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Abstract

The robustness of Al-content detection mod-
els against sophisticated adversarial strategies,
such as paraphrasing or word switching, is a
rising concern in natural language generation
(NLG) applications. This study proposes a
novel token-ensemble generation strategy to
challenge the robustness of current Al-content
detection approaches by utilizing multiple sets
of candidate generative large language models
(LLMs). By randomly sampling token(s) from
candidate language model sets, we find the
token-ensemble approach significantly drops
the performance of Al-content detection mod-
els. We evaluate the text quality produced un-
der different token-ensemble settings based on
annotations from hired human experts. We pro-
posed a fine-tuned Llama2 model to distinguish
the token-ensemble-generated text more accu-
rately. Our findings underscore our proposed
text generation approach’s great potential in de-
ceiving and improving detection models. This
study’s datasets, codes, and annotations are
open-sourced .

1 Introduction

The pervasiveness of generative artificial intelli-
gence (Al) has fundamentally reshaped informa-
tion creation and dissemination approaches online.
Powerful LLMs, like ChatGPT (OpenAl, 2022)
and Llama 2 (Touvron et al., 2023), have acceler-
ated this growth, blurring the lines between human-
authored and machine-generated content (Sadasi-
van et al., 2023). While such technological ad-
vancement offers unprecedented opportunities and
efficiency for natural language understanding and
content creation (Gilardi et al., 2023; Qin et al.,
2023), it comes with significant challenges and
threats (Bang et al., 2023), particularly in misinfor-
mation dissemination (Huang et al., 2023), copy-
right violation (Karamolegkou et al., 2023), and
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decision trustworthiness (Choudhury and Sham-
szare, 2023). The capacity to accurately detect
Al-generated content has become a crucial aspect
of maintaining the integrity and reliability of infor-
mation online.

The crucial role of detecting Al-generated con-
tent has spurred extensive research in this field.
Existing works have primarily focused on devel-
oping Al content detectors, broadly categorized
into supervised classifiers (Solaiman et al., 2019;
Fagni et al., 2021; Mitrovi¢ et al., 2023) and zero-
shot classifiers (Gehrmann et al., 2019; Mitchell
et al., 2023; Su et al., 2023). These efforts are
met with constant challenges in the form of ad-
versarial methods, such as character substitution
with homoglyphs, misspelling, paraphrasing, and
word-switching (Wolff and Wolff, 2020; Sadasi-
van et al., 2023), which have proven effective to
some degree. More recently, DetectGPT (Mitchell
et al., 2023) and Fast-DetectGPT (Bao et al., 2023),
which utilizes the concept of conditional probabil-
ity curvature to highlight differences in word usage
between large language models (LLMs) and hu-
mans in specific contexts, has achieved outstanding
detection accuracy with significantly lowered the
detection cost while also proving resilient against
mainstream adversarial attacks.

To bring more insights into Al-generated text
detection, we propose the token-ensemble text gen-
eration approach, which can be applied to attack
neural text detectors. This approach manipulates
the token selection process and alters the next-
token probability distribution. Adversaries can
effectively challenge the detection models’ accu-
racy. Driven by the pressing need to explore and
mitigate the vulnerabilities inherent in current Al-
content detection methodologies (Sadasivan et al.,
2023; Mitchell et al., 2023), we provide empirical
evidence that our token-ensemble strategy could
significantly affect the performance of Al-content
detection models through exposing potential weak-
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nesses in existing detection strategies. Our com-
prehensive performance benchmark and generation
quality evaluation also introduce valuable insights
for future research. By investigating the effects
of token-ensemble generation on detection accu-
racies, we aim to shed light on the limitations of
existing approaches and highlight the necessity for
advanced detection technologies capable of coun-
tering sophisticated adversarial attacks.

The contributions of this paper are twofold. First,
we provide empirical evidence of the significant
impact our token-ensemble generation attack can
have on the performance of Al-content detection
models, indicating the potential weakness in cur-
rent detection strategies. Secondly, we present
comprehensive analyses and evaluations of our
proposed approach, thereby providing insights for
future research efforts to enhance the robustness
of Al-content detection techniques against evolv-
ing adversarial attacks. The detection accuracy
improvement depicts one effective pipeline to im-
prove the performance of the existing Al-detection
models, utilizing high-quality instance pairs gener-
ated through our token-ensemble approach.

We propose four research questions to thor-
oughly assess the effectiveness and limitations of
our proposed token-ensemble strategy: (a) How
significantly does the token-ensemble approach
disrupt detection models? (b) How does the can-
didate language model selection influence the ef-
fectiveness of the token-ensemble approach? (c)
How contextually coherent and fluent are the re-
sults of token-ensemble generation? (d) Can large
language models benefit from the token-ensemble
generation results on Al-generation detection?

2 Related Work

Al-Generated Content and Detection Models.
Along with the advancements in content genera-
tion (Qin et al., 2023), efforts have been made to
develop detection models capable of distinguishing
human-written from Al-generated texts (Mitchell
et al., 2023; Bao et al., 2023). Techniques leverag-
ing word entropy analysis, machine learning clas-
sifiers, and next-token probability analysis have
been explored (Kirchenbauer et al., 2023; Tang
et al., 2023). For instance, Tang et al. (2023) have
demonstrated using statistical methods and fine-
tuned models to improve detection accuracy. How-
ever, these methods often struggle against straight-
forward manipulation strategies, such as paraphras-

ing attacks, highlighting the gap in the current de-
tection capabilities (Sadasivan et al., 2023).

Adversarial Attacks on AI-Content Detection.
The concept of adversarial attacks in Al content de-
tection involves manipulating input textual informa-
tion to deceive detection models into misclassifying
Al-generated content as human-written (Sadasivan
et al., 2023). Bao et al. (2023) and Mitchell et al.
(2023) have shed light on the vulnerabilities of Al
models to adversarial inputs, suggesting that even
minor alterations can significantly impact model
performance. Krishna et al. (2024) showcased the
efficacy of paraphrasing attacks towards Al gen-
eration detection models and applicable retrieval-
based solutions. Additional approaches like Liu
et al. (2022) and Mao et al. (2024) also perform
well, providing feasible solutions to detect Al-
generated texts effectively.

