
Workshop track - ICLR 2017

CONDITIONAL IMAGE SYNTHESIS WITH AUXILIARY
CLASSIFIER GANS

Augustus Odena∗, Christopher Olah & Jonathon Shlens
Google Brain
{augustusodena,colah,shlens}@google.com

1 INTRODUCTION

Characterizing the structure of natural images has been a rich research endeavor. Natural images
obey intrinsic invariances and exhibit multi-scale statistical structures that have historically been
difficult to quantify (Simoncelli & Olshausen, 2001). Recent advances in machine learning of-
fer an opportunity to substantially improve the quality of image models. Improved image models
advance the state-of-the-art in image denoising (Ballé et al., 2015), compression (Toderici et al.,
2016), in-painting (van den Oord et al., 2016a), and super-resolution (Ledig et al., 2016). Bet-
ter models of natural images also improve performance in semi-supervised learning tasks (Kingma
et al., 2014; Springenberg, 2015; Odena, 2016; Salimans et al., 2016) and reinforcement learning
problems (Blundell et al., 2016).

Generative adversarial networks (GANs) offer a distinct and promising approach that focuses on a
game-theoretic formulation for training an image synthesis model (Goodfellow et al., 2014). Recent
work has shown that GANs can produce convincing image samples on datasets with low variability
and low resolution (Denton et al., 2015; Radford et al., 2015). However, GANs struggle to gen-
erate globally coherent, high resolution samples - particularly from datasets with high variability.
Moreover, a theoretical understanding of GANs is an on-going research topic (Uehara et al., 2016;
Mohamed & Lakshminarayanan, 2016).
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Figure 1: 128×128 resolution samples from 5 classes taken from an AC-GAN trained on the ImageNet dataset.
Note that the classes shown have been selected to highlight the success of the model and are not representative.
Samples from all ImageNet classes are in the Appendix.

In this work we demonstrate that that adding more structure to the GAN latent space along with
a specialized cost function results in higher quality samples. We exhibit 128 × 128 pixel samples
from all classes of the ImageNet dataset (Russakovsky et al., 2015) with increased global coherence
(Figure 1). Importantly, we demonstrate quantitatively that our high resolution samples are not just
naive resizings of low resolution samples. In particular, downsampling our 128 × 128 samples
to 32 × 32 leads to a 50% decrease in visual discriminability. We also introduce a new metric
for assessing the variability across image samples and employ this metric to demonstrate that our
synthesized images exhibit diversity comparable to training data for a large fraction (84.7%) of
ImageNet classes.

∗Work completed as a participant in the 2016-2017 Google Brain Residency program.
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2 BACKGROUND

A generative adversarial network (GAN) consists of two neural networks trained in opposition to
one another. The generator G takes as input a random noise vector z and outputs an image Xfake =
G(z). The discriminator D receives as input either a training image or a synthesized image from
the generator and outputs a probability distribution P (S |X) = D(X) over possible image sources.
The discriminator is trained to maximize the log-likelihood it assigns to the correct source:

L = E[logP (S = real | Xreal)] + E[logP (S = fake | Xfake)]

The generator is trained to minimize that same quantity.

The basic GAN framework can be augmented using side information. One strategy is to supply
both the generator and discriminator with class labels in order to produce class conditional samples
(Mirza & Osindero, 2014). Class conditional synthesis can significantly improve the quality of
generated samples (van den Oord et al., 2016b). Richer side information such as image captions and
bounding box localizations may improve sample quality further (Reed et al., 2016a;b).

Instead of feeding side information to the discriminator, one can task the discriminator with re-
constructing side information. This is done by modifying the discriminator to contain an auxiliary
decoder network1 that outputs the class label for the training data (Odena, 2016; Salimans et al.,
2016) or a subset of the latent variables from which the samples are generated (Chen et al., 2016).
Forcing a model to perform additional tasks is known to improve performance on the original task
(e.g. Sutskever et al. (2014); Szegedy et al. (2014); Ramsundar et al. (2016)). In addition, an auxil-
iary decoder could leverage pre-trained discriminators (e.g. image classifiers) for further improving
the synthesized images (Nguyen et al., 2016). Motivated by these considerations, we introduce a
model that combines both strategies for leveraging side information. That is, the model proposed
below is class conditional, but with an auxiliary decoder that is tasked with reconstructing class
labels.

