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ABSTRACT

Beam search is the most popular inference algorithm for decoding neural sequence
models. Unlike greedy search, beam search allows for a non-greedy local deci-
sions that can potentially lead to a sequence with a higher overall probability.
However, previous work found that the performance of beam search tends to de-
grade with large beam widths. In this work, we perform an empirical study of the
behavior of the beam search algorithm across three sequence synthesis tasks. We
find that increasing the beam width leads to sequences that are disproportionately
based on early and highly non-greedy decisions. These sequences typically in-
clude a very low probability token that is followed by a sequence of tokens with
higher (conditional) probability leading to an overall higher probability sequence.
However, as beam width increases, such sequences are more likely to have a lower
evaluation score. Based on our empirical analysis we propose to constrain the
beam search from taking highly non-greedy decisions early in the search. We
evaluate two methods to constrain the search and show that constrained beam
search effectively eliminates the problem of beam search degradation and in some
cases even leads to higher evaluation scores. Our results generalize and improve
upon previous observations on copies and training set predictions.

1 INTRODUCTION

Neural sequence models are among the most popular tools for modeling sequential data and have
been applied to a range of applications including machine translation (Gehring et al., 2017), summa-
rization (Chopra et al., 2016), image captioning (Vinyals et al., 2017), and conversation modeling
(Vinyals & Le, 2015). The most commonly used inference algorithm for decoding neural sequence
models is beam search, a search algorithm that generates the sequence tokens one-by-one while
keeping a fixed number of active candidates (beams) at each step.

Recently, several works reported the problem of performance degradation in beam search. In ma-
chine translation, Koehn & Knowles (2017) found that beam search “only improves translation for
narrow beams and deteriorates when exposed to a larger search space”. They chose this problem
as one of six central challenges in machine translation. Ott et al. (2018) proposed the existence
of training pairs in which the target is a copy of the source as an explanation for the performance
degradation. For larger beams, more predictions can be classified as “copies”1 and filtering these
copies reduces the performance degradation.

In image captioning, Vinyals et al. (2017) observed performance degradation for wider beams and
highlighted the use of a narrower beam search as one of the most significant improvements in their
model. They hypothesized that the performance degradation is either due to overfitting or that the
objective function used in training (likelihood) is not aligned with human judgement. Their analysis
found that wider beams exhibited more predictions that repeat training captions and fewer novel
ones. They claim that this observation supports the hypothesis that the model is overfitted and
therefore see the use of smaller beam width as “another way to regularize”.

In this work, we analyze the performance of beam search across multiple tasks including machine
translation, abstractive summarization, and image captioning. We present an explanatory model that

1“Copies” are predictions that share at least 50% of their unigrams with their source (Ott et al., 2018).
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is based on the concept of search discrepancies (deviations from greedy choices) and perform an
empirical study of the distribution of such discrepancies. We make the following contributions:

1. We show that increasing the beam width leads to solutions with more and larger early dis-
crepancies. These sequences often have lower evaluation score, leading to the observed
performance degradation. As we increase the beam width, the difference between discrep-
ancies that are associated with improved vs. degraded solutions grows substantially.

2. We show that our explanatory model generalizes the previously observed copies and pre-
dictions that repeat training set targets and accounts for more of the degraded predictions.

3. Exploiting the above insights, we propose a fix that is based on constraining the discrepan-
cies considered by the beam search. An empirical analysis shows it successfully eliminates
the performance degradation.

2 PRELIMINARIES

2.1 NEURAL SEQUENCE MODELS

Given a model parameterized by θ and an input x, the problem of sequence generation consists of
finding a sequence ŷ such that ŷ = argmaxy∈Y Pθ(y | x), where Y is the set of all sequences. y is
a sequence of tokens y = {y0, ...yT−1} from vocabulary V , where T is the length of the sequence
y. The expression Pθ(y | x) can then be factored as Pθ(y | x) =

∏T−1
t=0 Pθ(yt | x; {y0, ..., yt−1}),

or for convenience using log-probability as
∑T−1
t=0 logPθ(yt | x; {y0, ..., yt−1}).

