
Under review as a conference paper at ICLR 2017

SURPRISE-BASED INTRINSIC MOTIVATION FOR DEEP
REINFORCEMENT LEARNING

Joshua Achiam & Shankar Sastry
Department of Electrical Engineering and Computer Science
UC Berkeley
jachiam@berkeley.edu, sastry@coe.berkeley.edu

ABSTRACT

Exploration in complex domains is a key challenge in reinforcement learning, espe-
cially for tasks with very sparse rewards. Recent successes in deep reinforcement
learning have been achieved mostly using simple heuristic exploration strategies
such as ε-greedy action selection or Gaussian control noise, but there are many
tasks where these methods are insufficient to make any learning progress. Here,
we consider more complex heuristics: efficient and scalable exploration strategies
that maximize a notion of an agent’s surprise about its experiences via intrinsic
motivation. We propose to learn a model of the MDP transition probabilities
concurrently with the policy, and to form intrinsic rewards that approximate the
KL-divergence of the true transition probabilities from the learned model. One
of our approximations results in using surprisal as intrinsic motivation, while the
other gives the k-step learning progress. We show that our incentives enable agents
to succeed in a wide range of environments with high-dimensional state spaces
and very sparse rewards, including continuous control tasks and games in the Atari
RAM domain, outperforming several other heuristic exploration techniques.

1 INTRODUCTION

A reinforcement learning agent uses experiences obtained from interacting with an unknown envi-
ronment to learn behavior that maximizes a reward signal. The optimality of the learned behavior
is strongly dependent on how the agent approaches the exploration/exploitation trade-off in that
environment. If it explores poorly or too little, it may never find rewards from which to learn, and its
behavior will always remain suboptimal; if it does find rewards but exploits them too intensely, it
may wind up prematurely converging to suboptimal behaviors, and fail to discover more rewarding
opportunities. Although substantial theoretical work has been done on optimal exploration strategies
for environments with finite state and action spaces, we are here concerned with problems that have
continuous state and/or action spaces, where algorithms with theoretical guarantees admit no obvious
generalization or are prohibitively impractical to implement.

Simple heuristic methods of exploring such as ε-greedy action selection and Gaussian control noise
have been successful on a wide range of tasks, but are inadequate when rewards are especially sparse.
For example, the Deep Q-Network approach of Mnih et al. [13] used ε-greedy exploration in training
deep neural networks to play Atari games directly from raw pixels. On many games, the algorithm
resulted in superhuman play; however, on games like Montezuma’s Revenge, where rewards are
extremely sparse, DQN (and its variants [25], [26], [15], [12]) with ε-greedy exploration failed to
achieve scores even at the level of a novice human. Similarly, in benchmarking deep reinforcement
learning for continuous control, Duan et al.[5] found that policy optimization algorithms that explored
by acting according to the current stochastic policy, including REINFORCE and Trust Region Policy
Optimization (TRPO), could succeed across a diverse slate of simulated robotics control tasks with
well-defined, non-sparse reward signals (like rewards proportional to the forward velocity of the
robot). Yet, when tested in environments with sparse rewards—where the agent would only be able
to attain rewards after first figuring out complex motion primitives without reinforcement—every
algorithm failed to attain scores better than random agents. The failure modes in all of these cases
pertained to the nature of the exploration: the agents encountered reward signals so infrequently that
they were never able to learn reward-seeking behavior.

1

Under review as a conference paper at ICLR 2017

One approach to encourage better exploration is via intrinsic motivation, where an agent has a
task-independent, often information-theoretic intrinsic reward function which it seeks to maximize in
addition to the reward from the environment. Examples of intrinsic motivation include empowerment,
where the agent enjoys the level of control it has about its future; surprise, where the agent is excited
to see outcomes that run contrary to its understanding of the world; and novelty, where the agent
is excited to see new states (which is tightly connected to surprise, as shown in [2]). For in-depth
reviews of the different types of intrinsic motivation, we direct the reader to [1] and [17].

Recently, several applications of intrinsic motivation to the deep reinforcement learning setting (such
as [2], [7], [22]) have found promising success. In this work, we build on that success by exploring
scalable measures of surprise for intrinsic motivation in deep reinforcement learning. We formulate
surprise as the KL-divergence of the true transition probability distribution from a transition model
which is learned concurrently with the policy, and consider two approximations to this divergence
which are easy to compute in practice. One of these approximations results in using the surprisal of a
transition as an intrinsic reward; the other results in using a measure of learning progress which is
closer to a Bayesian concept of surprise. Our contributions are as follows:

1. we investigate surprisal and learning progress as intrinsic rewards across a wide range of
environments in the deep reinforcement learning setting, and demonstrate empirically that
the incentives (especially surprisal) result in efficient exploration,

2. we evaluate the difficulty of the slate of sparse reward continuous control tasks introduced
by Houthooft et al. [7] to benchmark exploration incentives, and introduce a new task to
complement the slate,

3. and we present an efficient method for learning the dynamics model (transition probabilities)
concurrently with a policy.

We distinguish our work from prior work in a number of implementation details: unlike Bellemare
et al. [2], we learn a transition model as opposed to a state-action occupancy density; unlike Stadie
et al. [22], our formulation naturally encompasses environments with stochastic dynamics; unlike
Houthooft et al. [7], we avoid the overhead of maintaining a distribution over possible dynamics
models, and learn a single deep dynamics model.

