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ABSTRACT

We present a framework to tackle combinatorial optimization problems using neu-
ral networks and reinforcement learning. We focus on the traveling salesman prob-
lem (TSP) and train a recurrent neural network that, given a set of city coordinates,
predicts a distribution over different city permutations. Using negative tour length
as the reward signal, we optimize the parameters of the recurrent neural network
using a policy gradient method. Without much engineering and heuristic design-
ing, Neural Combinatorial Optimization achieves close to optimal results on 2D
Euclidean graphs with up to 100 nodes. These results, albeit still quite far from
state-of-the-art, give insights into how neural networks can be used as a general
tool for tackling combinatorial optimization problems.

1 INTRODUCTION

Combinatorial optimization problems, such as the Traveling Salesman Problem (TSP), are funda-
mental to computer science. Many solutions to those problems rely on handcrafted heuristics that
guide their search procedures to find competitive (and in many cases optimal) solutions efficiently.
Each combinatorial optimization problem has its own heuristics that needs to be revised once the
problem statement changes slightly.

In contrast, machine learning methods are applicable across many tasks and can discover their own
heuristics, thus requiring less hand-engineering than solvers that are optimized for one task only. In
this work, We propose Neural Combinatorial Optimization (NCO), a framework to tackle combina-
torial optimization problems using reinforcement learning and neural networks. We apply NCO to
the 2D Euclidean TSP, a well-studied NP-hard problem with with many proposed algorithms (Ap-
plegate et al., 2006; Helsgaun, 2000; Google, 2016) . Our results, while still inferior to the state-of-
the-art in many dimensions (such as speed, scale and performance), give insights into how neural
networks can be used as a general tool for tackling combinatorial optimization problems, especially
those that are difficult to design heuristics for.

2 NEURAL NETWORK ARCHITECTURE

We focus on the 2D Euclidean TSP in this paper. Given an input graph, represented as a sequence
of n cities in a two dimensional space s = {xi}ni=1 where each xi ∈ R2, we are concerned with
finding a permutation of the points π, termed a tour, that visits each city once and has the minimum
total length. We define the length of a tour defined by a permutation π as

L(π | s) =
∥∥xπ(n) − xπ(1)

∥∥
2
+

n−1∑
i=1

∥∥xπ(i) − xπ(i+1)

∥∥
2
, (1)

where ‖·‖2 denotes `2 norm. We use the chain rule to factorize the probability of a tour as

p(π | s) =
n∏
i=1

p (π(i) | π(< i), s) , (2)

∗Equal contributions. Work done when the authors were in the Google Brain Residency program.
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and then use individual softmax modules to represent each term on the RHS of (2). We employ the
pointer network architecture (Vinyals et al., 2015) as our policy model to parameterize p(π | s).
Our pointer network consists of two RNN modules, both of which use LSTM (Hochreiter &
Schmidhuber, 1997). The encoder network reads the input sequence s, one point xi at a time,
and transforms it into a sequence of latent memory {enci}ni=1. The decoder network maintains its
latent memory {deci}ni=1, and at each step i, uses a pointing mechanism, described in Appendix 6.2,
to produce a distribution over the next city to visit in the tour. Once the next city is selected, it is
passed as the input to the next decoder step.

3 OPTIMIZATION WITH POLICY GRADIENTS

Vinyals et al. (2015) proposes training a pointer network using a supervised cross-entropy loss func-
tion against the outputs produced by a solver. Such method is undesirable for NP-hard problems
because (1) the performance of the model is tied to the quality of the supervised labels, and (2)
getting high-quality labeled data is expensive and may be infeasible for new problem statements.

In contrast, we believe Reinforcement Learning (RL) provides an appropriate paradigm for training
neural networks for combinatorial optimization, especially because these problems have relatively
simple reward mechanisms that could be even used at test time. We hence propose to use policy-
based RL to optimize our pointer network’s parameters, denoted θ. Our training objective is the
expected tour length given an input graph s, formally J(θ | s) = Eπ∼pθ(.|s) L(π | s). The policy
gradient of the objective is formulated using REINFORCE algorithm (Williams, 1992):

∇θJ(θ | s) = Eπ∼pθ(.|s)
[(
L(π | s)− b(s)

)
∇θ log pθ(π | s)

]
, (3)

where b(s) denotes a baseline function that does not depend on π and estimates the expected tour
length to reduce the variance of the gradients.

A simple and popular choice of the baseline b(s) is an exponential moving average of the re-
wards obtained during training. While this choice of baseline proved sufficient to improve upon
the Christofides algorithm, we find that using a parametric baseline to estimate the expected tour
length Eπ∼pθ(.|s)L(π | s) typically improves learning.