3 Token-Ensemble Generation

Our proposed token-ensemble generation is a culti-
vated adversarial strategy designed to deceive Al-
content detection models by exploiting their re-
liance on predicting the next-token distribution, as
illustrated in Figure 1. When generating the next
token based on the previous text, we randomly se-
lect one LLM from a pool of multiple LLMs and let
it generate the next token(s). This process repeats
until the text generation meets an ending condi-
tion. As a result, our token choices are created by
shuffled probability distributions across candidate
LLMs, creating a mixture of various token distri-
bution predictions, unlike the general approach of
only utilizing a single LLM to rephrase an existing
Al-generated text.

We carefully set the completion criterion during
the token-ensemble process (i.e., the whole text
length reaches around 200 tokens after attaching
the latest generated token(s)). In Bao et al. (2023),
the setting for Al text generation is controlled by
the total token length, more than 50 and less than
200 tokens, where the initial prompt includes the
first 30 tokens of human-written text. However, as
the average token lengths of data instances across
all three datasets are around 170 tokens, we set
our completion criteria as ‘stop generating next to-
ken(s) when the content token length is greater than
170.” We also explored another completion crite-
rion and found that it did not significantly change
the performance results, as shown in Appendix D.
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Figure 1: Pipeline illustration of token-ensemble generation attack.

4 Experiments

4.1 Dataset

To prepare the datasets for evaluating our approach,
we start with three human-written text datasets
from different domains. These include the XSum
dataset (Narayan et al., 2018), which features news
articles, the sQuAD dataset (Rajpurkar et al., 2016)
based on Wikipedia documents, and the Writing-
Prompts dataset (Fan et al., 2018) containing story
scripts. Collecting human-written texts from di-
verse public sources, these datasets serve as a com-
prehensive benchmark for detecting Al-generated
content. All datasets are open-sourced, and our use
complies with their intended purposes.

As in Bao et al. (2023), we select 300 instances
from sQuAD and 500 instances each from the
XSum and WritingPrompts datasets. This selection
ensures a diverse representation of content types.
We also confirm that the datasets do not include
offensive content or sensitive information, such
as individuals’ names or other unique identifiers,
ensuring ethical compliance in our research.

We further augment these datasets by incorpo-
rating Al-generated texts by various LLMs, like
GPT-2 (Radford et al., 2019), as they are used to
produce Al-generated texts in Bao et al. (2023). Al-
generated texts serve as a baseline for evaluating
our token-ensemble generation attack, establish-
ing a comprehensive benchmark for distinguishing
between human-written and Al-generated content.

4.2 Candidate Models for Token-ensemble

Our token-ensemble generation strategy concate-
nates the next token generated by a random candi-
date language model chosen from the designated
sets. To make a fair comparison and illustrate the
technical potential of our proposed token-ensemble
approach, we collect eight language models and
put them in two sets: one is smaller and relatively

well explored, and another one is slightly bigger
(no more than 10 billion parameters) and more
advanced. In that case, we select the GPT-2 (gpt2-
xl, with 1.5 billion parameters) (Radford et al.,
2019), OPT (opt-2.7b) (Zhang et al., 2022), GPT-
Neo (gpt-neo-2.7B) (Black et al., 2021), and GPT-J
(gpt-j-6B) (Wang and Komatsuzaki, 2021) as the
classic LLMs set; we select the Llama?2 (Ilama-2-
7b) (Touvron et al., 2023), Phi-2 (microsoft/phi-2,
with 2.7 billion parameters) (GenAl, 2023), Mis-
tral (mistralai/Mistral-7B-v0.3) (Infra, 2024), and
Gemma (google/gemma-7b) (Google, 2024) as the
advanced LLM:s set.

4.3 Experimental Settings

We chose those eight open-sourced models, which
are between 1 and 10 billion parameters, to make
our proposed token-ensemble approach efficiently
implemented on small GPU servers. A 40GB of
GPU memory is enough to execute our proposed
approach in both settings. If you want to optimize
the generation speed using our proposed alternative
options, 100GB of GPU memory would be enough
to reach the average speed of 10 seconds per in-
stance (around 170 tokens generated). The above
selections are made to encompass a wide range of
generative capabilities and styles, ensuring the ro-
bustness and generalizability of our findings. The
detailed inference settings are listed in Appendix A.

We comprehensively examine the performance
of our attack by testing different token lengths from
1 to 5 and a random number between them. Ad-
ditionally, we include the setting of sentence-level
ensembles, where each LLM generates an entire
sentence instead of a single token. For this, we
ask the model to generate the following 50 tokens
given the previous text and get the first sentence
from those generated 50 tokens. The motivation
for dynamically selecting tokens is to create a shuf-
fled distribution derived from the collective outputs



of all the LLMs, making Al-generated texts free
from the signature of a certain language model
while exploiting the LLMs’ capability to generate
human-like content. The example of prompt setting
is listed in the Appendix B.

4.4 Al-Generated Text Detection

We use multiple Al-generated text detection mod-
els. For the traditional statistical methods, we
adopt likelihood (average log probabilities), rank
(average token ranks arranged by descending or-
der on probabilities), LogRank (average log value
of ranks), and entropy (average token entropy of
the generated content) (Gehrmann et al., 2019; So-
laiman et al., 2019; Ippolito et al., 2020). In addi-
tion to those methods, we use Fast-DetectGPT (Bao
et al., 2023), which has achieved a higher speed
and better AUROC score than DetectGPT (Mitchell
et al., 2023). Fast-DetectGPT remains robust even
after the paraphrasing attack (Sadasivan et al.,
2023), ensuring its capability as a strong baseline
for our proposed token-ensemble generation attack.
We note that the detection approaches mentioned
are all open-sourced.