In our empirical evaluations, we compare the performance of our proposed intrinsic rewards with other
heuristic intrinsic reward schemes and to recent results from the literature. In particular, we compare
to Variational Information Maximizing Exploration (VIME) [7], a method which approximately
maximizes Bayesian surprise and currently achieves state-of-the-art performance on continuous
control with sparse rewards. We show that our incentives can perform on the level of VIME at a
lower computational cost.

2 PRELIMINARIES

We begin by introducing notation which we will use throughout the paper. A Markov decision
process (MDP) is a tuple, (S,A,R, P, µ), where S is the set of states, A is the set of actions,
R : S × A × S → R is the reward function, P : S × A × S → [0, 1] is the transition probability
function (where P (s′|s, a) is the probability of transitioning to state s′ given that the previous state
was s and the agent took action a in s), and µ : S → [0, 1] is the starting state distribution. A policy
π : S × A → [0, 1] is a distribution over actions per state, with π(a|s) the probability of selecting
a in state s. We aim to select a policy π which maximizes a performance measure, L(π), which
usually takes the form of expected finite-horizon total return (sum of rewards in a fixed time period),
or expected infinite-horizon discounted total return (discounted sum of all rewards forever). In this
paper, we use the finite-horizon total return formulation.

3 SURPRISE INCENTIVES

To train an agent with surprise-based exploration, we alternate between making an update step to a
dynamics model (an approximator of the MDP’s transition probability function), and making a policy
update step that maximizes a trade-off between policy performance and a surprise measure.

2

Under review as a conference paper at ICLR 2017

The dynamics model step makes progress on the optimization problem

min
φ
− 1

|D|
∑

(s,a,s′)∈D

logPφ(s′|s, a) + αf(φ), (1)

where D is is a dataset of transition tuples from the environment, Pφ is the model we are learning, f
is a regularization function, and α > 0 is a regularization trade-off coefficient. The policy update
step makes progress on an approximation to the optimization problem

max
π

L(π) + η E
s,a∼π

[DKL(P ||Pφ)[s, a]] , (2)

where η > 0 is an explore-exploit trade-off coefficient. The exploration incentive in (2), which we
select to be the on-policy average KL-divergence of Pφ from P , is intended to capture the agent’s
surprise about its experience. The dynamics model Pφ should only be close to P on regions of the
transition state space that the agent has already visited (because those transitions will appear in D
and thus the model will be fit to them), and as a result, the KL divergence of Pφ and P will be higher
in unfamiliar places. Essentially, this exploits the generalization in the model to encourage the agent
to go where it has not gone before. The surprise incentive in (2) gives the net effect of performing a
reward shaping of the form

r′(s, a, s′) = r(s, a, s′) + η (logP (s′|s, a)− logPφ(s′|s, a)) , (3)

where r(s, a, s′) is the original reward and r′(s, a, s′) is the transformed reward, so ideally we could
solve (2) by applying any reinforcement learning algorithm with these reshaped rewards. In practice,
we cannot directly implement this reward reshaping because P is unknown. Instead, we consider two
ways of finding an approximate solution to (2).

In one method, we approximate the KL-divergence by the cross-entropy, which is reasonable when
H(P) is finite (and small) and Pφ is sufficiently far from P 1; that is, denoting the cross-entropy by
H(P, Pφ)[s, a]

.
= Es′∼P (·|s,a)[− logPφ(s′|s, a)], we assume

DKL(P ||Pφ)[s, a] = H(P, Pφ)[s, a]−H(P)[s, a]

≈ H(P, Pφ)[s, a].
(4)

This approximation results in a reward shaping of the form

r′(s, a, s′) = r(s, a, s′)− η logPφ(s′|s, a); (5)

here, the intrinsic reward is the surprisal of s′ given the model Pφ and the context (s, a).

In the other method, we maximize a lower bound on the objective in (2) by lower bounding the
surprise term:

DKL(P ||Pφ)[s, a] = DKL(P ||Pφ′)[s, a] + E
s′∼P

[
log

Pφ′(s
′|s, a)

Pφ(s′|s, a)

]
≥ E
s′∼P

[
log

Pφ′(s
′|s, a)

Pφ(s′|s, a)

]
.

(6)

The bound (6) results in a reward shaping of the form

r′(s, a, s′) = r(s, a, s′) + η (logPφ′(s
′|s, a)− logPφ(s′|s, a)) , (7)

which requires a choice of φ′. From (6), we can see that the bound becomes tighter by minimizing
DKL(P ||Pφ′). As a result, we choose φ′ to be the parameters of the dynamics model after k updates
based on (1), and φ to be the parameters from before the updates. Thus, at iteration t, the reshaped
rewards are

r′(s, a, s′) = r(s, a, s′) + η
(
logPφt(s

′|s, a)− logPφt−k
(s′|s, a)

)
; (8)

here, the intrinsic reward is the k-step learning progress at (s, a, s′). It also bears a resemblance to
Bayesian surprise; we expand on this similarity in the next section.

In our experiments, we investigate both the surprisal bonus (5) and the k-step learning progress bonus
(8) (with varying values of k).

1On the other hand, if H(P)[s, a] is non-finite everywhere—for instance if the MDP has continuous states
and deterministic transitions—then as long as it has the same sign everywhere, Es,a∼π[H(P)[s, a]] is a constant
with respect to π and we can drop it from the optimization problem anyway.

