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Abstract

Today, Deep learning algorithms have quickly become essential in the field of
medical image analysis. Compared to the traditional methods, these Deep learning
techniques are more efficient in extracting compact information leading towards sig-
nificant improvement performance of medical image analysis system. We present
in this paper a new technique for sphenoid sinus automatic segmentation using a
3D Convolutional Neural Networks (CNN). Due to the scarcity of medical data, we
chose to used a 3D CNN model learned on a small training set. Mathematical mor-
phology operations are then used to automatically detect and segment the region
of interest. Our proposed method is tested and compared with a semi-automatic
method and manual delineations made by a specialist. The preliminary results from
the Computed Tomography (CT) volumes seem to be very promising.

1 Introduction

The sinuses anatomy in general is very complex and variable [1]. Sphenoid sinus is too, a very variable
cavity, an important landmark in surgery and at the same time it is hard to isolate [2-3-4]. Fig. 1 shows
a diagrammatic representation of the paranasal sinuses location. Another difficulty is that the sinuses
can also be divided into many nooks, which communicate with each other through an incomplete
bone wall [5], which further complicates their localization, see for e.g. [5]. The complications while
operating on sphenoid sinus are easily avoided if we know its anatomical features [6].

As it has been established, the sphenoid sinus is the most inaccessible part of the face, being inside
the sphenoid bone and involving a number of different structures. Its deep anatomical location makes
it difficult to approach. This deep location can be beneficial in the case of forensic identification.
Unlike other sinuses, the sphenoid sinus is well protected from traumatic degradation resulting from
external causes.

sphenoid sinuses can be classified according to their positions in the sella turcica into four types [7]:

• Conchal: complete missing or minimal sphenoid sinus;
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• Pre-sellar: the posterior wall of sphenoid sinus is in front of the anterior wall of the sella
turcica

• Sellar: the posterior wall of the sphenoid sinus is between the anterior and posterior walls of
sella turcica

• Post-sellar: the posterior wall of sphenoid sinus is behind the posterior wall of the sella
turcica

These types of sphenoid sinuses and their basic dimensions (height, width and depth) can generally
help predict the risk of accidental injury, but also useful for individual identification as can be seen in
[8].

Figure 1: Diagrammatic representation of paranasal sinuses.

The computed tomography (CT) is an excellent imaging method used for the assessment of sinuses
anatomy as it allows precise evaluation craniofacial of bones and the extent of there pneumatization
[9-4]. By using segmentation of three dimensional (3D) CT-images of sphenoid sinus we could make
useful measurements of its volume anatomy [10].

A 3D segmentation is a technique that consist labeling each voxel in an image and assigning it in
group of voxels that define an anatomical structure. This technique has a wide variety of applications
in medical research and Computer-Aided Diagnosis.It is a very useful method, it allows to extract
and recognize organs like: the heart, the brain, the spine, the blood vessels,etc.It is used too to
improve visualization of medical images and allow quantitative measurements of organs structures
on the image. Segmentation is also important in building anatomical atlases, researching shapes of
anatomical structures and tracking their changes over time [11].

The artificial intelligence techniques represented by machine learning are increasingly used in medical
image analysis and segmentation. In the recent years, the appearance of deep learning techniques
has contributed significantly improving for medical image analysis, based on convolutional neural
networks (CNN) that give the ability to automatically learn significant patterns and extract real
structures from images [3-12].

One of the main reasons for the success of the CNN model was that it possible to directly use the
pre-trained model to do various other tasks which it was not originally intended for. It became
remarkably easy to download a learned model, and then tweak it slightly to suit the application at
hand [13]. To the best of our knowledge, there is no an automatic segmentation approach dedicated
to sphenoid sinuses. This is probably due to the complex anatomy and high anatomical variability.
Another particular challenge we had to overcome includes the opening of sphenoid sinus ostium,
making the wall delimitation very difficult. In this paper, we made a sphenoid sinus automatic
segmentation tool that uses conventional CT-images based on 3D CNN. The proposed method is
efficient, robust, and is able to obtain good results with small training dataset.