4.5 Al-Generation Detection Evaluation

We select the detection accuracy in the area under
the receiver operating characteristic (AUROC) as
the evaluation metric to illustrate the performance
of Al-generation detection approaches, which is
feasible to showcase the detectors’ performance
on the whole spectrum of the thresholds (Bao
et al., 2023). To interpret the AUROC scores, an
AUROC score of 0.5 indicates a random level
detection capability, and an AUROC score of 1.0
indicates a perfect level detection capability. The
effectiveness of the token-ensemble attack against
the detection models is quantified by comparing
the AUROC score of detecting text generated by
previously mentioned LL.Ms with detecting text
generated by the token-ensemble method.

4.6 Token-Ensemble Generation Quality
Evaluation

We randomly selected five instances for each
dataset to construct a comprehensive analysis of the
generation result of our proposed token-ensemble
generation approach. We then hired three well-
trained human experts (one male and two female
from the institution) to annotate the quality of
token-ensemble generation results in seven experi-
mental settings and the baseline generated by the

GPT-2 model. In the field of dialogue system and
natural language generation evaluations, the coher-
ence (Cervone et al., 2018; Ye et al., 2021) and
fluency (Martindale and Carpuat, 2018; Kann et al.,
2018) have long been perceived as key metrics to
evaluate generation results.

5 RQ1: How Significantly Does the
Token-Ensemble Approach Disrupt

Detection Models?

Datasets GPT-2 | OPT Neo GPT-J
XSum 0.9922 | 0.9806 | 0.9881 | 0.9771
sQuAD 0.9990 | 0.9949 | 0.9956 | 0.9854
Writing 0.9982 | 0.9972 | 0.9981 | 0.9974
Avg, 0.9965 | 0.9909 | 0.9939 | 0.9866
Bao et al. | 0.9967 | 0.9908 | 0.9940 | 0.9866
(2023)

Table 1: Replication of the detection AUROC scores of
Fast-DetectGPT on single language model generation
with the same settings as Bao et al. (2023). The final
row lists the original results from Bao et al. (2023)

We build the baseline by replicating Fast-
DetectGPT’s performance in detecting Al-
generated content. We use each of the four LLMs
(GPT-2, OPT, GPT-Neo, and GPT-J) to generate
the AI content and use Fast-DetectGPT to detect
them using the same settings. We successfully
achieve the Fast-DetectGPT AUROC scores in our
experimental settings as shown in Table 1. For
each dataset, the average AUROC scores across
the four models serve as the baseline in Table 2
when applying the classic LLMs set.

As shown in Table 2, our experiments demon-
strate a notable reduction in the performance
across nearly all traditional Al content detection
methods (such as likelihood, rank, and LogRank)
and the SoTA detection model, Fast-DetectGPT,
when tasked with identifying texts generated
through token-ensemble methods. This ensemble
attack method performs better when it generates
fewer tokens at each step before concatenating
them to complete the text generation process.
The significant drops in performance across
different detection approaches underscore the
effectiveness of the token-ensemble generation
in exploiting the inherent weaknesses of current
mainstream detection techniques. Surprisingly,
compared to other metrics, the token-ensemble
generation method increases the AUROC score for



Datasets | Detection Method Baseline\ TL=1 \ TL=2 \ TL=3 \ TL=4 \ TL=5 \ Rand. \ Sent.
Likelihood 0.7837 | 0.3147| 0.2015| 0.2466| 0.2664| 0.2923| 0.2295| 0.4492
Rank 0.8068 | 0.3787| 0.3625| 0.4018| 0.4246| 0.4520| 0.3892| 0.5797
XSum | LogRank 0.8117 | 0.3877| 0.2827| 0.3307| 0.3572| 0.3792| 0.3165| 0.5191
Entropy 0.5300 | 0.6983| 0.8068| 0.8209| 0.8269| 0.8106| 0.8177| 0.7435
Fast-DetectGPT 0.9845 | 0.4573| 0.4431| 0.5653| 0.6288| 0.6406| 0.5245| 0.8062
Likelihood 0.7573 | 0.2602| 0.2626| 0.3237| 0.3757| 0.3783| 0.2986| 0.5493
Rank 0.7836 | 0.3684| 0.4212| 0.4586| 0.5216| 0.4806| 0.4474| 0.6224
sQuAD | LogRank 0.8090 | 0.3657| 0.3877| 0.4535| 0.4955| 0.4961| 0.4232| 0.6357
Entropy 0.5617 | 0.7721| 0.8149| 0.8049| 0.7801| 0.7724| 0.8025| 0.7152
Fast-DetectGPT 0.9937 | 0.5068| 0.6035| 0.7002| 0.7565| 0.7541| 0.6810| 0.9062
Likelihood 0.8905 | 0.7131] 0.6780| 0.6965| 0.7027| 0.7075| 0.6727| 0.7866
Rank 0.8186 | 0.6542| 0.6458| 0.6702| 0.6671| 0.6725| 0.6527| 0.7145
Writing | LogRank 0.9158 | 0.7728| 0.7490| 0.7650| 0.7683| 0.7705| 0.7426| 0.8305
Entropy 0.3752 | 0.4357| 0.5449| 0.5857| 0.5969| 0.5934| 0.5981| 0.5135
Fast-DetectGPT 0.9977 | 0.7817| 0.8718| 0.9253| 0.9321| 0.9364| 0.8996| 0.9581

Table 2: All Al content detection metric AUROC scores for the XSum, sQuAD, and Writing datasets, reported in
various token-ensemble generation settings. Baseline scores come from the average score for each dataset in Table 1.
Compared with the baseline AUROC score at each row, we highlighted the most deviated AUROC score in bold. TL
is token length. Rand means that the token number is random between 1 and 5. Sent is the sentence-ensemble. Here,
the candidate models are GPT-2, OPT, GPT-Neo, and GPT-J

all three datasets when evaluated using the entropy
metric. This suggests that our approach makes
the generated content more easily distinguishable
from the perspective of token entropy distribution.