3 AC-GANS

We propose a variant of the GAN architecture which we call an auxiliary classifier GAN (or AC-
GAN). In the AC-GAN, every generated sample has a corresponding class label, c ∼ pc in addi-
tion to the noise z. G uses both to generate images Xfake = G(c, z). The discriminator gives
both a probability distribution over sources and a probability distribution over the class labels,
P (S | X), P (C | X) = D(X). The objective function has two parts: the log-likelihood of the
correct source, LS , and the log-likelihood of the correct class, LC .

LS = E[logP (S = real | Xreal)] + E[logP (S = fake | Xfake)]

LC = E[logP (C = c | Xreal)] + E[logP (C = c | Xfake)]

D is trained to maximize LS + LC while G is trained to maximize LC − LS . AC-GANs learn a
representation for z that is independent of class label (e.g. Kingma et al. (2014)).

Early experiments demonstrated that increasing the number of classes trained on while holding the
model fixed decreased the quality of the model outputs (Appendix E). The structure of the AC-
GAN model permits separating large datasets into subsets by class and training a generator and
discriminator for each subset. We exploit this property in our experiments to train across the entire
ImageNet data set.

4 RESULTS

We train several AC-GAN models on the ImageNet data set (Russakovsky et al., 2015). Broadly
speaking, the architecture of the generator G is a series of ‘deconvolution’ layers that transform the
noise z and class c into an image (Odena et al., 2016). We train two variants of the model architecture

1 Alternatively, one can force the discriminator to work with the joint distribution (X, z) and train a separate
inference network that computes q(z|X) (Dumoulin et al., 2016; Donahue et al., 2016).

2



Workshop track - ICLR 2017

16 x 16 32 x 32  64 x 64 128 x 128 256 x 256

Real

Fake

0% 0%  42% 76% 76%

0% 7%  62% 94% 94%

Figure 2: Generating high resolution images improves discriminability. Top: Training data and synthesized im-
ages from the zebra class resized to a lower spatial resolution (indicated above) and subsequently artificially
resized to the original resolution. Inception accuracy is shown below the corresponding images. Bottom Left:
Summary of accuracies across varying spatial resolutions for training data and image samples from 64×64 and
128× 128 models. Error bar measures standard deviation across 10 subsets of images. Dashed lines highlight
the accuracy at the output spatial resolution of the model. The training data (clipped) achieves accuracies of
24%, 54%, 81% and 81% at resolutions of 32, 64, 128, and 256 respectively. Bottom Right: Comparison of
accuracy scores at 128×128 and 32×32 spatial resolutions (x and y axis, respectively). Each point represents
an ImageNet class. 84.4% of the classes are below the line of equality. The green dot corresponds to the zebra
class. We also artificially resized 128× 128 and 64× 64 images to 256× 256 as a sanity check to demonstrate
that simply increasing the number of pixels will not increase discriminability.

for generating images at 128 × 128 and 64 × 64 spatial resolutions. The discriminator D is a deep
convolutional neural network with a Leaky ReLU nonlinearity (Maas et al., 2013). See Appendix B
for more details. As mentioned earlier, we find that reducing the variability introduced by all 1000
classes of ImageNet significantly improves the quality of training. We train 100 AC-GAN models –
each on images from just 10 classes – for 50000 mini-batches of size 100.

Evaluating the quality of image synthesis models is challenging due to the variety of probabilis-
tic criteria (Theis et al., 2015) and the lack of a perceptually meaningful image similarity metric.
Nonetheless, in subsequent sections we attempt to measure the quality of the AC-GAN by building
several ad-hoc measures for image sample discriminability and diversity. Our hope is that this work
might provide quantitative measures that may be used to aid training and subsequent development
of image synthesis models.

Figure 2 contains our attempt to measure whether the model is making ‘full use’ of its output reso-
lution. See Appendix A for more details and further experiments.
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A FURTHER EXPERIMENTS

Here we present further experimenal results that did not fit into the main paper.

