvalue (λPVF,j) of the normalized Laplacian are related as follows:

λPVF,j =
[
1− (1− λSR,i

−1)γ−1
]

The i-th eigenvector (eSR,i) of the SR and the j-th eigenvector (ePVF,j) of the normalized Laplacian,
where i+ j = n+ 1, with n being the total number of rows (and columns) of matrix T , are related
as follows:

ePVF,j = (γ−1D1/2)eSR,i

Proof. Let λi, ei denote the i-th eigenvalue and eigenvector of the SR, respectively. Using the fact
that the SR is known to converge, in the limit, to (I−γT)−1 (through the Neumann series), we have:

(I − γT)−1ei = λiei

(I − γT)ei = λ−1i ei

(I − T)γ−1ei = [1− (1− λ−1i)γ−1]γ−1ei

(I − T)γ−1ei = λ′jγ
−1ei (3)

(I −D−1W)γ−1ei = λ′jγ
−1ei

D−1/2(D −W)D−1/2D1/2γ−1ei = λ′jγ
−1D1/2ei

Importantly, when using PVFs we are first interested in the eigenvectors with the corresponding
smallest eigenvalues, as they are the “smoothest” ones. However, when using the SR we are inter-
ested in the eigenvectors with the largest eigenvalues. The change of variables in Eq. 3 highlights
this fact i.e., λ′j = [1− (1− λ−1i)γ−1]. The indices j are sorted in the reverse order of the indices i.
This distinction can be very important when trying to estimate the relevant eigenvectors. Finding
the largest eigenvalues/eigenvectors is statistically more robust to noise in estimation and does not
depend on the lowest spectrum of the matrix. Moreover, notice that the scaling by D1/2 does not
change the direction of the eigenvectors when the size of the action set is constant across all states.
This is often the case in the RL problems being studied.

3.3 THE FUNCTION APPROXIMATION CASE: THE SR THROUGH DEEP NEURAL NETWORKS

The tabular case is interesting to study because it provides intuition about the problem and it is
easier to analyze, both empirically and theoretically. However, the tabular case is only realizable

1Notice the matrix Ψ̂ is not guaranteed to be symmetric. In that case one can define the eigenpurposes to be
Ψ̂’s right eigenvectors, as we do in Section 3.3.

5

Published as a conference paper at ICLR 2018

Figure 2: Neural network architecture used to learn the SR. The symbols
⊗

and ø denote element-
wise multiplication and the fact that gradients are not propagated further back, respectively.

in toy domains. In real-world situations the number of states is often very large and the ability to
generalize and to recognize similar states is essential. In this section, inspired by Kulkarni et al.’s
(2016b) and Oh et al.’s (2015) work, we propose replacing Alg. 2 by a neural network that is able to
estimate the successor representation from raw pixels. Such an approach circumvents the limitations
of previous work that required a linear feature representation to be provided beforehand.

The SR with non-enumerated states: Originally, the SR was not defined in the function approxima-
tion setting, where states are described in terms of feature vectors. Successor features are the natural
extension of the SR to this setting. We use Barreto et al.’s (2017) definition of successor features,
where ψπ,i(s) denotes the successor feature i of state s ∈ S when following a policy π:

ψπ,i(s) = Eπ,p

[∞∑
t=0

γtφi(St)
∣∣∣S0 = s

]
.

In words, ψπ,i(s) encodes the discounted expected value of the i-th feature in the vector φ(·) when
the agent starts in state s and follows the policy π. The update rule presented in Eq. 2 can be
naturally extended to this definition. The temporal-difference error in the update rule can be used as
a differentiable loss function, allowing us to estimate the successor features with a neural network.

Neural network architecture: The architecture we used is depicted in Fig 2. The reconstruction
module is the same as the one introduced by Oh et al. (2015), but augmented by the SR estimator
(the three layers depicted at the bottom). The SR estimator uses the learned latent representation as
input i.e., the output of the representation learning module.

The proposed neural network receives raw pixels as input and learns to estimate the successor fea-
tures of a lower-dimension representation learned by the neural network. The loss function LSR we
use to learn the successor features is:

LSR(s, s′) = E

[(
φ−(s) + γψ−

(
φ−(s′)

)
− ψ

(
φ(s)

))2]
,

where φ(s) denotes the feature vector encoding the learned representation of state s and ψ(·) denotes
the estimated successor features. In practice, φ(·) is the output of the representation learning module
and ψ(·) is the output of the SR estimator, as shown in Fig. 2. The loss function above also highlights
the fact that we have two neural networks. We use − to represent a target network (Mnih et al., 2015),
which is updated at a slower rate for stability purposes.

We cannot directly estimate the successor features from raw pixels using only LSR because zero
is one of its fixed points. This is the reason we added Oh et al.’s (2015) reconstruction module in
the proposed network. It behaves as an auxiliary task (Jaderberg et al., 2017) that predicts the next
state to be observed given the current state and action. By predicting the next state we increase the
likelihood the agent will learn a representation that takes into consideration the pixels that are under
its control, which has been shown to be a good bias in RL problems (Bellemare et al., 2012). Such
an auxiliary task is defined through the network’s reconstruction error LRE :

LRE(s, a, s′) =
(
ζ
(
φ(s), a

)
− s′

)2
,

where ζ(·) denotes the output of the reconstruction module, as shown in Fig. 2. The final loss being
optimized is L(s, a, s′) = LRE(s, a, s′) + LSR(s, s′).