We introduce an auxiliary network, called a critic and parameterized by θv , to learn the expected
tour length found by our current policy pθ given an input sequence s. The architecture of our critic
network is an RNN with LSTM, where predictions were made based on the final state. The critic is
trained with stochastic gradient descent on a mean squared error objective

L(θv) =
1

B

B∑
i=1

∥∥ bθv (si)− L(πi | si)∥∥22 . (4)

4 EXPERIMENTS

We consider three benchmark tasks, Euclidean TSP{20,50,100}, for each we generate a test set of
1, 000 graphs. Points are drawn uniformly at random in the unit square [0, 1]2. Additional details
about our experiments can be found in Appendix 6.1. We employ the following strageties

RL pretraining: For the RL experiments, we generate training mini-batches of inputs on the fly.
We find that clipping the logits to [−10, 10] with a tanh(·) activation function, as in Appendix 6.3,
yields marginal gains. At test time, we simply take the city with highest probability at each decod-
ing step. We also consider ensembling 16 models and taking their best results. We refer to those
approaches as RL pretraining-greedy and RL pretraining-greedy@16.

Searching at inference: As evaluating a tour length is inexpensive, our TSP agent can easily
simulate a search procedure at inference time by considering multiple candidate solutions per graph
and selecting the best. We employ the following strategies:

• RL pretraining-Sampling: For each test instance, we sample 1, 280, 000 candidate solu-
tions from a pretrained model and keep track of the shortest tour. A grid search over the
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temperature hyperparameter found respective temperatures of 2.0, 2.2 and 1.5 to yield the
best results for TSP{20,50,100} respectively.

• RL pretraining-Active Search: For each test instance, we initialize the model parameters
from a pretrained RL model and update them for up to 10, 000 steps, each with a batch size
of 128, therefore seeing a total of 1, 280, 000 candidate solutions. We set the learning rate
to a hundredth of the initial learning rate the TSP agent was trained on.

• Active Search: We allow the model to train much longer to account for the fact that it
starts from scratch. For each test graph, we run Active Search for 100, 000 training steps
on TSP{20,50} and 200, 000 training steps on TSP100.

We compare our methods against several baselines.

• Supervised Learning: We implement and train a pointer network with supervised learn-
ing (Vinyals et al., 2015). We find that our supervised learning results are not as good as
theirs. We suspect that learning from optimal tours is harder for supervised pointer net-
works. We thus refer to the results in Vinyals et al. (2015) for TSP{20,50} and report our
results on TSP100.

• Christofides Algorithm: In polynomial time, the algorithm finds solutions that are guar-
anteed to be within a 1.5× of optimality.

• Generic Solvers: We use the vehicle routing solver from (Google, 2016), which improves
over Christofides’ solutions with simple local search operators and metaheuristics.

• State-of-the-art opensource TSP-specific solvers: We use Concorde (Applegate et al.,
2006) and LK-H’s local search (Helsgaun, 2000; 2012). While only Concorde provably
solves instances to optimality, we empirically find that LK-H also achieves optimal solu-
tions on all of our test sets after 50 trials per graph (which is the default parameter setting).

Table 1: Average tour lengths (lower is better). Results marked (†) are from (Vinyals et al., 2015). Concorde’s
solutions are provably optimal, and LK-H finds the same solutions.

Task Supervised
Learning

RL pretraining AS Christo OR Tools’ Concorde/
greedy greedy@16 sampling AS -fides local search LK-H

TSP20 3.88(†) 3.89 − 3.82 3.82 3.96 4.30 3.85 3.82
TSP50 6.09(†) 5.95 5.80 5.70 5.70 5.87 6.62 5.80 5.68
TSP100 10.81 8.30 7.97 7.88 7.83 8.19 9.18 7.99 7.77

Solution Quality: We report the average tour lengths of our approaches on TSP{20,50,100} in Ta-
ble 1. We observe that training with RL significantly improves over supervised learning (Vinyals
et al., 2015). All our methods comfortably surpass Christofides’ heuristic.

Speed: Searching at inference time proves crucial to get closer to optimality but comes at the
expense of longer inference times. Fortunately, our search strategies can be stopped early with a
small performance tradeoff in terms of the final objective. More details can be found in Table 2
in Appendix 6.5. Many of our methods outperform Google’s OR-Tools, including RL pretraining-
Greedy@16 which runs similarly fast. However, compared to TSP-specific state-of-the-art solvers,
such as Concorde and LK-H, our methods are at least five orders of magnitude worse than our
methods while running on CPUs.

5 CONCLUSION

This paper presents Neural Combinatorial Optimization, a framework to tackle combinatorial op-
timization with reinforcement learning and neural networks. We focus on the traveling salesman
problem (TSP) and present a set of results for each variation of the framework. Experiments demon-
strate that Neural Combinatorial Optimization achieves close to optimal results on 2D Euclidean
graphs with up to 100 nodes. Our results, while still far from the strongest solvers (especially those
which are optimized for one problem), provide an interesting research avenue for using neural net-
works as a general tool for tackling combinatorial optimization problems.
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6 APPENDIX

6.1 EXPERIMENTAL DETAILS

Across all experiments, we use mini-batches of 128 sequences, LSTM cells with 128 hidden units,
and embed the two coordinates of each point in a 128-dimensional space. We train our models with
the Adam optimizer (Kingma & Ba, 2014) and use an initial learning rate of 10−3 for TSP{20,50}
and 10−4 for TSP100 that we decay every 5000 steps by a factor of 0.96. We initialize our parame-
ters uniformly at random within [−0.08, 0.08] and clip the L2 norm of our gradients to 1.0. We use
up to one attention glimpse. When searching, the mini-batches either consist of replications of the
test sequence or its permutations. The baseline decay is set to α = 0.99 in Active Search.