2 Method

Our automatic sphenoid sinus segmentation method consists of three main steps, where the result
of step is the input of another one. The first step is a preprocessing step; we create and transform
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automatically the images volume given from a PACS to an image of the region of interest. Than
we perform a segmentation with 3D deep CNN [14], that we adapted and parameterized to produce
highly accurate sinus segmentation. Finally a postprocessing based on mathematical morphology
operations is carry out sinus measurement and refine segmentation (Figure.1). This splitting in stages
allowed us to improve and simplify the use of CNN at the CPU level. In the following we describe
the method stage:

Figure 2: Flow chart of the sphenoid sinus segmentation scheme.

2.1 The automatic ROI extraction for the CT-image:

The preprocessing step uses some interesting techniques with slight transformations that are adapted
to improve the effectiveness of the specific type of segmentation method used in the next step. These
transformations are made so that common parameters can be used for all images of all intensity
ranges. In other words, we aim to operate only on a reduced 3D region, a region of interest centered
on the sinus at issue and not on the whole image. This region of interest must be the same in terms
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of dimensions for all images in data set of training or test. To achieve this, we first selected a target
image with a well-oriented head and a clear sinus.

We manually traced a large rectangle, enough to contain the sinus whatever its shape,size does not
exceed 200 x 200 x 200 pixels. This rectangle will also serve as a reference bounding-box. Then, all
other database images are registered onto this target image with its bounding-box. As the images
are coming from different persons, we choose to use a rigid registration, allowing a correction of the
different positions and orientations arising from the clinical exam. Since the natural size of the skulls
is different from one person to another, we have avoided using affine registration[15], which risks
distorting the estimation volume that will be used later as parameter for identification. Thereby, we
were able to build a new database consisting only of regions of interest, with the same size as the
reference box.

2.2 Sinus Segmentation with deep 3D CNNs

In this step we employ DeepMedic [16] realized as an open source software [17], it is an architecture
with adjustable number of deep layers, double-pathway and 3D Convolutional Neural Network,
developed for the segmentation of brain lesions [14]. This system segments MRI 3D images
corresponding to a multi-modal 3D patch at multiple scales. For our study we used the lightweight
version CPU-based of this software to drive our sinus automatic segmentation model; in our case
we use one modality and a CT images format. This CPU model gives a satisfactory solution to our
problem.

The robustness of this CNN was tested when less training data were available or fewer filters were
used, this architecture was further benchmarked on the BRATS 2016 Challenge, where it achieved
very good performance despite the simplicity of the pipeline [17]. It was demonstrated that it is
possible to train this 3D CNN on a small dataset of 28 cases. This network was given a good result
on the task of segmenting ischemic stroke lesions, accomplishing a mean Dice of 64% (66% after
post processing) on the ISLES 2015 training dataset, ranking among the top entries [14]. This
architecture[16]based on :

• Two parallel convolutional pathways that process the input at multiple scales to achieve a
large receptive field for the final classification while keeping the computational cost low.

• A small convolutional kernels. That gives efficiency to building deeper CNNs without
severely increasing the number of trainable parameters and Inspired by VGG (Very deep
convolutional networks)[18].Building high performing and efficient 3D CNNs thanks to the
much smaller computation required for the convolution with small 33kernels.

• Full convolutional fashion on image segments in both training and testing stage.

In what follows we will present the main algorithms that make up this architecture, In [14] the
creators and authors of this architecture presented a very clear and detailed of DeepMedic architecture
with its theoretical background, here we just giving a summary of each step, which make up this
software:
1- Each layer l ∈ [1, L] consists of Cl feature maps (FM) also referred to as Channels
2- Every FM represents a group of neurons that detect a particular pattern (a feature, in the channels
of the previous layer).
3- A Pattern is defined by kernel weights associated with the FM
4- If the neurons of the mth FM in the lth layer are arranged in a 3D grid, their activations
constitute the image defined bye:

yml = f

(
cl−1∑
n=1

km,n
l

)
∗ ynl−1 + bml .