6

Published as a conference paper at ICLR 2018

(a) Rooms domain (b) First eigenvector (c) First eigenoption
(d) Diffusion time

Figure 3: Results in the rooms domain. The rightmost figure depicts the diffusion time as eigenop-
tions are added to the agent’s action set (sorted by eigenvalues corresponding to the eigenpurposes).

Finally, to ensure that the SR will not interfere with the learned features, we zero the gradients
coming from the SR estimator (represented with the symbol ø in Fig. 2). We trained our model with
RMSProp and we followed the same protocol Oh et al. (2015) used to initialize the network.

Eigenoption learning: In Alg. 1, the function EXTRACTEIGENPURPOSES returns the eigenpurposes
described by Eq. 1. Eigenpurposes are defined in terms of a feature representation φ(st) of the
environment and of the eigenvectors ei of the DIF model (the SR in our case). We use the trained
network to generate both. It is trivial to obtain φ(st) as we just use the output of the appropriate
layer in the network as our feature representation. To obtain ei we first need to generate a meaningful
matrix since our network outputs a vector of successor features instead of a matrix. We do so by
having the agent follow the uniform random policy while we store the network outputs ψ(st), which
correspond to the network estimate of the successor features of state st. We then create a matrix T
where row t corresponds to ψ(st) and we define ei to be its right eigenvectors.

Once we have created the eigenpurposes, the option discovery problem is reduced to a regular RL
problem where the agent aims to maximize the cumulative sum of rewards. Any learning algorithm
can be used for that. We provide details about our approach in the next section.

4 EXPERIMENTS

We evaluate the discovered eigenoptions quantitatively and qualitatively in this section. We use the
traditional rooms domain to evaluate the impact, on the eigenvectors and on the discovered options,
of approximating the DIF model through the SR. We then use Atari 2600 games to demonstrate how
the proposed network does discover purposeful options from raw pixels.

4.1 TABULAR CASE

Our first experiment evaluates the impact of estimating the SR from samples instead of assuming the
DIF model was given in the form of the normalized Laplacian. We use the rooms domain (Fig. 3a;
Sutton et al., 1999) to evaluate our method. Fig. 4b depicts the first eigenvector obtained from
the SR while Fig. 4c depicts the corresponding eigenoption. We followed the uniform random
policy for 1,000 episodes to learn the SR. Episodes were 100 time steps long. We used a step-
size of 0.1, and we set γ = 0.9. The estimated eigenvector is fairly close to the true one and, as
expected, the obtained eigenvector is fairly similar to the PVFs that are obtained for this domain.
In the Appendix we provide the plots for the true SR and the PVF, as well as plots for different
eigenvectors, comparing them to those obtained from (I − γT)−1.

Eigenoptions are known for improving the agent’s ability to explore the environment. We use the
metric diffusion time to validate whether such an ability is preserved with our method. The diffusion
time can be seen as a proxy for how hard it is for an agent to reach the goal state when following a
uniform random policy. It is defined as the expected number of decisions (action selection steps) an
agent needs to take, when following the uniform random policy, to navigate between two randomly
chosen states. We compared the agent’s diffusion time when using eigenoptions obtained with PVFs
to the diffusion time when using eigenoptions obtained with estimates of the SR. As we can see in
Fig 3d, the eigenoptions obtained with the SR do help the agent to explore the environment. The

7

Published as a conference paper at ICLR 2018

(a) Used environments

Primitive actions

4 options

8 options
32 options

64 options

128 options

(b) Results in env. with S1, G1

Primitive actions

4 options

8 options
32 options

64 options

128 options

(c) Results in env. with S2, G2

Figure 4: Different environments (varying start and goal locations) used in our evaluation (a), as
well as the learning curves obtained in each one of these environments (b, c) for different number of
options obtained from the SR when estimated after 100 episodes. See text for more details.

gap between the diffusion time when using PVFs and when using the SR is likely due to different
ways of dealing with corners. The SR implicitly models self-loops in the states adjacent to walls,
since the agent takes an action and it observes it did not move.

We also evaluated how the estimates of the SR evolve as more episodes are used during learning, and
its impact in the diffusion time (Fig 3d). In the Appendix we present more results, showing that the
local structure of the graph is generally preserved. Naturally, more episodes allow us to learn more
accurate estimates of the SR as a more global facet of the environment is seen, since the agent has
more chances to further explore the state space. However, it seems that even the SR learned from
few episodes allow us to discover useful eigenoptions, as depicted in Fig. 3d. The eigenoptions
obtained from the SR learned using only 100 episodes are already capable of reducing the agent’s
diffusion time considerably. Finally, it is important to stress that the discovered options do more
than randomly selecting subgoal states. “Random options” only reduce the agent’s diffusion time
when hundreds of them are added to the agent’s action set (Machado et al., 2017).