6.2 POINTING AND ATTENDING

Pointing mechanism: Its computations are parameterized by two attention matrices Wref ,Wq ∈
Rd×d and an attention vector v ∈ Rd as follows:

ui =

{
v> · tanh (Wref · ri +Wq · q) if i 6= π(j),∀j < i

−∞ otherwise
(5)

A(ref, q;Wref ,Wq, v)
def
= softmax(u) (6)

Our pointer network, at decoder step j, then assigns the probability of visiting the next point π(j)
of the tour as follows:

p(π(j)|π(< j), s)
def
= A(enc1:n, decj). (7)

Setting the logits of cities that already appeared in the tour to −∞, as shown in Equation 5, ensures
that our model only points at cities that have yet to be visited and hence outputs valid TSP tours.

Attending mechanism: Specifically, our glimpse function G(ref, q) takes the same inputs as the
attention function A and is parameterized by W g

ref ,W
g
q ∈ Rd×d and vg ∈ Rd. It performs the

following computations:

p = A(ref, q;W g
ref ,W

g
q , v

g) (8)

G(ref, q;W g
ref ,W

g
q , v

g)
def
=

k∑
i=1

ripi. (9)
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The glimpse functionG essentially computes a linear combination of the reference vectors weighted
by the attention probabilities. It can also be applied multiple times on the same reference set ref :

g0
def
= q (10)

gl
def
= G(ref, gl−1;W

g
ref ,W

g
q , v

g) (11)

Finally, the ultimate gl vector is passed to the attention function A(ref, gl;Wref ,Wq, v) to produce
the probabilities of the pointing mechanism. We observed empirically that glimpsing more than
once with the same parameters made the model less likely to learn and barely improved the results.

6.3 IMPROVING EXPLORATION

Softmax temperature: We modify Equation 6 as follows:

A(ref, q, T ;Wref ,Wq, v)
def
= softmax(u/T ), (12)

where T is a temperature hyperparameter set to T = 1 during training. When T > 1, the distribution
represented by A(ref, q) becomes less steep, hence preventing the model from being overconfident.

Logit clipping: We modify Equation 6 as follows:

A(ref, q;Wref ,Wq, v)
def
= softmax(C tanh(u)), (13)

whereC is a hyperparameter that controls the range of the logits and hence the entropy ofA(ref, q).

6.4 SAMPLE TOURS
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Figure 1: Sample tours. Top: TSP50; Bottom: TSP100.

6.5 OR TOOL’S METAHEURISTICS BASELINES FOR TSP

Table 2: Average tour lengths of RL pretraining-Sampling and RL pretraining-Active Search as they sample
more solutions. Corresponding running times on a single Tesla K80 GPU are in parantheses.

Task # Solutions RL pretraining Simulated Tabu Guided Local
Sampling T = 1 Sampling T = T∗ Active Search Annealing Search Search

TSP50

128 5.80 (3.4s) 5.80 (3.4s) 5.80 (0.5s) 5.81 (0.24s) 5.79 (3.4s) 5.76 (0.5s)
1,280 5.77 (3.4s) 5.75 (3.4s) 5.76 (5s) 5.81 (4.2s) 5.73 (36s) 5.69 (5s)
12,800 5.75 (13.8s) 5.73 (13.8s) 5.74 (50s) 5.81 (44s) 5.69 (330s) 5.68 (48s)
128,000 5.73 (110s) 5.71 (110s) 5.72 (500s) 5.81 (460s) 5.68 (3200s) 5.68 (450s)
1,280,000 5.72 (1080s) 5.70 (1080s) 5.70 (5000s) 5.81 (3960s) 5.68 (29650s) 5.68 (4530s)

TSP100

128 8.05 (10.3s) 8.09 (10.3s) 8.04 (1.2s) 8.00 (0.67s) 7.99 (15.3s) 7.94 (1.44s)
1,280 8.00 (10.3s) 8.00 (10.3s) 7.98 (12s) 7.99 (15.7s) 7.93 (255s) 7.84 (18.4s)
12,800 7.95 (31s) 7.95 (31s) 7.92 (120s) 7.99 (166s) 7.84 (2460s) 7.77 (182s)
128,000 7.92 (265s) 7.91 (265s) 7.87 (1200s) 7.99 (1650s) 7.79 (22740s) 7.77 (1740s)
1,280,000 7.89 (2640s) 7.88 (2640s) 7.83 (12000s) 7.99 (15810s) 7.78 (208230s) 7.77 (16150s)
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