Furthermore, when using the Fast-DetectGPT
method, the one or two-token-ensemble attack set-
ting performs the best, decreasing the AUROC
score from 0.9845 to 0.4431 for XSum, from
0.9937 to 0.5068 for sQuAD, and from 0.9977
to 0.7817 for WritingPrompts. Generally, the at-
tack effectiveness decreases as the token number
increases during ensemble generation. At the same
time, for the entropy metric, the token-ensemble at-
tack makes it more accurate to distinguish between
human-written and Al-generated content, from
0.5300 to 0.8269 for XSum, from 0.5617 to 0.8149
for sQuAD, and from 0.3752 to 0.5981 for Writing.

6 RQ2: How Does the Candidate
Language Model Selection Influence the
Effectiveness of the Token-Ensemble?

The effectiveness of our proposed token-ensemble
approach, as one adversarial attack towards Al-
generation detection models, could be significantly
influenced by the candidate language models used
for generating tokens. This section explores how
variations in selecting these models could affect
the ability to deceive Al content detection sys-

tems. The experiment results using the advanced
LLMs set are listed in Table 3. When testing on
the Fast-DetectGPT method, the one or two-token-
ensemble attack setting performs even better than
in Table 2, decreasing the AUROC score from
0.9845 t0 0.2191 for XSum, from 0.9937 to 0.2051
for sQuAD, and from 0.9977 to 0.5734 for Writ-
ingPrompts. The attack effectiveness decreases as
the token number increases during ensemble gener-
ation. Similarly, at the same time, for the entropy
metric, the token-ensemble attack makes it more
accurate to distinguish between human-written and
Al-generated content, from 0.5300 to 0.9339 for
XSum, from 0.5617 to 0.9095 for sQuAD, and
from 0.3752 to 0.6515 for Writing.

Comparing the AUROC scores among various
settings and datasets from Table 2 and Table 3,
we find that the general score distributions are the
same. At the same time, the advanced LLMs set
is more successful at deceiving the Al-generation
detection approaches except the entropy method.
The detection methods we investigated struggle
more with text generated from the token-ensemble
approach using advanced LLMs set as candidates,
except for the entropy method. Surprisingly, the
entropy detection approach performs much better
for all our token-ensemble generation settings. For
XSum and sQuAD datasets, the entropy detection



Datasets | Detection Method Baseline\ TL=1 \ TL=2 \ TL=3 \ TL=4 \ TL=5 \ Rand. \ Sent.
Likelihood 0.7837 | 0.0977| 0.0485| 0.0809| 0.0970| 0.1331| 0.0640| 0.3023
Rank 0.8068 | 0.1980| 0.1998| 0.2416| 0.2720| 0.2955| 0.2138| 0.4642
XSum | LogRank 0.8117 | 0.1334| 0.0777| 0.1217| 0.1417| 0.1835| 0.0973| 0.3389
Entropy 0.5300 | 0.8780| 0.9339| 0.9047| 0.8842| 0.8628| 0.9237| 0.7495
Fast-DetectGPT 0.9845 | 0.2191] 0.2139| 0.2890| 0.2985| 0.3400| 0.2576| 0.5382
Likelihood 0.7573 | 0.0638| 0.0960| 0.1618] 0.1965| 0.2195| 0.1465| 0.4800
Rank 0.7836 | 0.1883| 0.2387| 0.3009| 0.3168| 0.3333| 0.2722| 0.5286
sQuAD | LogRank 0.8090 | 0.0985| 0.1507| 0.2365| 0.2699| 0.2954| 0.2168| 0.5360
Entropy 0.5617 | 0.9095| 0.8785| 0.8249| 0.8122| 0.7891| 0.8345| 0.6290
Fast-DetectGPT 0.9937 | 0.2051] 0.2742| 0.3656| 0.4458| 0.4531| 0.3531| 0.7046
Likelihood 0.8905 | 0.4223| 0.4828| 0.5295| 0.5801| 0.5781| 0.4975| 0.7126
Rank 0.8186 | 0.5154| 0.5327| 0.5695| 0.5972| 0.5900| 0.5390| 0.6641
Writing | LogRank 0.9158 | 0.4933| 0.5501| 0.5965| 0.6414| 0.6382| 0.5658| 0.7487
Entropy 0.3752 | 0.6338| 0.6515| 0.6400| 0.5947| 0.6051| 0.6388| 0.5102
Fast-DetectGPT 0.9977 | 0.5734| 0.7134| 0.7727| 0.7916| 0.7939| 0.7170| 0.8846

Table 3: All Al content detection metric AUROC scores for the XSum, sQuAD, and Writing datasets, reported
in various token-ensemble generation settings. The difference is that the candidate models used here are Llama2,

Phi-2, Mistral, and Gemma.

method works the best among all five detection
methods; for the Writing dataset, the entropy ap-
proach performs very well except when we ensem-
ble at the sentence level. The variation in perfor-
mance is likely due to the different syntactic and
semantic patterns these models introduce. Statis-
tical analysis further supports the assumption that
the more advanced the models in the ensemble, the
lower the likelihood of accurate detection, espe-
cially for the current SOTA detection model like
Fast-DetectGPT.

The above findings suggest that candidate model
selection strategy could also play a critical role in
the success of adversarial attacks aimed at evading
the current Al content detectors. One complemen-
tary strategy is that the detection systems should
better incorporate a variety of detection models, in-
cluding the traditional ones like entropy-based de-
tection methods, to avoid -adversarial attacks based
on ensembling several generation results from mul-
tiple LLMs. Our findings showcased the strategic
advantage of employing diverse detection methods
for generating adversarial content, as it introduces
a level of complexity that current detection models
may not be fully equipped to handle.