Finally, we evaluated the use of the discovered eigenoptions to maximize reward. In our experi-
ments the agent learned, off-policy, the greedy policy over primitive actions (target policy) while
following the uniform random policy over actions and eigenoptions (behavior policy). We used Q-
learning (Watkins & Dayan, 1992) in our experiments – parameters λ = 0, α = 0.1, and γ = 0.9.
As before, episodes were 100 time steps long. Figure 4 summarizes the obtained results comparing
the performance of our approach to regular Q-learning over primitive actions. The eigenoptions
were extracted from estimates of the SR obtained after 100 episodes. The reported results are the
average over 24 independent runs when learning the SR, with each one of these runs encoding 100
runs evaluating Q-Learning. The options were added following the sorting provided by the eigen-
values. For example, 4 options denotes an agent with the action set used in the behavior policy being
composed of the four primitive actions and the four eigenoptions generated by the top 2 eigenvalues
(both directions are being used). Notice that these results do not try to take the sample efficiency
of our approach into consideration, they are only meant to showcase how eigenoptions, once dis-
covered, can speed up learning. The sample complexity of learning options is generally justified in
lifelong learning settings where they are re-used over multiple tasks (e.g., Brunskill & Li, 2014).
This is beyond the scope of this paper.

The obtained results clearly show that eigenoptions are not only capable of reducing the diffusion
time in the environment but of also improving the agent’s control performance. They do so by in-
creasing the likelihood that the agent will cover a larger part of the state space given the same amount
of time. Moreover, as before, it seems that a very accurate estimate of the successor representation
is not necessary for the eigenoptions to be useful. Similar results can be obtained for different loca-
tions of the start and goal states, and when the estimates of the SR are more accurate. These results
can be seen in the Appendix.

4.2 ATARI 2600

This second set of experiments evaluates the eigenoptions discovered when the SR is obtained from
raw pixels. We obtained the SR through the neural network described in Section 3. We used four

8

Published as a conference paper at ICLR 2018

(a) BANK HEIST (b) MONTEZUMA’S REVENGE (c) MS. PACMAN

Figure 5: Plots of density of state visitation of eigenoptions discovered in three Atari 2600 games.
States visited more frequently show darker images of the avatar. Note that an eigenoption’s over-
whelming mass of visitations corresponds to its terminal state, and that disparate options have dif-
ferent terminal states.

Atari 2600 games from the Arcade Learning Environment (Bellemare et al., 2013) as testbed: BANK
HEIST, FREEWAY, MONTEZUMA’S REVENGE, and MS. PAC-MAN.

We followed the protocol described in the previous section to create eigenpurposes. We trained the
network in Fig. 2 to estimate the SR under the uniform random policy. Since the network does not
impact the policy being followed, we built a dataset of 500, 000 samples for each game and we used
this dataset to optimize the network weights. We passed through the shuffled dataset 10 times, using
RMSProp with a step size of 10−4. Once we were done with the training, we let the agent follow
a uniform random policy for 50, 000 steps while we stored the SR output by the network for each
observed state as a row of matrix T . We define e, in the eigenpurposes we maximize (c.f., Eq. 1), to
be the right eigenvectors of the matrix T , while φ(·) is extracted at each time step from the network
in Fig. 2. Due to computational constraints, we approximated the final eigenoptions. We did so by
using the ALE’s internal emulator to do a one-step lookahead and act greedily with respect to each
eigenpurpose (in practice, this is equivalent to learning with γ = 0). This is not ideal because the
options we obtain are quite limited, since they do not deal with delayed rewards. However, even in
such limiting setting we were able to obtain promising results, as we discuss below.

Following Machado et al. (2017), we evaluate the discovered eigenoptions qualitatively. We execute
all options following the procedure described above (greedy one-step lookahead) while tracking
the avatar’s position on the screen. Figure 5 summarizes the behavior of some of the meaningful
options discovered. The trajectories generated by different options are represented by different
colors and the color’s intensity at a given location represents how often the agent was at that location.
Eigenoptions were introduced as options that generate purposeful behavior and that help agents
explore the environment. We can clearly see that the discovered eigenoptions are indeed purposeful.
They aim to reach a specific location and stay there. If this was not the case the agent’s trajectory
would be much more visible. Instead, what we actually observe is that the mass of visitation is
concentrated on one location on the screen, dominating (color intensity) all the others. The location
the agent is spending most of its time on can in fact be seen as the option’s terminal state. Constantly
being in a state suggests the agent has arrived to a myopic local maximum for that eigenpurpose.

In three out of four games (BANK HEIST, MONTEZUMA’S REVENGE, MS. PACMAN) our algo-
rithm discovers options that clearly push the agent to corners and to other relevant parts of the state
space, corroborating the intuition that eigenoptions also improve exploration. In MONTEZUMA’S
REVENGE, the terminal state of the highlighted options even correspond to what are considered
good subgoals for the game (Kulkarni et al., 2016a). It is likely that additional subgoals, such as
the key, were not found due to our myopic greedy approach. This approach may also explain why
our algorithm was ineffective in FREEWAY. Avoiding cars may be impossible without longer-term
planning. A plot depicting the two meaningful options discovered in this game is in the Appendix.
Importantly, the fact that myopic policies are able to navigate to specific locations and stay there
also suggests that, as in the tabular case, the proposed approach gives rise to dense intrinsic rewards
that are very informative. This is another important constrast between randomly assigned subgoals
and our approach. Randomly assigned subgoals do not give rise to such dense rewards. Thus, one
can argue that our approach does not only generate useful options but it also gives rise to dense
eigenpurposes, making it easier to build the policies associated with them.