3

Under review as a conference paper at ICLR 2017

3.1 DISCUSSION

Ideally, we would like the intrinsic rewards to vanish in the limit as Pφ → P , because in this case,
the agent should have sufficiently explored the state space, and should primarily learn from extrinsic
rewards. For the proposed intrinsic reward in (5), this is not the case, and it may result in poor
performance in that limit. The thinking goes that when Pφ = P , the agent will be incentivized to
seek out states with the noisiest transitions. However, we argue that this may not be an issue, because
the intrinsic motivation seems mostly useful long before the dynamics model is fully learned. As long
as the agent is able to find the extrinsic rewards before the intrinsic reward is just the entropy in P ,
the pathological noise-seeking behavior should not happen. On the other hand, the intrinsic reward in
(8) should not suffer from this pathology, because in the limit, as the dynamics model converges, we
should have Pφt ≈ Pφt−k

. Then the intrinsic reward will vanish as desired.

Next, we relate (8) to Bayesian surprise. The Bayesian surprise associated with a transition is the
reduction in uncertainty over possibly dynamics models from observing it ([1],[8]):

DKL (P (φ|ht, at, st+1)||P (φ|ht)) .
Here, P (φ|ht) is meant to represent a distribution over possible dynamics models parametrized by φ
given the preceding history of observed states and actions ht (so ht includes st), and P (φ|ht, at, st+1)
is the posterior distribution over dynamics models after observing (at, st+1). By Bayes’ rule, the
dynamics prior and posterior are related to the model-based transition probabilities by

P (φ|ht, at, st+1) =
P (φ|ht)P (st+1|ht, at, φ)

Eφ∼P (·|ht) [P (st+1|ht, at, φ)]
,

so the Bayesian surprise can be expressed as
E

φ∼Pt+1

[logP (st+1|ht, at, φ)]− log E
φ∼Pt

[P (st+1|ht, at, φ)] , (9)

where Pt+1 = P (·|ht, at, st+1) is the posterior and Pt = P (·|ht) is the prior. In this form, the
resemblance between (9) and (8) is clarified. Although the update from φt−k to φt is not Bayesian—
and is performed in batch, instead of per transition sample—we can imagine (8) might contain similar
information to (9).

3.2 IMPLEMENTATION DETAILS

Our implementation usesL2 regularization in the dynamics model fitting, and we impose an additional
constraint to keep model iterates close in the KL-divergence sense. Denoting the average divergence
as

D̄KL(Pφ′ ||Pφ) =
1

|D|
∑

(s,a)∈D

DKL(Pφ′ ||Pφ)[s, a], (10)

our dynamics model update is

φi+1 = arg min
φ
− 1

|D|
∑

(s,a,s′)∈D

logPφ(s′|s, a) + α‖φ‖22 : D̄KL(Pφ||Pφi
) ≤ κ. (11)

The constraint value κ is a hyper-parameter of the algorithm. We solve this optimization problem
approximately using a single second-order step with a line search, as described by [20]; full details
are given in supplementary material. D is a FIFO replay memory, and at each iteration, instead of
using the entirety of D for the update step we sub-sample a batch d ⊂ D. Also, similarly to [7], we
adjust the bonus coefficient η at each iteration, to keep the average bonus magnitude upper-bounded
(and usually fixed). Let η0 denote the desired average bonus, and r+(s, a, s′) denote the intrinsic
reward; then, at each iteration, we set

η =
η0

max
(

1, 1
|B|

∣∣∣∑(s,a,s′)∈B r+(s, a, s′)
∣∣∣) ,

where B is the batch of data used for the policy update step. This normalization improves the stability
of the algorithm by keeping the scale of the bonuses fixed with respect to the scale of the extrinsic
rewards. Also, in environments where the agent can die, we avoid the possibility of the intrinsic
rewards becoming a living cost by translating all bonuses so that the mean is nonnegative. The basic
outline of the algorithm is given as Algorithm 1. In all experiments, we use fully-factored Gaussian
distributions for the dynamics models, where the means and variances are the outputs of neural
networks.

4

Under review as a conference paper at ICLR 2017

Algorithm 1 Reinforcement Learning with Surprise Incentive

Input: Initial policy π0, dynamics model Pφ0

repeat
collect rollouts on current policy πi
add rollout (s, a, s′) tuples to replay memory D
compute reshaped rewards using (5) or (8) with dynamics model Pφi

normalize η by the average intrinsic reward of the current batch of data
update policy to πi+1 using any RL algorithm with the reshaped rewards
update the dynamics model to Pφi+1

according to (11)
until training is completed

4 EXPERIMENTS

We evaluate our proposed surprise incentives on a wide range of benchmarks that are challenging for
naive exploration methods, including continuous control and discrete control tasks. Our continuous
control tasks include the slate of sparse reward tasks introduced by Houthooft et al. [7]: sparse
MountainCar, sparse CartPoleSwingup, and sparse HalfCheetah, as well as a new sparse reward task
that we introduce here: sparse Swimmer. (We refer to these environments with the prefix ‘sparse’ to
differentiate them from other versions which appear in the literature, where agents receive non-sparse
reward signals.) Additionally, we evaluate performance on a highly-challenging hierarchical sparse
reward task introduced by Duan et al [5], SwimmerGather. The discrete action tasks are several
games from the Atari RAM domain of the OpenAI Gym [4]: Pong, BankHeist, Freeway, and Venture.

Environments with deterministic and stochastic dynamics are represented in our benchmarks: the
continuous control domains have deterministic dynamics, while the Gym Atari RAM games have
stochastic dynamics. (In the Atari games, actions are repeated for a random number of frames.)