7 RQ3: How Contextually Coherent and
Fluent are the Results of the
Token-Ensemble Generation?

One essential aspect of deploying adversarial strate-
gies like the token-ensemble approach is ensuring
that the generated text not only deceives detection
systems but also retains good coherence and con-
textual fluency comparable to the level of human-
written text. This section examines the text quality
produced by our token-ensemble approach to as-
sess its capability and limitations.

We employed two linguistic quality metrics, i.e.,
coherence and fluency, from human annotations
to evaluate the quality of the generated text and
its resemblance to the human-written level. We
collected annotations from three human experts re-
garding coherence (the contextual information of
the given short text should logically make sense)
and fluency (the given short text should read nat-
urally, mimicking the style and syntax of human
natural language) to quantify the token-ensemble
generation results from a scale of 1 to 7 (1 means
very bad, 7 means very good quality). We randomly
select five instances for each dataset and report the
average score of five instances in different genera-
tion settings, as listed in Table 4.

Among the baseline generation from the GPT-2
model and token-ensemble generation in seven
settings for each instance, we then asked the



Datasets \ Candidate LLMs

Baseline| TL=1 | TL=2 | TL=3 | TL=4 | TL=5 | Rand. | Sent.

XSum | Classic LLMs 4.3/4.8 | 3.9/3.4| 3.4/3.6| 4.0/4.2| 2.9/3.3| 3.7/4.2| 3.5/3.4| 3.4/4.0
Advanced LLMs | 4.3/4.7 | 2.0/1.5| 3.9/3.4| 3.3/3.1| 3.7/3.6| 4.2/3.7| 3.6/3.7| 3.9/4.3
sQuAD | Classic LLMs 5.2/5.7 | 4.0/3.8| 5.1/5.3] 4.1/49| 4.1/4.6| 4.3/4.9| 5.4/53| 4.7/5.6
Advanced LLMs | 5.3/5.7 | 3.1/3.5| 3.5/3.9| 4.3/4.9| 4.7/5.0| 3.7/4.3| 4.8/4.8| 4.7/5.6
Writing | Classic LLMs 3.4/4.1 | 2.8/3.2| 2.4/2.9| 2.9/2.9| 3.4/3.9| 2.8/2.7| 2.8/2.5| 2.8/3.4
Advanced LLMs | 4.3/4.0 | 3.4/3.4| 4.2/4.0| 3.4/3.1| 3.3/3.9| 2.2/2.5| 3.3/2.8| 3.2/3.2

Table 4: The average coherence/fluency scores for sampled XSum, sQuAD, and Writing sub-datasets, annotated by
three hired human experts and recorded in various token-ensemble generation settings. The difference is that the
candidate models used here are Llama2, Phi-2, Mistral, and Gemma.

Datasets ‘ Fine-tune Status

Baseline| TL=1 | TL=2 | TL=3 | TL=4 | TL=5 | Rand. | Sent.

XSum | Not fine-tuned 0 0.4 0.4 0.2 04 0.4 0.4 0.6
After fine-tuning | 0.2 0.6 0.2 0.6 0.6 0.6 0.8 0.2
SQuAD | Not fine-tuned 0.6 04 0 0.6 0 0.6 0.2 0.6
After fine-tuning | 0.8 0.6 0.4 0.6 0.8 0.6 0.8 0.4
Writing | Not fine-tuned 0.2 0 0.4 0 04 0.2 04 0.2
After fine-tuning | 0.4 0.6 0.2 0.8 0.6 1.0 0.6 0.4

Table 5: The accuracy of utilizing the Llama2 (Illama-2-13b-chat) for the Al-generation detection task on the sampled
XSum, sQuAD, and Writing sub-datasets before and after the specific fine-tuning process based on the selected

high-quality machine-generated instances.

human experts to select the one they think has
the highest probability of being written by a real
human. Note that we disclose neither the source of
the given short text nor our experimental settings
before annotation. The annotation process takes
14 working hours, and we reimburse 280 US
dollars. The detailed settings of human annotation
collection and our instruction to the human experts
are listed in Appendix C.

We can observe a high relevance between the
coherence and fluency metric scores; the fluency
score is mostly higher than the coherence score,
indicating our proposed token ensemble approach
is generating more fluent and less coherent text.
As the baseline approach (generated by a single
GPT-2 model) mostly receives the best coherence
and fluency scores, our proposed token-ensemble
approach remains of relatively good quality, es-
pecially when the token number increases during
the ensemble process. It is also surprising to find
that utilizing the advanced LLMs sets as the candi-
date LLMs does not ensure the generation quality
improvement, though more difficult to be distin-
guished by the SOTA detection methods as shown
in Table 2 and Table 3.

Both single language model generation and

token-ensemble approach generate a medium text
level regarding the rating range from 1 to 7. While
some token-ensemble configurations produced text
with high linguistic quality scores (like sentence-
level and random token length ensemble), others
displayed noticeable discrepancies in fluency and
coherence. Annotations for most human-like gen-
eration for each instance (selecting from baseline
and seven token-ensemble settings) are attached in
Appendix C.

8 RQ4: Can LLMs Benefit from the
Token-Ensemble Generation Results on
AlI-Generation Detection?

A critical challenge in Al-generated content detec-
tion is improving the accuracy and robustness of
the detection model. In this section, we investigate
whether fine-tuning the large language models us-
ing high-quality instance pairs generated from our
token-ensemble approach can improve their ability
to detect our generated high-quality texts through
token-ensemble settings.

We implemented and fine-tuned the Llama2
model with 13 billion parameters (llama-2-13b-
chat), utilizing the LoRA (Hu et al., 2021) dur-
ing Fine-tuning for higher speed and lower GPU



memory consumption. The LoRA technique al-
lows efficient fine-tuning of LLMs by adjusting
only a small subset of model parameters. We filter
the high-quality generation results from the 240
instances based on the quality annotation collected
in Section 7. Only the instances with coherence
and fluency scores equal to or bigger than 5 (from
the original rating scale of 1 to 7) would be se-
lected for the fine-tuning dataset. For this exper-
iment, the instance pairs comprised outputs from
token-ensemble configurations that were manually
curated to ensure high quality in terms of coherence
and contextual relevance. The detailed prompt and
fine-tuning settings are attached in Appendix E.