9

Published as a conference paper at ICLR 2018

It is important to stress that our algorithm was able to discover eigenoptions, from raw pixels, similar
to those obtained by algorithms that use the RAM state of the game as a feature representation. The
RAM state of the game often uses specific bytes to encode important information of the game, such
as the position of the player’s avatar in the game. Our algorithm had to implicitly learn what were
the meaningful parts of the screen. Also, different from previous algorithms, our approach is not
constrained by the dimensionality of the state representation nor to binary features. Based on this
discussion, we consider our results to be very promising, even though we only depict options that
have effect on the initial state of the games. We believe that in a more general setting (e.g., using
DQN to learn policies) our algorithm has the potential to discover even better options.

5 RELATED WORK

Our work was directly inspired by Kulkarni et al. (2016b), the first to propose approximating the
SR using a neural network. We use their loss function in a novel architecture. Because we are not
directly using the SR for control, we define the SR in terms of states, instead of state-action pairs.
Different from Kulkarni et al. (2016b), our network does not learn a reward model and it does not
use an autoencoder to learn a representation of the world. It tries to predict the next state the agent
will observe. The prediction module we used was introduced by Oh et al. (2015). Because it predicts
the next state, it implicitly learns representations that take into consideration the parts of the screen
that are under the agent’s control. The ability to recognize such features is known as contingency
awareness, and it is known to have the potential to improve agents’ performance (Bellemare et al.,
2012). Kulkarni et al. (2016b) did suggest the deep SR could be used to find bottleneck states, which
are commonly used as subgoals for options, but such an idea was not further explored. Importantly,
Jong et al. (2008) and Machado et al. (2017) have shown that options that look for bottleneck states
can be quite harmful in the learning process.

The idea of explicitly building hierarchies based on the learned latent representation of the state
space is due to Machado et al. (2017) and Vezhnevets et al. (2017). Machado et al. (2017) proposed
the concept of eigenoptions, but limited to the linear function approximation case. Vezhnevets et al.
(2017) do not explicitly build options with initiation and termination sets. Instead, they learn a
hierarchy through an end-to-end learning system that does not allow us to easily retrieve options
from it. Finally, Kompella et al. (2017) has proposed the use of slow feature analysis (SFA; Wiskott
& Sejnowski, 2002) to discover options. Sprekeler (2011) has shown that, given a specific choice
of adjacency function, PVFs (and consequently the SR) are equivalent to SFA. However, their work
is limited to linear function approximation. Our method also differs in how we define the initiation
and termination sets. The options they discover look for bottleneck states, which is not our case.

6 CONCLUSION

In this paper we introduced a new algorithm for eigenoption discovery in RL. Our algorithm uses
the successor representation (SR) to estimate the model of diffusive information flow in the environ-
ment, leveraging the equivalence between proto-value functions (PVFs) and the SR. This approach
circumvents several limitations from previous work: (i) it builds increasingly accurate estimates us-
ing a constant-cost update-rule; (ii) it naturally deals with stochastic MDPs; (iii) it does not depend
on the assumption that the transition matrix is symmetric; and (iv) it does not depend on handcrafted
feature representations. The first three items were achieved by simply using the SR instead of the
PVFs, while the latter was achieved by using a neural network to estimate the SR.

The proposed framework opens up multiple possibilities for investigation in the future. It would be
interesting to evaluate the compositionality of eigenoptions, or how transferable they are between
similar environments, such as the different modes of Atari 2600 games (Machado et al., 2018).
Finally, now that the fundamental algorithms have been introduced, it would be interesting to inves-
tigate whether one can use eigenoptions to accumulate rewards instead of using them for exploration.

ACKNOWLEDGMENTS

The authors would like to thank Craig Sherstan and Martha White for feedback on an earlier draft,
Kamyar Azizzadenesheli, Marc G. Bellemare and Michael Bowling for useful discussions, and the
anonymous reviewers for their feedback and suggestions.

10

Published as a conference paper at ICLR 2018

REFERENCES

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The Option-Critic Architecture. In Proc. of the
AAAI Conference on Artificial Intelligence (AAAI), pp. 1726–1734, 2017.

André Barreto, Will Dabney, Rémi Munos, Jonathan Hunt, Tom Schaul, David Silver, and Hado
van Hasselt. Successor Features for Transfer in Reinforcement Learning. In Advances in Neural
Information Processing Systems (NIPS), pp. 4058–4068, 2017.

Marc G. Bellemare, Joel Veness, and Michael Bowling. Investigating Contingency Awareness Using
Atari 2600 Games. In Proc. of the AAAI Conference on Artificial Intelligence (AAAI), 2012.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning Envi-
ronment: An Evaluation Platform for General Agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

Emma Brunskill and Lihong Li. PAC-inspired Option Discovery in Lifelong Reinforcement Learn-
ing. In Proc. of the International Conference on Machine Learning (ICML), pp. 316–324, 2014.