We use Trust Region Policy Optimization (TRPO) [20], a state-of-the-art policy gradient method,
as our base reinforcement learning algorithm throughout our experiments, and we use the rllab
implementations of TRPO and the continuous control tasks [5]. Full details for the experimental
set-up are included in the appendix.

On all tasks, we compare against TRPO without intrinsic rewards, which we refer to as using naive
exploration (in contrast to intrinsically motivated exploration). For the continuous control tasks, we
also compare against intrinsic motivation using the L2 model prediction error,

r+(s, a, s′) = ‖s′ − µφ(s, a)‖2, (12)

where µφ is the mean of the learned Gaussian distribution Pφ. The model prediction error was
investigated as intrinsic motivation for deep reinforcement learning by Stadie et al [22], although
they used a different method for learning the model µφ. This comparison helps us verify whether
or not our proposed form of surprise, as a KL-divergence from the true dynamics model, is useful.
Additionally, we compare our performance against the performance reported by Houthooft et al. [7]
for Variational Information Maximizing Exploration (VIME), a method where the intrinsic reward
associated with a transition approximates its Bayesian surprise using variational methods. Currently,
VIME has achieved state-of-the-art results on intrinsic motivation for continuous control.

As a final check for the continuous control tasks, we benchmark the tasks themselves, by measuring the
performance of the surprisal bonus without any dynamics learning: r+(s, a, s′) = − logPφ0

(s′|s, a),
where φ0 are the original random parameters of Pφ. This allows us to verify whether our benchmark
tasks actually require surprise to solve at all, or if random exploration strategies successfully solve
them.

4.1 CONTINUOUS CONTROL RESULTS

Median performance curves are shown in Figure 1 with interquartile ranges shown in shaded areas.
Note that TRPO without intrinsic motivation failed on all tasks: the median score and upper quartile
range for naive exploration were zero everywhere. Also note that TRPO with random exploration
bonuses failed on most tasks, as shown separately in Figure 2. We found that surprise was not needed
to solve MountainCar, but was necessary to perform well on the other tasks.

5

Under review as a conference paper at ICLR 2017

(a) MountainCar (b) CartpoleSwingup (c) HalfCheetah

(d) Swimmer (e) SwimmerGather

Figure 1: Median performance for the continuous control tasks over 10 runs with a fixed set of seeds,
with interquartile ranges shown in shaded areas. The x-axis is iterations of training; the y-axis is
average undiscounted return. AKL-k refers to learning progress (8), NLL to surprisal (5), and PRED
to (12). For the first four tasks, η0 = 0.001; for SwimmerGather, η0 = 0.0001. Results for VIME are
from Houthooft et al. [7], reproduced here with permission. We note that the performance curve for
VIME in the SwimmerGather environment represents only 2 random seeds, not 10.

(a) MountainCar (b) CartpoleSwingup (c) HalfCheetah (d) Swimmer (e) SwimmerGather

Figure 2: Benchmarking the benchmarks: median performance for the continuous control tasks over
10 runs with a fixed set of seeds, with interquartile ranges shown in shaded areas, using the surprisal
without learning bonus. RAN refers to the fact that this is essentially a random exploration bonus.

The surprisal bonus was especially robust across tasks, achieving good results in all domains and
substantially exceeding the other baselines on the more challenging ones. The learning progress
bonus for k = 1 was successful on CartpoleSwingup and HalfCheetah but it faltered in the others. Its
weak performance in MountainCar was due to premature convergence of the dynamics model, which
resulted in the agent receiving intrinsic rewards that were identically zero. (Given the simplicity of
the environment, it is not surprising that the dynamics model converged so quickly.) In Swimmer,
however, it seems that the learning progress bonuses did not inspire sufficient exploration. Because
the Swimmer environment is effectively a stepping stone to the harder SwimmerGather, where the
agent has to learn a motion primitive and collect target pellets, on SwimmerGather, we only evaluated
the intrinsic rewards that had been successful on Swimmer.

Both surprisal and learning progress (with k = 1) exceeded the reported performance of VIME
on HalfCheetah by learning to solve the task more quickly. On CartpoleSwingup, however, both
were more susceptible to getting stuck in locally optimal policies, resulting in lower median scores
than VIME. Surprisal performed comparably to VIME on SwimmerGather, the hardest task in the
slate—in the sense that after 1000 iterations, they both reached approximately the same median
score—although with greater variance than VIME.

Our results suggest that surprisal is a viable alternative to VIME in terms of performance, and is
highly favorable in terms of computational cost. In VIME, a backwards pass through the dynamics
model must be computed for every transition tuple separately to compute the intrinsic rewards,
whereas our surprisal bonus only requires forward passes through the dynamics model for intrinsic

6

Under review as a conference paper at ICLR 2017

VIME Surprisal No Bonus
Avg. Initialization Time 3 min, 52 s 0 min, 30 s 0 min, 13 s

Avg. Time to 15 Iterations 6 min, 21 s 3 min, 23 s 1 min, 51 s

Figure 3: Speed test: comparing the performance of VIME against our proposed intrinsic reward
schemes, average compute time over 5 random runs. Tests were run on a Thinkpad T440p with
four physical Intel i7-4700MQ cores, in the sparse HalfCheetah environment. VIME’s greater
initialization time, which is primarily spent in computation graph compilation, reflects the complexity
of the Bayesian neural network model.