The results in Table 5 showcase the significant
improvement in five instances for each dataset and
Al-generation settings (single GPT-2 generation
and seven token ensemble scenarios) in detection
accuracy post-fine-tuning in most cases (except the
XSum and Writing when TL =2, and XSum and
sQuAD when adopting sentence ensemble). The
Llama2 model here, once fine-tuned by the specific
downstream datasets, demonstrated its improved
sensitivity towards subtle cues and patterns brought
by our proposed token-ensemble approach, where
the mainstream detection models do not distinguish
well. The improved accuracy scores among vari-
ous datasets and generation settings indicate the
promising benefits of the detection method built
upon the language models, which can effectively
and efficiently learn the implicit nuance introduced
by our proposed token-ensemble attack.

9 Robustness Analysis

Several trade-offs emerge while implementing our
proposed token-ensemble approach, particularly
regarding generation speed versus resource con-
sumption and the balance between deception capa-
bility and the quality of the generated text. Those
trade-offs highlight the complexities in designing
effective and efficient adversarial Al strategies.
The efficiency of generating text through the
token-ensemble method can vary significantly
based on the computational resources consumed.
For instance, generating 100 tokens that take up
much memory space on a strong CPU server may
take approximately 30 minutes. In contrast, the
same process on an A100 GPU with 100GB of
memory can produce 170 tokens in just 10 sec-
onds. Our findings reveal another important trade-
off between the strength of the deception achieved

by the token-ensemble method and the coherence
and fluency of the generated text: certain config-
urations (e.g., TL=1) of the token-ensemble ap-
proach were extremely effective in deceiving state-
of-the-art LLM-based detection methods (i.e., Fast-
DetectGPT); however, they often resulted in gen-
erated text that lacked coherence and fluency. One
feasible solution is to find a balance where the de-
ception is successful (e.g., a random guess success
rate) when the quality of the generated text is com-
parable to other language model generation results
(e.g., the filtered results from the GPT-2 model
collected in Bao et al. (2023)).

10 Conclusion

This study presents a novel attack strategy for Al
content detection using a token-ensemble approach,
effectively challenging current detection models by
leveraging multiple, including relatively smaller,
mainstream LLMs. This strategy, inspired by the
success of ensemble methods in machine learn-
ing for boosting predictive performance, proves
that a coordinated attack using multiple, weaker
models can more effectively bypass advanced Al
content detection systems than a singular, more
powerful model. Our findings highlight a signifi-
cant advancement in the arms race between creat-
ing and detecting Al-generated content, providing
fresh insights into improving detection capabilities.

By manipulating candidate selection from a di-
verse array of large language models, we demon-
strated a substantial impact on the detection meth-
ods’ ability to identify Al-generated content accu-
rately. Our further investigations illustrate surpris-
ing findings that: (1) the token-ensemble approach
could generate texts that are much harder for LLM-
based detection methods to distinguish while main-
taining comparable coherence and fluency qual-
ity compared with the GPT-2 model direct gener-
ation results; (2) different candidate LLMs would
lead to very different qualities of generation results
and the advancement of candidate models would
not guarantee a better quality; (3) LLM-based Al-
generation detection approach could benefit from
simple fine-tuning to achieve better understanding
on the implicit nuance introduced by our proposed
token-ensemble approach. Future research could
consider building large language model based de-
tection systems specifically fine-tuned through spe-
cially designed datasets derived from adversarial
attack tactics to improve the detection performance.



Ethical Statements

The author’s Institutional Review Board has ap-
proved the experiment design of collecting human
annotations, and the approval number will be dis-
closed in the camera-ready version. We provide
all annotators with information on mental consul-
tant hotlines and clinics, considering that the LLMs
generation results might contain uncomfortable in-
formation like social bias. We suggest the annota-
tors stop or quit the annotation process anytime if
they feel necessary. The annotators are reimbursed
based on their recorded working hours at a rate
above the average salary requirement in the US.

Regarding the ethical concerns associated with
Al content generation and detection, addressing the
various dimensions of risk, fairness, privacy, and
security issues is imperative. We want to outline
the potential ethical considerations of our work,
underscoring the drawbacks of misuse and possible
negative consequences.

Our research, primarily technical explorations,
opens trails to potentially harmful applications.
The token-ensemble text generation method, which
was practical and straightforward to deploy, could
be easily adopted to deceive the current Al con-
tent detection services, which would raise concerns
regarding the spread of disinformation or the cre-
ation of fake user profiles. Such risks highlight the
importance of developing robust detection mecha-
nisms to identify and mitigate adversarial attacks.
Mitigation strategies might include the develop-
ment of more sophisticated detection algorithms,
implementing ethical guidelines for Al-generated
content, or promoting transparency in Al deploy-
ments.

Regarding fairness, deploying technologies that
leverage LLMSs’ deception capability could inadver-
tently amplify the misuse of LLMs on their inherent
biases toward historically marginalized groups or
minority groups. Our research methodology and ap-
plications should be carefully scrutinized to avoid
bias issues, ensuring that the development and de-
ployment of generative Al models in our experi-
mental settings do not exacerbate social inequali-
ties. Exploring adversarial attacks in Al-content de-
tection applications could also involve privacy and
security considerations. The inadequate practices
could inadvertently facilitate malicious activities
without scrutinizing the content.