Özgür Şimsek and Andrew G. Barto. Using Relative Novelty to Identify Useful Temporal Abstrac-
tions in Reinforcement Learning. In Proc. of the International Conference on Machine Learning
(ICML), 2004.

Christian Daniel, Herke van Hoof, Jan Peters, and Gerhard Neumann. Probabilistic Inference for
Determining Options in Reinforcement Learning. Machine Learning, 104(2-3):337–357, 2016.

Peter Dayan. Improving Generalization for Temporal Difference Learning: The Successor Repre-
sentation. Neural Computation, 5(4):613–624, 1993.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic Neural Networks for Hierarchical Re-
inforcement Learning. In Proc. of the International Conference on Learning Representations
(ICLR), 2017.

Zhaohan Daniel Guo, Philip S. Thomas, and Emma Brunskill. Using Options and Covariance Test-
ing for Long Horizon Off-Policy Policy Evaluation. In Advances in Neural Information Process-
ing Systems (NIPS), pp. 2489–2498, 2017.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement Learning with Unsupervised Auxiliary Tasks. In
Proc. of the International Conference on Learning Representations (ICLR), 2017.

Nicholas K. Jong, Todd Hester, and Peter Stone. The Utility of Temporal Abstraction in Rein-
forcement Learning. In Proc. of the International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 299–306, 2008.

Varun Raj Kompella, Marijn F. Stollenga, Matthew D. Luciw, and Jürgen Schmidhuber. Continual
Curiosity-driven Skill Acquisition from High-Dimensional Video Inputs for Humanoid Robots.
Artificial Intelligence, 247:313–335, 2017.

George Konidaris and Andrew G. Barto. Skill Discovery in Continuous Reinforcement Learning
Domains using Skill Chaining. In Advances in Neural Information Processing Systems (NIPS),
pp. 1015–1023, 2009.

Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical Deep
Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation. In Advances
in Neural Information Processing Systems (NIPS), pp. 3675–3683, 2016a.

Tejas D. Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J. Gershman. Deep Successor
Reinforcement Learning. CoRR, abs/1606.02396, 2016b.

Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. A Laplacian Framework for Option
Discovery in Reinforcement Learning. In Proc. of the International Conference on Machine
Learning (ICML), pp. 2295–2304, 2017.

11

Published as a conference paper at ICLR 2018

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the Arcade Learning Environment: Evaluation Protocols and Open
Problems for General Agents. Journal of Artificial Intelligence Research (JAIR), In press, 2018.

Sridhar Mahadevan. Proto-value Functions: Developmental Reinforcement Learning. In Proc. of
the International Conference on Machine Learning (ICML), pp. 553–560, 2005.

Sridhar Mahadevan and Mauro Maggioni. Proto-value Functions: A Laplacian Framework for
Learning Representation and Control in Markov Decision Processes. Journal of Machine Learn-
ing Research (JMLR), 8:2169–2231, 2007.

Daniel J. Mankowitz, Timothy Arthur Mann, and Shie Mannor. Adaptive Skills Adaptive Partitions
(ASAP). In Advances in Neural Information Processing Systems (NIPS), pp. 1588–1596, 2016.

Amy McGovern and Andrew G. Barto. Automatic Discovery of Subgoals in Reinforcement Learn-
ing using Diverse Density. In Proc. of the International Conference on Machine Learning (ICML),
pp. 361–368, 2001.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level Control through Deep Reinforcement Learn-
ing. Nature, 518(7540):529–533, 2015.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder P. Singh. Action-
Conditional Video Prediction using Deep Networks in Atari Games. In Advances in Neural
Information Processing Systems (NIPS), pp. 2863–2871, 2015.

Alec Solway, Carlos Diuk, Natalia Córdova, Debbie Yee, Andrew G. Barto, Yael Niv, and
Matthew M. Botvinick. Optimal Behavioral Hierarchy. PLOS Computational Biology, 10(8):
1–10, 2014.

Henning Sprekeler. On the Relation of Slow Feature Analysis and Laplacian Eigenmaps. Neural
Computation, 23(12):3287–3302, 2011.

Kimberly L. Stachenfeld, Matthew Botvinick, and Samuel J. Gershman. Design Principles of the
Hippocampal Cognitive Map. In Advances in Neural Information Processing Systems (NIPS), pp.
2528–2536, 2014.

Kimberly L. Stachenfeld, Matthew M Botvinick, and Samuel J. Gershman. The Hippocampus as a
Predictive Map. Nature Neuroscience, 20:1643–1653, 2017.

Richard S. Sutton. Learning to Predict by the Methods of Temporal Differences. Machine Learning,
3:9–44, 1988.

Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between MDPs and Semi-MDPs: A Frame-
work for Temporal Abstraction in Reinforcement Learning. Artificial Intelligence, 112(1-2):181–
211, 1999.