(a) Pong-RAM (b) BankHeist-RAM (c) Freeway-RAM (d) Venture-RAM

Figure 4: Median performance for the Atari RAM tasks over 10 runs with a fixed set of seeds, with
interquartile ranges shown in shaded areas. The x-axis is iterations of training; the y-axis is average
undiscounted return. AKL-k refers to learning progress (8), and NLL to surprisal (5).

reward computation. (Limitations of current deep learning tool kits make it difficult to efficiently
compute separate backwards passes, whereas almost all of them support highly parallel forward
computations.) Furthermore, our dynamics model is substantially simpler than the Bayesian neural
network dynamics model of VIME. To illustrate this point, in Figure 3 we show the results of a speed
comparison making use of the open-source VIME code [6], with the settings described in the VIME
paper. In our speed test, our bonus had a per-iteration speedup of a factor of 3 over VIME.2 We give
a full analysis of the potential speedup in Appendix C.

4.2 ATARI RAM DOMAIN RESULTS

Median performance curves are shown in Figure 4, with tasks arranged from (a) to (d) roughly in
order of increasing difficulty.

In Pong, naive exploration naturally succeeds, so we are not surprised to see that intrinsic motivation
does not improve performance. However, this serves as a sanity check to verify that our intrinsic
rewards do not degrade performance. (As an aside, we note that the performance here falls short of
the standard score of 20 for this domain because we truncate play at 5000 timesteps.)

In BankHeist, we find that intrinsic motivation accelerates the learning significantly. The agents
with surprisal incentives reached high levels of performance (scores > 1000) 10% sooner than naive
exploration, while agents with learning progress incentives reached high levels almost 20% sooner.

In Freeway, the median performance for TRPO without intrinsic motivation was adequate, but the
lower quartile range was quite poor—only 6 out of 10 runs ever found rewards. With the learning
progress incentives, 8 out of 10 runs found rewards; with the surprisal incentive, all 10 did. Freeway
is a game with very sparse rewards, where the agent effectively has to cross a long hallway before it
can score a point, so naive exploration tends to exhibit random walk behavior and only rarely reaches
the reward state. The intrinsic motivation helps the agent explore more purposefully.

2We compute this by comparing the marginal time cost incurred just by the bonus in each case: that is, if
Tvime, Tsurprisal, and Tnobonus denote the times to 15 iterations, we obtain the speedup as

Tvime − Tnobonus
Tsurprisal − Tnobonus

.

7

Under review as a conference paper at ICLR 2017

In Venture, we obtain our strongest results in the Atari domain. Venture is extremely difficult
because the agent has to navigate a large map to find very sparse rewards, and the agent can
be killed by enemies interspersed throughout. We found that our intrinsic rewards were able to
substantially improve performance over naive exploration in this challenging environment. Here, the
best performance was again obtained by the surprisal incentive, which usually inspired the agent to
reach scores greater than 500.

4.3 COMPARING INCENTIVES

Among our proposed incentives, we found that surprisal worked the best overall, achieving the
most consistent performance across tasks. The learning progress-based incentives worked well on
some domains, but generally not as well as surprisal. Interestingly, learning progress with k = 10
performed much worse on the continuous control tasks than with k = 1, but we observed virtually no
difference in their performance on the Atari games; it is unclear why this should be the case.

Surprisal strongly outperformed the L2 error based incentive on the harder continuous control tasks,
learning to solve them more quickly and without forgetting. Because we used fully-factored Gaussians
for all of our dyanmics models, the surprisal had the form

− logPφ(s′|s, a) =

n∑
i=1

(
(s′i − µφ,i(s, a))2

2σ2
φ,i(s, a)

+ log σφ,i(s, a)

)
+
k

2
log 2π,

which essentially includes the L2-squared error norm as a sub-expression. The relative difference in
performance suggests that the variance terms confer additional useful information about the novelty
of a state-action pair.

5 RELATED WORK

Substantial theoretical work has been done on optimal exploration in finite MDPs, resulting in
algorithms such as E3 [10], R-max [3], and UCRL [9], which scale polynomially with MDP size.
However, these works do not permit obvious generalizations to MDPs with continuous state and
action spaces. C-PACE [18] provides a theoretical foundation for PAC-optimal exploration in MDPs
with continuous state spaces, but it requires a metric on state spaces. Lopes et al. [11] investigated
exploration driven by learning progress and proved theoretical guarantees for their approach in the
finite MDP case, but they did not address the question of scaling their approach to continuous or
high-dimensional MDPs. Also, although they formulated learning progress in the same way as (8),
they formed intrinsic rewards differently. Conceptually and mathematically, our work is closest to
prior work on curiosity and surprise [8, 19, 23, 24], although these works focus mainly on small finite
MDPs.

Recently, several intrinsic motivation strategies that deal specifically with deep reinforcement learning
have been proposed. Stadie et al. [22] learn deterministic dynamics models by minimizing Euclidean
loss—whereas in our work, we learn stochastic dynamics with cross entropy loss—and use L2

prediction errors for intrinsic motivation. Houthooft et al. [7] train Bayesian neural networks to
approximate posterior distributions over dynamics models given observed data, by maximizing a
variational lower bound; they then use second-order approximations of the Bayesian surprise as
intrinsic motivation. Bellemare et al. [2] derived pseudo-counts from CTS density models over states
and used those to form intrinsic rewards, notably resulting in dramatic performance improvement
on Montezuma’s Revenge, one of the hardest games in the Atari domain. Mohamed and Rezende
[14] developed a scalable method of approximating empowerment, the mutual information between
an agent’s actions and the future state of the environment, using variational methods. Oh et al. [16]
estimated state visit frequency using Gaussian kernels to compare against a replay memory, and used
these estimates for directed exploration.