• yml is the result of convolving each of the previous layer channels with a 3-dimensional.
• km,n

l Is a kernel , adding a learned bias bml applying a non-linearity f
• The image yn0 is the input to the first layer, correspond to the channels of the original input

image.

5- Each kernel is a matrix of learned hidden weights Wm,n
l

6- Each class of segments has a Cl number of .
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7- The activations of Cl are fed into a position-wise softmax function that produces the predicted
posterior

pc = exp (ycL (X)) /

CL∑
c=1

exp (ycL) .

• ycL is the activation of the FM at position l ∈ N3

8- The size of the neighbourhood of voxels ϕl in the input that influence the activation of a neuron is
a receptive field, increases at each subsequent layer and is given by the 3-dimensional vector:

ϕ
{x,y,z}
l = ϕ

{x,y,z}
l−1 +

(
k
{x,y,z}
l − 1

)
τ
{x,y,z}
l . (1)

Where

• kl,τl ∈ N3 are vectors expressing the size of the kernels and stride of the receptive field at
layer l

• τl is given by the product of the strides of kernels in layers preceding, in this system the
τl = (1, 1, 1)

• ϕCNN = ϕL : This is called theCNN’s receptive field; the receptive field of a neuron in
the classification layer corresponds to the image patch that influences the prediction for its
central voxel.

9- The dimensions of the FMs in Layer l is given by:

δ
{x,y,z}
l =

[
δ
{x,y,z}
l − ϕ

{x,y,z}
l

τ
{x,y,z}
l

+ 1

]
. (2)

10- If an input of size δin is provided,δin = ϕCNN is a size of input patch in the common
patch-wise. The FMs of this classification layer have 13.

11- CNNs are trained patch-by-patch and random patches of size ϕCNN are extracted from the
training images.

12- To maximize the log likelihood of the data or, equally, minimize the Cross Entropy via the cost
function is used:

J
(
θ; Ii;Ci

)
= −1/B

B∑
i=1

log(P (Y = ci|Ii, θ)) = −1/B
B∑
i=1

log pCi . (3)

• B is the size of batch, which is then processed by the network for one training iteration of
Stochastic Gradient Descent (SGD).

• The pair (Ii, Ci),∀i ∈ [1, B] is the ith patch in the batch and the true label of its central
voxel.
• The scalar pCi is the predicted posterior for Class Ci

• Regularization terms were omitted for simplicity. Multiple Ci Sequential optimization steps
over different batches gradually lead to convergence.

13- The classification layer is the activation of the last layer of CNN.

Memory requirements and computing time increase with batch size, which is the limitation of 3D
CNNs, DeepMedic uses a strategy that exploits the dense inference technique on image segments.
Following from Eq.(2), if an image segment of size greater than ϕCNN is given as input to the
network, the output is a posterior probability for multiple voxels V =

∏
i={x,y,z}

δil . If the training

batches are formed of B segments extracted from the training images, the cost function Eq.(3), in the
case of dense-training[14] becomes:
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JD (θ; Is;Cs) = −
1

B ∗ V

B∑
s=1

V∑
v=1

pcvs (x
v) . (4)

Where Is and Cs are the s−th segment of the batch and the true labels of its v−th voxel. xv the
corresponding position in the classification FMs and pcvs the output of the softmax function. The
effective lot size is increased by a factor V without corresponding increase in calculation and memory
requirements DeepMedic architecture is also a deep architecture based on small 33kernels that are
faster to convolve with and contain less weights[14].

We have adapted the 3D CNN for five layers, with a receptive field of size 173 and one modality.
The classification layer (the last layer) is implemented like a convolutional with 13 kernels, which
enables efficient dense inference. When the network segments an input it predicts multiple voxels
simultaneously, one for each shift of its receptive field over the input (see Figure 4). The training
time required for convergence of the final system is roughly 20 minutes using a CPU Intel I5-7300
with 2x2.5 GHz. Segmentation of a 3D scan of a sphenoid sinus requires 1 minute.

Figure 3: Architecture of the deepMedic for automatic sphenoid sinus segmentation.