A.1 GENERATING HIGH RESOLUTION IMAGES IMPROVES DISCRIMINABILITY

Building a class-conditional image synthesis model necessitates measuring the extent to which syn-
thesized images appear to belong to the intended class. In particular, we would like to know that
a high resolution sample is not just a naive resizing of a low resolution sample. Consider a simple
experiment: pretend there exists a model that synthesizes 32×32 images. One can trivially increase
the resolution of synthesized images by performing bilinear interpolation. This would yield higher
resolution images, but these images would just be blurry versions of the low resolution images that
are not discriminable. Hence, the goal of an image synthesis model is not simply to produce high
resolution images, but to produce high resolution images that are more discriminable than low reso-
lution images.

To measure discriminability, we feed synthesized images to a pre-trained Inception network
(Szegedy et al., 2015) and report the fraction of the samples for which the Inception network as-
signed the correct label2. We calculate this accuracy measure on a series of real and synthesized im-
ages which have had their spatial resolution artificially decreased by bilinear interpolation (Figure 2,
top panels). Note that as the spatial resolution is decreased, the accuracy decreases - indicating that
resulting images contain less class information (Figure 2, scores below top panels). We summarized
this finding across all 1000 ImageNet classes for the ImageNet training data (black), a 128 × 128
resolution AC-GAN (red) and a 64 × 64 resolution AC-GAN (blue) in Figure 2 (bottom, left). The
black curve (clipped) provides an upper-bound on the discriminability of real images.

The goal of this analysis is to show that synthesizing higher resolution images leads to increased
discriminability. The 128× 128 model achieves an accuracy of 10.1% ± 2.0% versus 7.0% ± 2.0%
with samples resized to 64× 64 and 5.0% ± 2.0% with samples resized to 32× 32. In other words,
downsizing the outputs of the AC-GAN to 32 × 32 and 64 × 64 decreases visual discriminability
by 50% and 38% respectively. Furthermore, 84.4% of the ImageNet classes have higher accuracy at
128× 128 than at 32× 32 (Figure 2, bottom left).

We performed the same analysis on an AC-GAN trained to 64 × 64 spatial resolution. This model
achieved less discriminability than a 128×128 AC-GAN model. Accuracies from the 64×64 model
plateau at a 64×64 spatial resolution consistent with previous results. Finally, the 64×64 resolution
model achieves less discriminability at 64 spatial resolution than the 128× 128 model.

A.2 MEASURING THE DIVERSITY OF GENERATED IMAGES

An image synthesis model is not very interesting if it only outputs one image. Indeed, a well-known
failure mode of GANs is that the generator will collapse and output a single prototype that maximally
fools the discriminator (Goodfellow et al., 2014; Salimans et al., 2016). A class-conditional model
of images is not very interesting if it only outputs one image per class. The Inception accuracy can
not measure whether a model has collapsed. A model that simply memorized one example from
each ImageNet class would do very well by this metric. Thus, we seek a complementary metric to
explicitly evaluate the intra-class diversity of samples generated by the AC-GAN.

Several methods exist for quantitatively evaluating image similarity by attempting to predict human
perceptual similarity judgements. The most successful of these is multi-scale structural similarity
(MS-SSIM) (Wang et al., 2004b; Ma et al., 2016). MS-SSIM is a multi-scale variant of a well-
characterized perceptual similarity metric that attempts to discount aspects of an image that are not
important for human perception (Wang et al., 2004a). MS-SSIM values range between 0.0 and 1.0;
higher MS-SSIM values correspond to perceptually more similar images. As a proxy for image
diversity, we measure the MS-SSIM scores between randomly chosen pairs of images within a

2 One could also use the Inception score (Salimans et al., 2016), but our method has several advan-
tages: accuracy figures are easier to interpret than exponentiated KL-divergences; accuracy may be as-
sessed for individual classes; accuracy measures whether a class-conditional model generated samples from
the intended class. To compute the Inception accuracy, we modified a version of Inception-v3 supplied in
https://github.com/openai/improved-gan/.
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Figure 3: Examples of different MS-SSIM scores. The top and bottom rows contain AC-GAN samples and
training data, respectively.

given class. Samples from classes that have higher diversity result in lower mean MS-SSIM scores
(Figure 3, left columns); samples from classes with lower diversity have higher mean MS-SSIM
scores (Figure 3, right columns). Training images from the ImageNet training data contain a variety
of mean MS-SSIM scores across the classes indicating the variability of image diversity in ImageNet
classes (Figure 4, left panel, x-axis). Note that the highest mean MS-SSIM score (indicating the least
variability) is 0.25 for the training data.