6 CONCLUSIONS

In this work, we formulated surprise for intrinsic motivation as the KL-divergence of the true transition
probabilities from learned model probabilities, and derived two approximations—surprisal and k-step

8

Under review as a conference paper at ICLR 2017

learning progress—that are scalable, computationally inexpensive, and suitable for application to
high-dimensional and continuous control tasks. We showed that empirically, motivation by surprisal
and 1-step learning progress resulted in efficient exploration on several hard deep reinforcement
learning benchmarks. In particular, we found that surprisal was a robust and effective intrinsic
motivator, outperforming other heuristics on a wide range of tasks, and competitive with the current
state-of-the-art for intrinsic motivation in continuous control.

ACKNOWLEDGEMENTS

We thank Rein Houthooft for interesting discussions and for sharing data from the original VIME
experiments. We also thank Rocky Duan, Carlos Florensa, Vicenc Rubies-Royo, Dexter Scobee, and
Eric Mazumdar for insightful discussions and reviews of the preliminary manuscript.

This work is supported by TRUST (Team for Research in Ubiquitous Secure Technology) which
receives support from NSF (award number CCF-0424422).

REFERENCES

[1] Andrew Barto, Marco Mirolli, and Gianluca Baldassarre. Novelty or Surprise? Frontiers in
Psychology, 4(DEC), 2013.

[2] Marc G Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, Google
Deepmind, and Rémi Munos. Unifying Count-Based Exploration and Intrinsic Motivation.
arXiv, (Im), 2016.

[3] Ronen I Brafman and Moshe Tennenholtz. R-max – A General Polynomial Time Algorithm for
Near-Optimal Reinforcement Learning. Journal of Machine Learning Research, 3:213–231,
2002.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. 2016.

[5] Yan Duan, Xi Chen, John Schulman, and Pieter Abbeel. Benchmarking Deep Reinforcement
Learning for Continuous Control. The 33rd International Conference on Machine Learning
(ICML 2016) (2016), 48:14, 2016.

[6] Rein Houthooft. VIME Open-Source Code. https://github.com/openai/vime,
2016.

[7] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
Variational Information Maximizing Exploration. In Advances in Neural Information Processing
Systems (NIPS) (2016), 2016.

[8] Laurent Itti and Pierre Baldi. Bayesian surprise attracts human attention. Vision Research,
49(10):1295–1306, 2009.

[9] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal Regret Bounds for Reinforcement
Learning. Journal of Machine Learning Research, 11(1):1563–1600, 2010.

[10] Michael Kearns and Satinder Singh. Near Optimal Reinforcement Learning in Polynomial Time.
Proceedings of the 15th International Conference on Machine Learning, pages 260–268, 1998.

[11] Manuel Lopes, Tobias Lang, Marc Toussaint, and Py Oudeyer. Exploration in model-based
reinforcement learning by empirically estimating learning progress. Advances in Neural
Information Processing Systems (NIPS) (2012), 2012.

[12] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep
Reinforcement Learning. In ICML, 2016, 2016.

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei a Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

9

https://github.com/openai/vime

Under review as a conference paper at ICLR 2017

[14] Shakir Mohamed and Danilo J Rezende. Variational Information Maximisation for Intrinsi-
cally Motivated Reinforcement Learning. In Proceedings of the 29th Conference on Neural
Information Processing Systems (NIPS 2015), 2015.

[15] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De
Maria, Mustafa Suleyman, Charles Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih, and
David Silver. Massively Parallel Methods for Deep Reinforcement Learning. ICML Deep
Learning Workshop 2015, 2015.

[16] Junhyuk Oh, Guo Xiaoxiao, Lee Honglak, Lewis Richard, and Singh Satinder. Action-
Conditional Video Prediction using Deep Networks in Atari Games. In NIPS 2015, 2015.

[17] Pierre-Yves Oudeyer and Frederic Kaplan. How can we define intrinsic motivation? In 8th
International Conference on Epigenetic Robotics, 2008.

[18] Jason Pazis and Ronald Parr. PAC Optimal Exploration in Continuous Space Markov Decision
Processes. pages 774–781, 2013.

[19] Jürgen Schmidhuber. Curious Model-Building Control Systems. International Joint Conference
on Neural Networks, 2:1458–1463, 1991.

[20] John Schulman, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust Region Policy
Optimization. In ICML, 2015, 2015.

[21] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
Dimensional Continuous Control Using Generalized Advantage Estimation. In ICLR, 2016,
2016.

[22] Bradly C. Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing Exploration In Reinforcement
Learning With Deep Predictive Models. arXiv, 2015.

[23] Jan Storck, Sepp Hochreiter, and Jürgen Schmidhuber. Reinforcement driven information
acquisition in non-deterministic environments. In Proceedings of the International . . . , volume 2,
pages 159–164, 1995.

[24] Yi Sun, Faustino Gomez, and Jürgen Schmidhuber. Planning to be surprised: Optimal Bayesian
exploration in dynamic environments. In International Conference on Artificial General
Intelligence, volume 6830 LNAI, pages 41–51, 2011.

[25] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double
Q-learning. In AAAI 2016, 2016.

[26] Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling Network Architectures for Deep
Reinforcement Learning. arXiv, (9), 2016.