2.3 Post processing

The segmentation result obtained by the 3D CNN of the precedente step method does not make it
possible to distinguish between the sphenoid sinus from the other sinuses. The nasal cavities as well
as the paranasal sinuses have almost the same gray level intensity. To differentiate the sinuses, we
have used a prior knowledge about the positioning of these sinuses. Indeed, the sphenoid sinus is the
deepest cavity starting from the front face, and therefore it is the first cavity encountered from the
back of the skull at the median. Thus, using the operations of mathematical morphology we have
been able to locate the sphenoid sinus. We have first applied an erosion operation to the segmented
image which allows removing the residues, but especially the potential connections between the
sphenoid sinus and other cavities. More precisely, erosion operation allows to remove the ostium and
to well separate the two hemisinus of the sphenoid sinus.

Once the sphenoid sinus cleared, we have subsequently calculated the centres of gravity of all the
regions on the image. After sorting the centers coordinates along the coronal axis, the deepest centre
corresponds, of course, to the region of the sphenoid sinus, or more precisely corresponds to the
deepest hemisphere. When the hemisphere is segmented from the rest of the cavities, a dilation
operation (with the same parameters as the previews erosion) is applied to recover some details of the
shape lost during erosion operation. As can be seen, the detection of the two hemispheres of the sinus
is sequential. Indeed, after removing the first detected hemisphere, the same process is launched on
the initially segmented image.

3 Result

3.1 Dataset

Our dataset has 24 Head CT images,which were performed on a helical, multi-detector CT scan-
ner.Some data exclusion criteria have been set. All CT exam with head fractures, tumors, or any
pathological process involving the sphenoid bone and the surrounding structures, but also with sinuses
mucosa thickening, or any abnormality of the sinuses contents, were not included in the study. After
the preprocessing we have obtained 3D CT- images less than 200 x 200 x 200. We have used 15
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Table 1: Elements of our dataset

Data set Number of images

Total CT exam considered 24
Total CT exam on train step in the 3D CNN Algorithm 5
Total CT exam on validation step in the 3D CNN Algorithm 10
Total images for test step (automatic segmented) 9
Total CT exam manually segmented by an expert assistance for train step 5
Total CT exam manually segmented by an expert assistance for validation step 10

Figure 4: Segmentation examples for 3 CT-images, shows a superior, left, interior and front views.

images for training step (training and validation) in the 3D CNN algorithm and 9 images to test.
The training dataset need a manual segmentation of spheroid sinus for each image, so we did this
manual segmentation assisted by a radiologist, a description of the dataset images used in the 3D
CNN Algorithm is illustrated and summarized in Table 1.

3.2 Results

An example of 3 segmentations is reported in Figure 4. It shows the result of the segmentation and
the extracted a sphenoid sinus as explained in the previous sections. The segmentation is performed
using the 3D CNN and affine with the morphological operations.

3.3 Validation

To evaluate the accuracy and robustness of the proposed automated approach, the results from the
same 9 sphenoid sinus automatically segmented with our tool were compared with a semi-automatic
Clustering method segmentation of ITK-SNAP Software with a manual segmentation that was
performed with an experienced radiologist using a standard procedure. Each image was segmented by
carefully tracing the outlines of the sphenoid sinus while following the inner bone surface, proceeding
in an axial direction. An example of the Spheroid sinus manual segmentation process of one slice is
shown in Figure 5.

The Dice Similarity Coefficient (DSC), Hausdorff distance (HD) and Mean Absolute Distance (MAD),
were used for evaluating the proposed method. The dice Coefficient (DSC), one of the most common
methods for evaluating segmentation results, indicates a level of similarity between the reference
(manual segmentation) and segmented result (automatic segmentation), the formulation of DSC is
given by:
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Figure 5: Example of the process of manual segmentation on one slice. From left to right: an axial,
sagittal and coronal view.

DSC =
2N (S1 ∩ S2)

N (S1) +N (S2)
. (5)

Where S1 and S2 represent the obtained segmentation and the ground truth respectively (manual
segmentation), and N(.) defines the number of pixels.