Limitations

The findings of our study highlight a significant
vulnerability in current Al-content detection mod-
els when faced with sophisticated adversarial at-
tack strategies. Our proposed method has proven
effective in degrading the performance of SOTA
detection approaches. The ability of ensemble-
generated texts to deceive detection underscores the
complexity of distinguishing between human and
Al-generated content, which the evolving capabili-
ties of generative Al technologies would magnify.
As Al technologies advance, the potential for mis-
use in spreading misinformation or reinforcing so-
cial bias through generated deceptive content could
keep increasing. Though the special fine-tuned
LLM could perform better towards specific tasks
and datasets, that pipeline may not work for other
scenarios. Further investigations on the efficacy
and robustness of fine-tuning LLM are expected.
While our study provides valuable insights, it is
important to acknowledge the limitations of our
work. The scope of our experiments was con-
strained by the selection of finite LLM candidates
and finite detection methods from a wide range of
options. We selected the most mainstream LLMs
and detection methods, while a more comprehen-
sive benchmark would be better to illustrate the
capability and limitations of our proposed token-
ensemble generation approach. Moreover, the
datasets used in our experiments may not fully
capture the diversity of human and Al-generated
content encountered in real-world scenarios. In-
cluding more varied and nuanced datasets could
improve the analysis of the effectiveness of our pro-
posed token-ensemble attack. Finally, exploring
alternative adversarial strategies and their counter-
measures can provide a broader perspective on the
race between Al content generation and detection.
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A Generation Settings

Our token-ensemble generation approach does not
necessarily require GPU resources. As we tested
on the CPU server, the one-token ensemble gen-
eration setting would need around 30 minutes to
generate 100 tokens without specific speed opti-
mization. However, using the A100 GPU server to
accelerate the generation speed would only take ap-
proximately 10 seconds to generate 170 tokens in
all token-ensemble settings, which would take up to
100GB of the GPU memory usage two A100 GPU
80GB GPU cards. We completed the experiments
using the GPU server provided by Nvidia, under
the support of the grant [anonymized]. (Detailed
grant information will be revealed in the camera-
ready version.)

B Token-Ensemble Prompt Setting

We prompt the randomly selected generation LLM
with the first 30 tokens of the human-written origi-
nal sentence. For example, the prompt of the first
instance in the XSum Dataset is:

Maj Richard Scott, 40, is accused of driv-
ing at speeds of up to 95mph (153km/h)
in bad weather before the smash on a
B-road in Wiltshire

Token-Ensemble Generation Quality
Annotation

In addition to the human annotations, we also tried
to ask the ChatGPT (version 3.5 and 4) to provide
the annotation regarding the ChatGPT’s capability
to understand the numerical scale and evaluate text
quality similar to human performance (Huang et al.,
2024). We use the exact instructions we give to hu-
man experts as the prompt of the ChatGPT input.
However, after the manual inspection of the Chat-
GPT annotations, we find only ChatGPT-4 could
understand the task and give out annotations in the
format we requested. Still, further inspection show-
cased that around 20% of the annotation scores are
significantly contrary to human expert annotations.
Thus, we do not include annotations from language
models in this work.

The most human-like generation results, voted
by three human annotators for each instance, are
listed in Table 7. The instructions we provide to
human experts are listed in Table 8.
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D Robustness Test

In our original settings, to fully replicate settings in
Bao et al. (2023), we adopt the completion criteria
of exceeding 170 tokens in our token-ensemble gen-
eration attack since the average length of human-
written content in Bao et al. (2023) is around
170. We attached the robustness test results for
our token-ensemble generation attack under a dif-
ferent completion criterion of exceeding 100 tokens
ended by a period or exceeding 150 tokens for each
instance, as shown in Table 6. The new completion
criterion resulted in a more significant AUROC
score drop in our token-ensemble attack. Thus, we
believe that our efforts to make the Al-generated
and human-written text similar in length, around
170, is required for a fairer comparison.

E Llama2 QA and Fine-tune Setting

We prompt the Llama2 model with the prompt de-
sign below to collect Al-generation text detection
classification results:

Please answer whether the given short
text is generated by Artificial Intelli-
gence models but not written from real
human. Please answer by Yes, No or Un-
certain. And then explain why in shortly
in one or two sentences.

The short text is: Generation results.

To avoid overfitting the language model in the
fine-tuning process, we created the dataset with 37
annotated high-quality Al-generated texts with 37
human-written texts with the same source distribu-
tion (28 from sQuAD, 7 from XSum, and 2 from
Writing). We adopt the template below to utilize
the human-written and high-quality Al-generated
texts:

### Question: Please answer whether the
given short text is generated by Artificial
Intelligence models but not written from
real human. Please answer by Yes, No or
Uncertain. And then explain why shortly
in one or two sentences.

The short text is:instance text.

### Answer:instance label. Yes means
the short text is more likely to be gener-
ated by Al models but not written by real
human. No means the contrary.



Datasets | Detection Method Baseline\ TL=1 \ TL=2 \ TL=3 \ TL=4 \ TL=5 \ Rand. \ Sent.

Likelihood 0.7837 | 0.2176| 0.1543| 0.1988| 0.2383| 0.2537| 0.1883| 0.4087
Rank 0.8068 | 0.3073| 0.3548| 0.3970| 0.4108| 0.4144| 0.3844| 0.5610
XSum | LogRank 0.8117 | 0.2719| 0.2254| 0.2811| 0.3221| 0.3314| 0.2574| 0.4725
Entropy 0.5300 | 0.7623| 0.8467| 0.8602| 0.8438| 0.8258| 0.8489| 0.7523
Fast-DetectGPT | 0.9845 | 0.3187| 0.4053| 0.5363| 0.5833| 0.5897| 0.4971| 0.7559
Likelihood 0.7573 | 0.1812| 0.2722| 0.2949| 0.3208| 0.3775| 0.2684| 0.5305
Rank 0.7836 | 0.3117| 0.3825| 0.4294| 0.4648| 0.4908| 0.4089| 0.5975
sQuAD | LogRank 0.8090 | 0.2523| 0.3341| 0.4101| 0.4294| 0.4906| 0.3829| 0.6053
Entropy 0.5617 | 0.8262| 0.8306| 0.7945| 0.8017| 0.7707| 0.8107| 0.7181
Fast-DetectGPT | 0.9937 | 0.3986| 0.5583| 0.6401| 0.6905| 0.7433| 0.6104| 0.8974
Likelihood 0.8905 | 0.5637| 0.6017| 0.6315| 0.6612| 0.6786| 0.6287| 0.7361
Rank 0.8186 | 0.5737| 0.6140| 0.6328| 0.6389| 0.6449| 0.6402| 0.6873
Writing | LogRank 0.9158 | 0.6263| 0.6748| 0.7065| 0.7269| 0.7418| 0.7030| 0.7843
Entropy 0.3752 | 0.5694| 0.6177| 0.6477| 0.6301| 0.6118| 0.6221| 0.5740
Fast-DetectGPT | 0.9977 | 0.7168| 0.8378| 0.8965| 0.9105| 0.9106| 0.8680| 0.9430