Gerald Tesauro. Temporal Difference Learning and TD-Gammon. Communications of the ACM, 38
(3):58–68, 1995.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. FeUdal Networks for Hierarchical Reinforcement Learning. In
Proc. of the International Conference on Machine Learning (ICML), pp. 3540–3549, 2017.

T. Wang, M. Bowling, and D. Schuurmans. Dual Representations for Dynamic Programming and
Reinforcement Learning. In Proc. of the IEEE International Symposium on Approximate Dynamic
Programming and Reinforcement Learning (ADPRL), pp. 44–51, 2007.

Christopher J. C. H. Watkins and Peter Dayan. Technical Note: Q-Learning. Machine Learning, 8
(3-4), May 1992.

Laurenz Wiskott and Terrence J. Sejnowski. Slow Feature Analysis: Unsupervised Learning of
Invariances. Neural Computation, 14(4):715–770, 2002.

12

Published as a conference paper at ICLR 2018

APPENDIX: SUPPLEMENTARY MATERIAL

This supplementary material contains details omitted from the main text due to space constraints.
The list of contents is below:

• A more detailed proof of the theorem in the paper;
• Empirical results evaluating how the number of episodes used to learn the successor repre-

sentation impacts the obtained eigenvectors and their corresponding eigenoptions;
• Evaluation of the reconstruction module (auxiliary task) that learns the latent representation

that is used to estimate the successor representation.

A MORE DETAILED PROOF OF THE THEOREM IN THE MAIN PAPER

Theorem. Stachenfeld et al. (2014): Let 0 < γ < 1 s.t. Ψ = (I−γT)−1 denotes the matrix encod-
ing the SR, and let L = D−1/2(D −W)D−1/2 denote the matrix corresponding to the normalized
Laplacian, both obtained under a uniform random policy. The i-th eigenvalue (λSR,i) of the SR and
the j-th eigenvalue (λPVF,j) of the normalized Laplacian are related as follows:

λPVF,j =
[
1− (1− λSR,i

−1)γ−1
]

The i-th eigenvector (eSR,i) of the SR and the j-th eigenvector (ePVF,j) of the normalized Laplacian,
where i+ j = n+ 1, with n being the total number of rows (and columns) of matrix T , are related
as follows:

ePVF,j = (γ−1D1/2)eSR,i

Proof. This proof is more detailed than the one presented in the main paper. Let λi, ei denote the
i-th eigenvalue and eigenvector of the SR. Using the fact that the SR is known to converge, in the
limit, to (I − γT)−1 (through the Neumann series), we have:

(I − γT)−1ei = λiei

(I − γT)(I − γT)−1ei = λi(I − γT)ei

ei = λi(I − γT)ei

(I − γT)ei = λ−1i ei

(I − γT)γ−1ei = λ−1i γ−1ei

γ−1ei − Tei = λ−1i γ−1ei

Tei = γ−1ei − λ−1i γ−1ei

= (1− λ−1i)γ−1ei

Iei − Tei = Iei − (1− λ−1i)γ−1ei

(I − T)ei = [γ − (1− λ−1i)]γ−1ei

(I − T)γ−1ei = [1− (1− λ−1i)γ−1]γ−1ei

(I − T)γ−1ei = λ′jγ
−1ei

(I −D−1W)γ−1ei = λ′jγ
−1ei

(D−1(D −W))γ−1ei = λ′jγ
−1ei

D1/2(D−1(D −W))γ−1ei = λ′jγ
−1D1/2ei

D−1/2(D −W)γ−1ei = λ′jγ
−1D1/2ei

D−1/2(D −W)D−1/2D1/2γ−1ei = λ′jγ
−1D1/2ei

LD1/2γ−1ei = λ′jγ
−1D1/2ei

13

Published as a conference paper at ICLR 2018

THE IMPACT THE NUMBER OF EPISODES HAS IN LEARNING THE SR AND THE EIGENOPTIONS

In Section 4.1 we briefly discussed the impact of estimating the successor representation from sam-
ples instead of assuming the agent has access to the normalized Laplacian. It makes much more
sense to use the successor representation as the DIF model in the environment if we can estimate it
quickly. The diffusion time was the main evidence we used in Section 4.1 to support our claim that
early estimates of the successor representation are useful for eigenoption discovery. In order to be
concise we did not actually plot the eigenvectors of the estimates of the successor representation at
different moments, nor explicitly compared them to proto-value functions or to the eigenvectors of
the matrix (I − γT)−1. We do so in this section.

Figures 7–10 depict the first four eigenvectors of the successor representation in the Rooms domain,
after being learned for different number of episodes (episodes were 100 time steps long, η = 0.1,
γ = 0.9). We also depict the corresponding eigenvectors of the (I − γT)−1 matrix2, and of the
normalized Laplacian (Machado et al., 2017). Because the eigenvectors orientation (sign) is often
arbitrary in an eigendecomposition, we matched their orientation to ease visualization.

Overall, after 500 episodes we already have an almost perfect estimate of the first eigenvectors in
the environment; while 100 episodes seem to not be enough to accurately learn the DIF model in
all rooms. However, learning the successor representation for 100 episodes seems to be enough
to generate eigenoptions that reduce the agent’s diffusion time, as we show in Figure 3d. We can
better discuss this behavior by looking at Figures 11–14, which depict the options generated by the
obtained eigenvectors.