We calculate the mean MS-SSIM score for all 1000 ImageNet classes generated by the AC-GAN
model. We track this value during training to identify whether the generator has collapsed (Figure 4,
right panel, red curve). We also employ this metric to compare the diversity of the training images
to the samples from the GAN model after training has completed. Figure 4 (left) plots the mean
MS-SSIM values for image samples and training data broken up by class. The blue line is the line
of equality. Out of the 1000 classes, we find that 847 have mean sample MS-SSIM scores below
that of the maximum MS-SSIM for the training data. In other words, 84.7% of classes have sample
variability that exceeds that of the least variable class from the ImageNet training data.

Note that SSIM is not intended as a generic distance measure that will measure any distance in
semantic space. Instead, we are focused on the real potential for a GAN to output a set of images that
are only differ across brightness, illumination and contrast. The variability across these dimensions
are not perceptually relevant for measuring the diversity of the GAN’s output and we want our
distance metric to treat these variants of an image as negligible, hence our selection of the SSIM
metric.

A.3 GENERATED IMAGES ARE BOTH DIVERSE AND DISCRIMINABLE

We have presented quantitative metrics demonstrating that AC-GAN samples may be diverse and
discriminable but we have yet to examine how these metrics interact. Figure 5 shows the joint
distribution of Inception accuracies and MS-SSIM scores across all classes. Inception accuracy
and MS-SSIM are anti-correlated (r2 = −0.16). In fact, 74% of the classes with low diversity (MS-
SSIM≥ 0.25) contain Inception accuracies≤ 1%. These results suggest that GANs that drop modes
are most likely to produce low quality images. Conversely, 78% of classes with high diversity (MS-
SSIM < 0.25) have Inception accuracies that exceed 1%. In comparison, the Inception-v3 model
achieves 78.8% accuracy on average across all 1000 classes (Szegedy et al., 2015). A fraction of the
classes AC-GAN samples reach this level of accuracy. This indicates opportunity for future image
synthesis models.
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Figure 4: (Left) Comparison of the mean MS-SSIM scores between pairs of images within a given class for
ImageNet training data and samples from the GAN (blue line is equality). The horizontal red line marks the
maximum MS-SSIM value across all ImageNet classes. Each point is an individual class. The mean standard
deviation of scores across the training data and the samples was 0.06 and 0.08 respectively. Scores below
the red line (84.7% of classes) arise from classes where GAN training largely succeeded. (Right) Intra-class
MS-SSIM for selected ImageNet classes throughout a training run. Classes that successfully train tend to have
decreasing mean MS-SSIM scores, to a point.

Figure 5: Inception accuracy vs MS-SSIM for all 1000 ImageNet classes (r2 = −0.16). Samples from AC-
GAN models do not achieve variability at the expense of discriminability.

A.4 COMPARISON TO PREVIOUS RESULTS

Previous quantitative results for image synthesis models trained on ImageNet are reported in terms
of log-likelihood (van den Oord et al., 2016a;b). Log-likelihood is a coarse and potentially inaccu-
rate measure of sample quality (Theis et al., 2015). Addditionally, log-likelihood is intractable to
compute for GANs. Instead we compare with previous state-of-the-art results on CIFAR-10 using a
lower spatial resolution (32 × 32). Following the procedure in Salimans et al. (2016), we compute
the Inception score3 for 50000 samples from an AC-GAN with resolution (32 × 32), split into 10
groups at random. We also compute the Inception score for 25000 extra samples, split into 5 groups
at random. We select the best model based on the first score and report the second score. Performing
a grid search across 27 hyperparameter configurations, we are able to achieve a score of 8.25± 0.07
compared to state of the art 8.09± 0.07 (Salimans et al., 2016). Moreover, we accomplish this with-
out employing any of the new techniques introduced in that work (i.e. virtual batch normalization,
minibatch discrimination, and label smoothing). This provides additional evidence that AC-GANs
are effective even without the benefit of class splitting (Appendix E).