A SINGLE STEP SECOND-ORDER OPTIMIZATION

In our experiments, we approximately solve several optimization problems by using a single second-
order step with a line search. This section will describe the exact methodology, which was originally
given by Schulman et al. [20].

We consider the optimization problem

p∗ = max
θ
L(θ) : D(θ) ≤ δ, (13)

where θ ∈ Rn, and for some θold we have D(θold) = 0,∇θD(θold) = 0, and∇2
θD(θold) � 0; also,

∀θ,D(θ) ≥ 0.

We suppose that δ is small, so the optimal point will be close to θold. We also suppose that the
curvature of the constraint is much greater than the curvature of the objective. As a result, we feel
justified in approximating the objective to linear order and the constraint to quadratic order:

L(θ) ≈ L(θold) + gT (θ − θold) g
.
= ∇θL(θold)

D(θ) ≈ 1

2
(θ − θold)TA(θ − θold) A

.
= ∇2

θD(θold).

10

Under review as a conference paper at ICLR 2017

We now consider the approximate optimization problem,

p∗ ≈ max
θ
gT (θ − θold) :

1

2
(θ − θold)TA(θ − θold) ≤ δ.

This optimization problem is convex as long as A � 0, which is an assumption that we make. (If
this assumption seems to be empirically invalid, then we repair the issue by using the substitution
A→ A+ εI , where I is the identity matrix, and ε > 0 is a small constant chosen so that we usually
have A+ εI � 0.) This problem can be solved analytically by applying methods of duality, and its
optimal point is

θ∗ = θold +

√
2δ

gTA−1g
A−1g. (14)

It is possible that the parameter update step given by (14) may not exactly solve the original
optimization problem (13)—in fact, it may not even satisfy the constraint—so we perform a line
search between θold and θ∗. Our update with the line search included is given by

θ = θold + sk

√
2δ

gTA−1g
A−1g, (15)

where s ∈ (0, 1) is a backtracking coefficient, and k is the smallest integer for which L(θ) ≥ L(θold)
and D(θ) ≤ δ. We select k by checking each of k = 1, 2, ...,K, where K is the maximum number
of backtracks. If there is no value of k in that range which satisfies the conditions, no update is
performed.

Because the optimization problems we solve with this method tend to involve thousands of parameters,
inverting A is prohibitively computationally expensive. Thus in the implementation of this algorithm
that we use, the search direction x = A−1g is found by using the conjugate gradient method to solve
Ax = g; this avoids the need to invert A.

When A and g are sample averages meant to stand in for expectations, we employ an additional
trick to reduce the total number of computations necessary to solve Ax = g. The computation
of A is more expensive than g, and so we use a smaller fraction of the population to estimate it
quickly. Concretely, suppose that the original optimization problem’s objective is Ez∼P [L(θ, z)],
and the constraint is Ez∼P [D(θ, z)] ≤ δ, where z is some random variable and P is its distribution;
furthermore, suppose that we have a dataset of samples D = {zi}i=1,...,N drawn on P , and we
form an approximate optimization problem using these samples. Defining g(z)

.
= ∇θL(θold, z) and

A(z)
.
= ∇2

θD(θold, z), we would need to solve(
1

|D|
∑
z∈D

A(z)

)
x =

1

|D|
∑
z∈D

g(z)

to obtain the search direction x. However, because the computation of the average Hessian is
expensive, we sub-sample a batch b ⊂ D to form it. As long as b is a large enough set, then the
approximation

1

|b|
∑
z∈b

A(z) ≈ 1

|D|
∑
z∈D

A(z) ≈ E
z∼P

[A(z)]

is good, and the search direction we obtain by solving(
1

|b|
∑
z∈b

A(z)

)
x =

1

|D|
∑
z∈D

g(z)

is reasonable. The sub-sample ratio |b|/|D| is a hyperparameter of the algorithm.

B EXPERIMENT DETAILS

B.1 ENVIRONMENTS

The environments have the following state and action spaces: for the sparse MountainCar environment,
S ⊆ R2, A ⊆ R1; for the sparse CartpoleSwingup task, S ⊆ R4, A ⊆ R1; for the sparse HalfCheetah

11

Under review as a conference paper at ICLR 2017

task, S ⊂ R20, A ⊆ R6; for the sparse Swimmer task, S ⊆ R13, A ⊆ R2; for the SwimmerGather
task, S ⊆ R33, A ⊆ R2; for the Atari RAM domain, S ⊆ R128, A ⊆ {1, ..., 18}.
For the sparse MountainCar task, the agent receives a reward of 1 only when it escapes the valley.
For the sparse CartpoleSwingup task, the agent receives a reward of 1 only when cos(β) > 0.8, with
β the pole angle. For the sparse HalfCheetah task, the agent receives a reward of 1 when xbody ≥ 5.
For the sparse Swimmer task, the agent receives a reward of 1 + |vbody| when |xbody| ≥ 2.

Atari RAM states, by default, take on values from 0 to 256 in integer intervals. We use a simple
preprocessing step to map them onto values in (−1/3, 1/3). Let x denote the raw RAM state, and s
the preprocessed RAM state:

s =
1

3

(x

128
− 1
)
.

B.2 POLICY AND VALUE FUNCTIONS

For all continuous control tasks we used fully-factored Gaussian policies, where the means of the
action distributions were the outputs of neural networks, and the variances were separate trainable
parameters. For the sparse MountainCar and sparse CartpoleSwingup tasks, the policy mean networks
had a single hidden layer of 32 units. For sparse HalfCheetah, sparse Swimmer, and SwimmerGather,
the policy mean networks were of size (64, 32). For the Atari RAM tasks, we used categorical
distributions over actions, produced by neural networks of size (64, 32).