It is common to model logPθ(yt | x; {y0, ..., yt−1}) using a Recurrent Neural Network (RNN),
where the sequence {y0, ..., yt−1} conditioned on is expressed by a fixed length hidden state ht.
This hidden state is updated using a non-linear function f : ht+1 = f(ht, yt).

Exhaustive search to find the globally optimal sequence is not tractable. A greedy algorithm that
selects the best candidate at each time step yt = argmaxy∈V logPθ(y | x; {y0, ..., yt−1}) makes
a sequence of locally optimal decisions, but can lead to a globally sub-optimal sequence. Beam
search, in contrast, extends the B most probable partial solutions at each step, where B is called
beam width. Following Vijayakumar et al. (2018), we denote the set of B solutions held by the
beam search at step t − 1 as Y[t−1]={y1,[t−1], ..., yB,[t−1]}. At each step, beam search selects the
top scoring B candidates from the set of all possible one token extensions of its beams Yt={y[t] |
y[t−1] ∈ Y[t−1] ∧ yt ∈ V}. Formally, the beam search candidates are updated as follows:

Y[t] = argmax
y[1,t],...,y[B,t]∈Yt

∑
b∈[1..B]

logPθ(yb,t | x)

s.t. yi 6= yj ∀i 6= j; i, j ∈ [1..B]

(1)

2.2 SEARCH DISCREPANCIES IN NEURAL SEQUENCE GENERATION

In combinatorial search, a search discrepancy is a decision made by the search algorithm that is
not the most highly rated one according to the heuristic (Harvey & Ginsberg, 1995). In the context
of search for neural sequence generation, we define a search discrepancy as extending a partial
sequence with a token that is not the most probable one (i.e., different than the greedy algorithm).
More formally, a sequence y is considered to have a search discrepancy at time step t if

logPθ(yt | x; {y0, ..., yt−1}) < max
y∈V

logPθ(y | x; {y0, ..., yt−1}). (2)

We denote the ratio between the most probable token and the chosen token as discrepancy gap. We
measure the gap based on the difference in log-probability, i.e., the discrepancy gap at step t is

max
y∈V

log Pθ(y | x; {y0, ..., yt−1})− log Pθ(yt | x; {y0, ..., yt−1}). (3)

3 EXPERIMENTAL SETUP

We perform an extensive empirical evaluation over multiple tasks, models, datasets, toolkits, and
evaluation metrics. Following is a description of the experimental setup for each task.
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Machine Translation. We use the convolutional model by Gehring et al. (2017) implemented in the
fairseq-py toolkit. We present results for two models, trained on WMT’14 En-Fr and En-De datasets
and evaluated on newstest2014 En-Fr and En-De, respectively.

Summarization. We use the abstractive summarization model by Chopra et al. (2016) implemented
in OpenNMT toolkit (Klein et al., 2017). The model is trained and evaluated using Rush et al.’s
(2015) test split of the Gigaword corpus (Graff et al., 2003).

Image Captioning. We use the model by Vinyals et al. (2017), trained on the MSCOCO dataset
(Lin et al., 2014). The test set includes 5000 images based on Karpathy & Fei-Fei’s (2015) splits.

In machine translation and summarization, we apply length normalization on the hypotheses log-
likelihood, as it was shown to reduce the performance degradation by not prioritizing short sentences
(Koehn & Knowles, 2017; Gehring et al., 2017). For image captioning, consistent with previous
works, we do not use length normalization (we also found it reduces the overall performance).

3.1 EVALUATION METRICS

While beam search finds the (approximately) most probable sequence, the quality of a sequence is
evaluated based on human references using a task-specific evaluation metric. For machine transla-
tion and image captioning we use BLEU-n (Papineni et al., 2002), a geometric average of precision
over 1- to n-grams multiplied by a brevity penalty for short sentences. As in recent literature, we
present results for BLEU-4. Corpus-level BLEU is reported without smoothing, while for sentence-
level BLEU we use smoothed n-gram counts for n > 1 (Lin & Och, 2004). For image captioning,
we also evaluated the performance using CIDEr (Vedantam et al., 2015) and SPICE (Anderson et al.,
2016b) and report these metrics in Appendix E.