Table 6: All Al content detection metric AUROC scores for the XSum, sQuAD, and Writing datasets, reported in
various token-ensemble generation settings. Baseline scores come from the average score for each dataset in Table 1.
Compared with the baseline AURCO score at each row, we highlighted the most deviated AUROC score in bold.
TL is token length. Rand means that the token number is random between 1 and 5. Sent is the sentence-ensemble.

Datasets‘ Candidate LLMs Baseline‘ TL=1 ‘ TL=2 ‘ TL=3 ‘ TL=4 ‘ TL=5 ‘ Rand. ‘ Sent.
XSum Classic LLMs 2 3 1 4 1 1 2 1
Advanced LLMs | 4 - 1 1 2 3 - 4
sQuAD | Classic LLMs 3 - 3 1 - 1 5 2
Advanced LLMs | 4 1 - - 3 2 2 3
Writing | Classic LLMs 6 - 3 - 5 - - 1
Advanced LLMs | 4 1 1 2 4 - 2 1

Table 7: The vote counts the most human-like generated text from human expert annotations for five instances from
each of the three datasets.

As for the hyper-parameter setting for the fine-
tuning process, we fine-tuned the Llama2 model
at one GPU server containing eight A100 80GB
GPUs. We set the lora_alpha value as 16 and the
lora_dropout as 0.1 for LoRA; we set the optimizer
as pages_adamw_32bit, learning rate as 0.0002,
and weight decay as 0.001 for 5 epochs.
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Instructions for each instance, you should:

1. Score 1 7 (1 means very bad, 7 means very good) on the coherence score and fluence
score for the column of ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’.

* Coherence: The contextual information of the given short text (around 200 words) should
logically make sense, i.e., maintaining topic consistency and logical sequence. * Fluency: The text
should read naturally, mimicking the style and syntax of human natural language.

2. From the column of ’a’, ’b’, °c’, °’d’, ’e’, ’f’, ’g’, ’h’, select the best one that you think has
the highest probability that writes by a real human and put the number in the column of ’best’
(Normally, the best one should be the one that possesses the highest coherence and fluency scores
you annotated in the previous step).

Do note that:

1. We have 6 files and 5 instances each. Completing all labeling, for one instance, should take less
than 6 mins. But feel free to take more time if necessary.

2. All texts selected are only a slice of 200 tokens of their original source, so please do not consider
the potential incomplete sentence at the end of the text as one of your scoring criteria.

Examples:

1. [As Muslim institutions of higher learning , the madrasa had the legal designation of waqf
. In central and eastern Islamic lands , the view that the madrasa , as a religious trust for pious
educational endeavors , is the institutional and social prec ursory for the mosque ( Dar ul -Kh air
- ) is prevalent ( Ibd ah 198 5 ; N. A hmad 198 7 ) . The madrasa served as a place of religious
instruction and a center for m ak tab ( schools ) . It provided lodging , board , and medical care
for the instructors and m ustaf a ( students ) . The madrasa was both a place of instruction for
religious m at terial and a living environment . The madrasa therefore served two purposes : the
disse mination and perpet uation of the teachings of the Islamic faith and the pro p aga tion of
Islamic culture and heritage . The mad rasa was the first step in the path to higher education]
[Coherence: 4, Fluency: 5]

2. [Boston has a continental climate with some maritime influence , and using the -3 C (27 F)
coldest month ( January ) isotherm , the city lies within USDA hardiness zone 5 b , with an average
annual minimum temperature of around -2 .2 C ( 27 F ) . Bostons climate is compar atively warm
for the latitude due to its location within the Northeastern United States . Boston is often identified
as a coastal city , and experiences regular and strong effects of maritime climate . However , since
Boston is far from the most eastern coastline of the state, its climate has little maritime influence .
The effects of the ocean can be seen in the average rainfall rate ( around 4 3 inches or 1 09 centim et
ers of snow per year ) , a rain shadow that prevents heavy rainfall from accumulating in the summer
and a generally war mer average annual temperate , but the city is rarely affected by extreme cold ,]
[Coherence: 6, Fluency: 7]

3. [South Korea : The event was held in Seoul , which hosted the 1988 Summer Olympics , on
April 27 . Intended torchbearers Choi Seung-kook and Park Won-sun boycotted the games . To
demonstrate their disapproval, many South Koreans wore black rib ons to mourn the massacre. http
: /len . w ikinews . org . 30 Nov. 2 0 1 6. Korea, South - 19 88 Summer Olympics . This website
is not to be accredited with any additional information about this event . The images were taken
and used in this website by the users . http : / www . ziman.co.kr.hodoj690.46.010.17
http://www.al jazeera. co m/ program /ins igh t a1/ asia pacifism/2017/05/013/8465
492 . 270162 2 < eos >.] [Coherence: 1, Fluency: 2]

Table 8: Instruction information we give to our hired human experts to annotate the quality scores for given short
texts and select the most human-like generation result from eight candidates for each instance.
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