With the exception of the options generated after learning the successor representation for 100
episodes, all the eigenoptions obtained from estimates of the successor representation already move
the agent towards the “correct” room(s). Naturally, they do not always hit the corners, but the gen-
eral structure of the policies can be clearly seen. We also observe that the eigenoptions obtained
from proto-value functions are shifted one tile from the corners. As discussed in the main paper,
this is a consequence of how Machado et al.’s (2017) dealt with corners. They did not model self-
loops in the MDP, despite the fact that the agent can be in the same state for two consecutive steps.
The successor representation captures this naturally. Finally, we use Figure 11a to speculate why
the options learned after 100 episodes are capable of reducing the agent’s diffusion time. The first
eigenoption learned by the agent moves it to the parts of the state space it has never been to, this may
be the reason that the combination of these options is so effective. It also suggests that incremental
methods for option discovery and exploration are a promising path for future work.

USING EIGENOPTIONS TO ACCUMULATE REWARD IN THE ENVIRONMENT

In Section 4.1 we also evaluated the agent’s ability to accumulate reward after the eigenoptions have
been learned. We further analyze this topic here. As in Section 4.1, the agent learned, off-policy,
the greedy policy over primitive actions (target policy) while following the uniform random policy
over actions and eigenoptions (behavior policy). We used Q-learning (Watkins & Dayan, 1992)
in our experiments – parameters λ = 0, α = 0.1, and γ = 0.9. Episodes were 100 time steps
long. Figures 16–19 summarize the obtained results comparing the performance of our approach to
regular Q-learning over primitive actions in four different environments (c.f. Figure 15). We evaluate
the agent’s performance when using eigenoptions extracted from estimates of the SR obtained after
100, 500, and 1000 episodes, as well eigenoptions obtained from the true SR, i.e., (I − γT)−1. The
reported results are the average over 24 independent runs when learning the SR, with each one of
these runs encoding 100 runs evaluating Q-Learning. The options were added following the sorting
provided by the eigenvalues. For example, 4 options denotes an agent with the action set used in the
behavior policy being composed of the four primitive actions and the four eigenoptions generated
by the top 2 eigenvalues (both directions are being used).

We can see that eigenoptions are not only capable of reducing the diffusion time in the environment
but of also improving the agent’s control performance. They do so by increasing the likelihood that
the agent will cover a larger part of the state space given the same amount of time. Interestingly, few
eigenoptions seem to be enough for the agent. Moreover, although rough estimates of the SR seem
to be enough to improve the agent’s performance (e.g., estimates obtained after only 100 episodes).

2Recall (I − γT)−1 is the matrix to which the successor representation converges to in the limit.

14

Published as a conference paper at ICLR 2018

More accurate predictions of the SR are able to further improve the agent’s performance, mainly
when dozens of eigenoptions are being used. The first eigenoptions to be accurately estimated are
those with larger eigenvalues, which are the ones we add first.

EVALUATION OF THE RECONSTRUCTION TASK

In Section 4.2 we analyzed the eigenoptions we are able to discover in four games of the Arcade
Learning Environment. We did not discuss the performance of the proposed network in the auxiliary
tasks we defined. We do so here. Figures 20–23 depict a comparison between the target screen that
should be predicted and the network’s actual prediction for ten time steps in each game. We can
see that it accurately predicts the general structure of the environment and it is able to keep track of
most moving sprites on the screen. The prediction is quite noisy, different from Oh et al.’s (2015)
result. Still, it is interesting to see how even an underperforming network is able to learn useful
representations for our algorithm. It is likely better representations would result in better options.

EIGENOPTIONS DISCOVERED IN FREEWAY

Figure 6 depicts the two meaningful eigenoptions we were able to discover in the game FREEWAY.
As in Figure 5, each option is represented by the normalized count of the avatar’s position on the
screen in a trajectory. The trajectories generated by different options are represented by different
colors and the color’s intensity at a given location represents how often the agent was at that location.

Figure 6: Eigenoptions discovered in the game FREEWAY.

15

Published as a conference paper at ICLR 2018

(a) 100 episodes (b) 500 episodes (c) 1,000 episodes (d) PVF (e) (I − γT)−1

Figure 7: Evolution of the first eigenvector being estimated by the SR and baselines.

(a) 100 episodes (b) 500 episodes (c) 1,000 episodes (d) PVF (e) (I − γT)−1

Figure 8: Evolution of the second eigenvector being estimated by the SR and baselines.

(a) 100 episodes (b) 500 episodes (c) 1,000 episodes (d) PVF (e) (I − γT)−1

Figure 9: Evolution of the third eigenvector being estimated by the SR and baselines.

(a) 100 episodes (b) 500 episodes (c) 1,000 episodes (d) PVF (e) (I − γT)−1

Figure 10: Evolution of the fourth eigenvector being estimated by the SR and baselines.

16

Published as a conference paper at ICLR 2018

(a) 100 episodes (b) 500 episodes (c) 1,000 episodes (d) PVF (e) (I − γT)−1

Figure 11: Evolution of the first eigenoption being estimated by the SR and baselines.