The value functions used for the sparse MountainCar and sparse CartpoleSwingup tasks were neural
networks with a single hidden layer of 32 units. For sparse HalfCheetah, sparse Swimmer, and
SwimmerGather, time-varying linear value functions were used, as described by Duan et al. [5]. For
the Atari RAM tasks, the value functions were neural networks of size (64, 32). The neural network
value functions were learned via single second-order step optimization; the linear baselines were
obtained by least-squares fit at each iteration.

All neural networks were feed-forward, fully-connected networks with tanh activation units.

B.3 TRPO HYPERPARAMETERS

For all tasks, the MDP discount factor γ was fixed to 0.995, and generalized advantage estimators
(GAE) [21] were used, with the GAE λ parameter fixed to 0.95.

In the table below, we show several other TRPO hyperparameters. Batch size refers to steps of
experience collected at each iteration. The sub-sample factor is for the second-order optimization
step, as detailed in Appendix A.

Environments Batch Size Sub-Sample Max Rollout Length δKL
Mountaincar, Cartpole Swingup 5000 1 500 0.01

HalfCheetah, Swimmer 5000 1 500 0.05
SwimmerGather 50, 000 0.1 500 0.01

Pong 10, 000 1 5000 0.01
Bankheist, Freeway 13, 500 1 5000 0.01

Venture 50, 000 0.2 7000 0.01

Table 1: TRPO hyperparameters for our experiments.

B.4 EXPLORATION HYPERPARAMETERS

For all tasks, fully-factored Gaussian distributions were used as dynamics models, where the means
and variances of the distributions were the outputs of neural networks.

For the sparse MountainCar and sparse CartpoleSwingup tasks, the means and variances were
parametrized by single hidden layer neural networks with 32 units. For all other tasks, the means and
variances were parametrized by neural networks with two hidden layers of size 64 units each. All
networks used tanh activation functions.

12

Under review as a conference paper at ICLR 2017

For all continuous control tasks except SwimmerGather, we used replay memories of size 5, 000, 000,
and a KL-divergence step size of κ = 0.001. For SwimmerGather, the replay memory was the same
size, but we set the KL-divergence size to κ = 0.005. For the Atari RAM domain tasks, we used
replay memories of size 1, 000, 000, and a KL-divergence step size of κ = 0.01.

For all tasks except SwimmerGather and Venture, 5000 time steps of experience were sampled from
the replay memory at each iteration of dynamics model learning to take a stochastic step on (11),
and a sub-sample factor of 1 was used in the second-order step optimizer. For SwimmerGather and
Venture, 10, 000 time steps of experience were sampled at each iteration, and a sub-sample factor of
0.5 was used in the optimizer.

For all continuous control tasks, the L2 penalty coefficient was set to α = 1. For the Atari RAM
tasks except for Venture, it was set to α = 0.01. For Venture, it was set to α = 0.1.

For all continuous control tasks except SwimmerGather, η0 = 0.001. For SwimmerGather, η0 =
0.0001. For the Atari RAM tasks, η0 = 0.005.

C ANALYSIS OF SPEEDUP COMPARED TO VIME

In this section, we provide an analysis of the time cost incurred by using VIME or our bonuses, and
derive the potential magnitude of speedup attained by our bonuses versus VIME.

At each iteration, bonuses based on learned dynamics models incur two primary costs:

• the time cost of fitting the dynamics model,
• and the time cost of computing the rewards.

We denote the dynamics fitting costs for VIME and our methods as T fitvime and T fitours. Although the
Bayesian neural network dynamics model for VIME is more complex than our model, the fit times
can work out to be similar depending on the choice of fitting algorithm. In our speed test, the fit times
were nearly equivalent, but used different algorithms.

For the time cost of computing rewards, we first introduce the following quantities:

• n: the number of CPU threads available,
• tf : time for a forward pass through the model,
• tb: time for a backward pass through the model,
• N : batch size (number of samples per iteration),
• k: the number of forward passes that can be performed simultaneously.

For our method, the time cost of computing rewards is

T rewours =
Ntf
kn

.

For VIME, things are more complex. Each reward requires the computation of a gradient through its
model, which necessitates a forward and a backward pass. Because gradient calculations cannot be
efficiently parallelized by any deep learning toolkits currently available3, each (s, a, s′) tuple requires
its own forward/backward pass. As a result, the time cost of computing rewards for VIME is:

T rewvime =
N(tf + tb)

n
.

The speedup of our method over VIME is therefore

T fitvime +
N(tf+tb)

n

T fitours +
Ntf
kn

.

In the limit of large N , and with the approximation that tf ≈ tb, the speedup is a factor of ∼ 2k.
3If this is not correct, please contact the authors so that we can issue a correction! But to the best of our

knowledge, this is currently true, at time of publication.

13

	Introduction
	Preliminaries
	Surprise Incentives
	Discussion
	Implementation Details

	Experiments
	Continuous Control Results
	Atari RAM Domain Results
	Comparing Incentives

	Related Work
	Conclusions
	Single Step Second-Order Optimization
	Experiment details
	Environments
	Policy and Value Functions
	TRPO Hyperparameters
	Exploration Hyperparameters

	Analysis of Speedup Compared to VIME