3 The Inception score is given by exp (Ex[DKL(p(y|x) || p(y))]) where x is a particular image, p(y|x)
is the conditional output distribution over the classes in a pre-trained Inception network (Szegedy et al., 2014)
given x, and p(y) is the marginal distribution over the classes.
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A.5 SEARCHING FOR SIGNATURES OF OVERFITTING

One possibility that must be investigated is that the AC-GAN has overfit on the training data. As a
first check that the network does not memorize the training data, we identify the nearest neighbors
of image samples in the training data measured by L1 distance in pixel space (Figure 6). The nearest
neighbors from the training data do not resemble the corresponding samples. This provides evidence
that the AC-GAN is not merely memorizing the training data.

Figure 6: Nearest neighbor analysis. (Left) Samples from a single ImageNet class. (Right) Corresponding
nearest neighbor (L1 distance) in training data for each sample.

A more sophisticated method for understanding the degree of overfitting in a model is to explore
that model’s latent space by interpolation. In an overfit model one might observe discrete transitions
in the interpolated images and regions in latent space that do not correspond to meaningful images
(Bengio et al., 2012; Radford et al., 2015; Dinh et al., 2016). Figure 7 (left) highlights interpolations
in the latent space between several image samples. Notably, the generator learned that certain com-
binations of dimensions correspond to semantically meaningful features (e.g. size of the arch, length
of a bird’s beak) and there are no discrete transitions or ‘holes’ in the latent space. A second method
for exploring the latent space of the AC-GAN is to exploit the structure of the model. The AC-GAN
factorizes its representation into class information and a class-independent latent representation z.
Sampling the AC-GAN with z fixed but altering the class label corresponds to generating samples
with the same ‘style’ across multiple classes (Kingma et al., 2014). Figure 7 (right) shows samples
from 8 bird classes. Elements of the same row have the same z. Although the class changes for
each column, elements of the global structure (e.g. position, layout, background) are preserved,
indicating that AC-GAN can represent certain types of ‘compositionality’.

Figure 7: (Left) Latent space interpolations for selected ImageNet classes. Left-most and right-columns show
three pairs of image samples - each pair from a distinct class. Intermediate columns highlight linear interpola-
tions in the latent space between these three pairs of images. (Right) Class-independent information contains
global structure about the synthesized image. Each column is a distinct bird class while each row corresponds
to a fixed latent code z.
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B HYPERPARAMETERS

Operation Kernel Strides Feature maps BN? Dropout Nonlinearity

Gx(z) – 110× 1× 1 input
Linear N/A N/A 768 × 0.0 ReLU

Transposed Convolution 5× 5 2× 2 384
√

0.0 ReLU
Transposed Convolution 5× 5 2× 2 256

√
0.0 ReLU

Transposed Convolution 5× 5 2× 2 192
√

0.0 ReLU
Transposed Convolution 5× 5 2× 2 3 × 0.0 Tanh

D(x) – 128× 128× 3 input
Convolution 3× 3 2× 2 16 × 0.5 Leaky ReLU
Convolution 3× 3 1× 1 32

√
0.5 Leaky ReLU

Convolution 3× 3 2× 2 64
√

0.5 Leaky ReLU
Convolution 3× 3 1× 1 128

√
0.5 Leaky ReLU

Convolution 3× 3 2× 2 256
√

0.5 Leaky ReLU
Convolution 3× 3 1× 1 512

√
0.5 Leaky ReLU

Linear N/A N/A 11 × 0.0 Soft-Sigmoid
Optimizer Adam (α = 0.0002, β1 = 0.5, β2 = 0.999)
Batch size 100
Iterations 50000

Leaky ReLU slope 0.2
Weight, bias initialization Isotropic gaussian (µ = 0, σ = 0.02), Constant(0)

Table 1: ImageNet hyperparameters. A Soft-Sigmoid refers to an operation over K + 1 output units where
we apply a Softmax activation to K of the units and a Sigmoid activation to the remaining unit. We also use
activation noise in the discriminator as suggested in Salimans et al. (2016).
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Operation Kernel Strides Feature maps BN? Dropout Nonlinearity