DCS ∈ [0, 1]

the closer the DCS value to 1, the better the segmentation is. The Hausdorff distance is metric
represents the spatial distance between two point sets, i.e., is the maximum distance between two
point sets C1 and C2 , from each point a ∈ C1 to point b ∈ C2 and vice versa. HD is defined as
follows:

HD (C1, C2) = max (h (C1, C2) , h (C2, C2)) . (6)

The Mean Absolute Distance (MAD) metric . Is given as follows:

MAD(C1, C2) =
1

2

 1

n

n∑
i=1

d (ai , c2) +
1

m

m∑
j=1

d (bj, c1)

 .
Where the distance between the point ai and the closet point bj is given by :

d (ai , c2) = min‖bj − ai‖.

Where bj ∈ C2.

The three metrics: DSC, HD and MAD were measured for all segmentations; Tables 2 and 3 illustrate
the associated results and a comparison between our automatic segmentation and semi-automatic
clustering of ITK-SNAP for the nine CT- images respectively with a manual segmentation. Related
mean, median and standard deviation are shown in the same tables.

Table 2: Comparison results with manual delineations. Are shown, DSC, Hausdorff (HD) and MAD
measures for proposed approach and semi-automatic method using ITK-SNAP.

Measures DSC (%) HD (mm) MAD (mm)

Index Mean Median SD Mean Median SD Mean Median SD

Our tool 95.81 96.16 1.48 9.87 8.39 5.31 3.24 2.22 2.20
ITK-SNAP 96.01 95.94 0.54 9.23 8.19 5.30 3.16 2.10 2.20

4 Discussion and conclusion

To our knowledge, only manual or semi-automatic methods have been applied for sphenoid sinus seg-
mentation. These techniques present inter- and intra-observer variability and are both time-consuming.
In the present work, we have developed a fully automated method for sinus sphenoid segmentation
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Table 3: Detailed results of comparison between the proposed automatic and semi-automatic (ITK-
SNAP) segmentation for 9 volumes, using respectively DSC, HD and MAD distances.

CT Volumes 1 2 3 4 5 6 7 8 9
Our results 96.52 96.10 95.59 92.10 95.71 96.84 95.91 95.48 96.87
ITK-SNAP results 95.78 96.10 95.74 96.74 95.21 97.15 96.16 95.77 96.33
Our results 4.09 7.02 6.62 2.71 0.96 2.08 1.58 1.85 2.22
ITK-SNAP results 4.08 6.88 6.61 2.06 0.93 2.10 1.54 2.01 2.20
Our results 10.43 15.43 19.46 13.32 3.79 8.07 4.76 5.15 8.39
ITK-SNAP results 43.76 15.43 19.46 6.29 3.87 8.19 4.67 5.18 8.41

based on CT images. The statistical comparisons between our automated tool segmentation and the
clustering ITK-SNAP semi-automatic segmentation with manual segmentation methods revealed
strong agreement and low dispersion between variables. These promising findings were maintained
over the entire range of sphenoid sinus segmentation evaluation, and the mean difference between
the automated and manual techniques was approximately 5% for both measurements. These differ-
ences are sufficiently small and this gives us a good confidence in this segmentation method. This
automated tool has the ability of segmenting a 3D CT-image in approximatively under then 1 minute.
Furthermore, this tool does not require complex or expensive equipment although it uses 3D CNN.
This method may be applied using conventional computers, thus allowing better implementation in
clinical practice.

The present study has some limitations. Our methodology was analyzed using only one protocol with
a slice thickness of 0.5 mm. Prionas et al.[19] reported a greater error of volume quantification for
thicker slices. Further studies are needed to evaluate volume in patient groups with different ages,
genders, and ethnicities. Nevertheless, the automated tool may be adapted to quantify volume in
other paranasal sinuses.

In conclusion, the present study found a good correlation between the manual and automated
sphenoidal sinus volume estimation techniques. Our automated measurements of sphenoidal sinus
volume based on CT exams were reliable, robust, and accurate compared with the manual method.
Our findings suggest that this automated tool may be applied in clinical practice.It does not require
substantial user expertise, and it is reproducible and fast.
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