(a) 100 episodes (b) 500 episodes (c) 1,000 episodes (d) PVF (e) (I − γT)−1

Figure 12: Evolution of the second eigenoption being estimated by the SR and baselines.

(a) 100 episodes (b) 500 episodes (c) 1,000 episodes (d) PVF (e) (I − γT)−1

Figure 13: Evolution of the third eigenoption being estimated by the SR and baselines.

(a) 100 episodes (b) 500 episodes (c) 1,000 episodes (d) PVF (e) (I − γT)−1

Figure 14: Evolution of the fourth eigenoption being estimated by the SR and baselines.

17

Published as a conference paper at ICLR 2018

G

S

(a) Setting 1

G

S

(b) Setting 2

G

S

(c) Setting 3

G

S

(d) Setting 4

Figure 15: Different environments (varying start and goal locations) used when evaluating the
agent’s ability to accumulate reward with and without eigenoptions.

Primitive actions

4 options

8 options
32 options

64 options

128 options

(a) SR after 100 ep.

Primitive actions

4 options

8 options

32 options

64 options

128 options

(b) SR after 1,000 ep.

Primitive actions

4 options

8 options

32 options

64 options

128 options

(c) SR after 1,000 ep.

Primitive actions

4 options

8 options

32 options

64 options

128 options

(d) SR as (I − γT)−1

Figure 16: Plot depicting the agent’s performance when following options obtained through esti-
mates of the SR (100, 500, and 1, 000 episodes), as well as through the true SR, in environment 1.

Primitive actions

4 options

8 options
32 options

64 options

128 options

(a) SR after 100 ep.

Primitive actions

4 options

8 options

32 options

64 options

128 options

(b) SR after 1,000 ep.

Primitive actions

4 options

8 options

32 options
64 options

128 options

(c) SR after 1,000 ep.

Primitive actions

4 options

8 options

32 options

64 options

128 options

(d) SR as (I − γT)−1

Figure 17: Plot depicting the agent’s performance when following options obtained through esti-
mates of the SR (100, 500, and 1, 000 episodes), as well as through the true SR, in environment 2.

Primitive actions

4 options

8 options

32 options

64 options
128 options

(a) SR after 100 ep.

Primitive actions

4 options

8 options

32 options
64 options

128 options

(b) SR after 500 ep.

Primitive actions

4 options

8 options

32 options
64 options

128 options

(c) SR after 1,000 ep.

Primitive actions

4 options

8 options
32 options

64 options

128 options

(d) SR as (I − γT)−1

Figure 18: Plot depicting the agent’s performance when following options obtained through esti-
mates of the SR (100, 500, and 1, 000 episodes), as well as through the true SR, in environment 3.

Primitive actions

4 options

8 options

32 options
64 options

128 options

(a) SR after 100 ep.

Primitive actions

4 options

8 options

32 options
64 options

128 options

(b) SR after 1,000 ep.

Primitive actions

4 options

8 options

32 options
64 options

128 options

(c) SR after 1,000 ep.

Primitive actions

4 options

8 options

32 options
64 options

128 options

(d) SR as (I − γT)−1

Figure 19: Plot depicting the agent’s performance when following options obtained through esti-
mates of the SR (100, 500, and 1, 000 episodes), as well as through the true SR, in environment 4.

18

Published as a conference paper at ICLR 2018

Prediction PredictionTarget Target

t = 1 t = 2

t = 3 t = 4

t = 5

t = 8t = 7

t = 6

t = 10t = 9

Figure 20: Final 1-step predictions in the game BANK HEIST. We use the task of predicting the next
game screen as an auxiliary task when estimating the successor representation.

19

Published as a conference paper at ICLR 2018

Prediction PredictionTarget Target

t = 25 t = 26

t = 27 t = 28

t = 29

t = 32t = 31

t = 30

t = 34t = 33

Figure 21: Final 1-step predictions in the game FREEWAY. We use the task of predicting the next
game screen as an auxiliary task when estimating the successor representation.

20

Published as a conference paper at ICLR 2018

Prediction PredictionTarget Target

t = 10 t = 11

t = 12 t = 13

t = 14

t = 17t = 16

t = 15

t = 19t = 18

Figure 22: Final 1-step predictions in the game MONTEZUMA’S REVENGE. We use the task of
predicting the next game screen as an auxiliary task when estimating the successor representation.

21

Published as a conference paper at ICLR 2018

Prediction PredictionTarget Target

t = 60 t = 61

t = 62 t = 63

t = 64

t = 67t = 66

t = 65

t = 69t = 68

Figure 23: Final 1-step predictions in the game MS. PACMAN. We use the task of predicting the
next game screen as an auxiliary task when estimating the successor representation.

22

	Introduction
	Background
	Reinforcement Learning and Options
	Proto-value Functions and Eigenoptions
	The Successor Representation

	Eigenoption Discovery
	The Tabular Case
	Relationship between PVFs and the SR
	The Function Approximation Case: The SR through Deep Neural Networks

	Experiments
	Tabular case
	Atari 2600

	Related Work
	Conclusion