Gx(z) – 110× 1× 1 input
Linear N/A N/A 384 × 0.0 ReLU

Transposed Convolution 5× 5 2× 2 192
√

0.0 ReLU
Transposed Convolution 5× 5 2× 2 96

√
0.0 ReLU

Transposed Convolution 5× 5 2× 2 3 × 0.0 Tanh
D(x) – 32× 32× 3 input

Convolution 3× 3 2× 2 16 × 0.5 Leaky ReLU
Convolution 3× 3 1× 1 32

√
0.5 Leaky ReLU

Convolution 3× 3 2× 2 64
√

0.5 Leaky ReLU
Convolution 3× 3 1× 1 128

√
0.5 Leaky ReLU

Convolution 3× 3 2× 2 256
√

0.5 Leaky ReLU
Convolution 3× 3 1× 1 512

√
0.5 Leaky ReLU

Linear N/A N/A 11 × 0.0 Soft-Sigmoid
Generator Optimizer Adam (α = [0.0001, 0.0002, 0.0003], β1 = 0.5, β2 = 0.999)

Discriminator Optimizer Adam (α = [0.0001, 0.0002, 0.0003], β1 = 0.5, β2 = 0.999)
Batch size 100
Iterations 50000

Leaky ReLU slope 0.2
Activation noise standard deviation [0, 0.1, 0.2]

Weight, bias initialization Isotropic gaussian (µ = 0, σ = 0.02), Constant(0)

Table 2: CIFAR-10 hyperparameters. When a list is given for a hyperparameter it means that we performed a
grid search using the values in the list. For each set of hyperparameters, a single AC-GAN was trained on the
whole CIFAR-10 dataset. For each AC-GAN that was trained, we split up the samples into groups so that we
could give some sense of the variance of the Inception Score. To the best of our knowledge, this is identical to
the analysis performed in Salimans et al. (2016).
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C QUALITATIVE COMPARISON OF SAMPLES

Figure 8: Samples generated from the ImageNet dataset. (Left) Samples generated from the model in Salimans
et al. (2016). (Right) Samples generated from an AC-GAN. AC-GAN samples possess global coherence absent
from the samples of the earlier model. It’s relatively clear that - clockwise from top-left - the images are of a
flower, a bird in a tree, a landscape, and a spider. The spider even seems to have around 8 legs, depending on
how the counting is done.

D USING MS-SSIM TO FIND NEAREST NEIGHBORS

Figure 9: Nearest neighbor analysis using MS-SSIM instead of L1. Neighbors appear more structurally similar
than when L1 is used, but there is still no meaningful evidence of memorization. (Left) Samples from a single
ImageNet class. (Right) Corresponding nearest neighbor in training data for each sample.
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E MEASURING THE EFFECT OF CLASS SPLITS ON IMAGE SAMPLE QUALITY.

Class conditional image synthesis affords the opportunity to divide up a dataset based on image label.
In our final model we divide 1000 ImageNet classes across 100 AC-GAN models. In this section
we describe early experiments that highlight the benefit of cutting down the diversity of classes for
training an AC-GAN. We employed an ordering of the labels and divided it into contiguous groups
of 10. This ordering can be seen in the following section, where we display samples from all 1000
classes. Two aspects of the split merit discussion: the number of classes per split and the intra-split
diversity.

We find that training a fixed model on more classes harms the model’s ability to produce compelling
samples (Figure 10). Performance on larger splits can be improved by giving the model more param-
eters. However, using a small split is not sufficient to achieve good performance. We were unable to
train a GAN (Goodfellow et al., 2014) to converge reliably even for a split size of 1.

Figure 10: Mean pairwise MS-SSIM values for 10 ImageNet classes plotted against the number of ImageNet
classes used during training. We fix everything except the number of classes trained on, using values from 10
to 100. We only report the MS-SSIM values for the first 10 classes to keep the scores comparable. MS-SSIM
quickly goes above 0.25 (the red line) as the class count increases. These scores were computed using 9 random
restarts per class count, using the same number of training steps for each model. Since we have observed that
generators do not recover from the collapse phase, the use of a fixed number of training steps seems justified in
this case.

This raises the question of whether it is easier to train a model on a diverse set of classes than on a
similar set of classes. We were unable to find conclusive evidence that the selection of classes in a
split significantly affects sample quality.

We don’t have a hypothesis about what causes this sensitivity to class count that is well-supported
experimentally. We can only note that, since the failure case that occurs when the class count is
increased is ‘generator collapse’, it seems plausible that general methods for addressing ‘generator
collapse’ could also address this sensitivity.
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F SAMPLES FROM ALL 1000 IMAGENET CLASSES

The following is a link to 10 samples from each of the 1000 ImageNet classes:
https://goo.gl/photos/8bgHBkCwDEVTXAPaA
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