For summarization, we use ROUGE (Lin, 2004), the n-gram recall between candidate summary
and a reference. We report the F-score of ROUGE-1, however similar trends were observed for the
F-score of ROUGE-L (for longest common subsequence).

4 EMPIRICAL ANALYSIS OF SEARCH DISCREPANCIES IN BEAM SEARCH

In this section we present an empirical analysis of the search discrepancies. We analyze and compare
the most likely hypotheses found by a beam search for the following beam widths: {1, 3, 5, 25, 100,
250}. Due to space, we present detailed results for one of the tasks and summarize the results for
the others. The results for all tasks and metrics can be found in Appendix A.

4.1 BASELINE RESULTS

Table 1 presents the performance of beam search with different beam widths, based on the chosen
evaluation metrics. The performance degradation for larger beam widths appears for all tested tasks
based on their task-specific evaluation metric. These results are consistent with the existing reports
of such performance degradation (Koehn & Knowles, 2017; Ott et al., 2018; Vinyals et al., 2017).

Table 1: Baseline results for different beam widths (higher values are better, best results in bold).

Task Dataset Metric B=1 B=3 B=5 B=25 B=100 B=250

Translation En-De BLEU4 25.27 26.00 26.11 25.11 23.09 21.38
En-Fr BLEU4 40.15 40.77 40.83 40.52 38.64 35.03

Summarization Gigaword R-1 F 33.56 34.22 34.16 34.01 33.67 33.23
Captioning MSCOCO BLEU4 29.66 32.36 31.96 30.04 29.87 29.79

4.2 THE DISTRIBUTION OF SEARCH DISCREPANCIES

In this section, we analyze the distribution and size of search discrepancies vs. their position (index)
in sequence. Figure 1 shows the number of discrepancies per position for the most likely hypotheses
generated by a beam search on the WMT’14 En-De test set for different beam widths (all graphs
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are based on the same number of solutions, however the total number of discrepancies in the gen-
erated solutions is not necessarily the same for different beam widths). In general, the majority of
discrepancies happen in early positions. More interestingly, for larger beams, the number of early
discrepancies grows significantly while the number of later discrepancies stays approximately the
same. Larger beams seem to allow the search to find solutions with higher overall probability by
exploring less probable early tokens, however they do not seem to lead to more probable sequences
that share a prefix with solutions found for a smaller beam width. Similar results for the other tasks
are reported in Appendix A. For image captioning (MSCOCO), we find the majority of early search
discrepancies appear on the second token due to the first token being “a” with high probability in
almost all sentences (in greedy search, for example, 99% of the generated captions start with “a”).

1 2 3 4 5 6 7 8 9 10

Discrepancy Position

0
100
200
300
400
500
600
700

Co
un

t

beamWidth = 5

1 2 3 4 5 6 7 8 9 10

Discrepancy Position

beamWidth = 100

1 2 3 4 5 6 7 8 9 10

Discrepancy Position

beamWidth = 250

Figure 1: WMT’14 En-De: Distribution of discrepancy positions for different beam widths.

Next, we analyze the discrepancy gap vs. sequence position. Figure 2 presents the mean gap per
position for WMT’14 En-De for different beam widths. Again, we can see that the changes are
mainly in the early positions: as we increase the beam width, the search tends to find solutions with
larger early discrepancy gap, i.e., the early tokens are relatively less likely. The discrepancy gap of
the other tokens remains similar. Similar results for the other tasks are reported in Appendix A.
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Figure 2: WMT’14 En-De: Mean discrepancy gap per position for different beam widths.

The increase in count and size of early discrepancies for larger beams means that the search manages
to find solutions with higher overall probability when starting from a large discrepancy. However,
these solution are not necessarily better according to the evaluation metric. The observed perfor-
mance degradation suggests that the more probable solutions found by larger beams are, in fact,
worse. Identifying discrepancies that are likely to lead to a worse solution is therefore a key task
in addressing the performance degradation. In the next section, we analyze the differences between
discrepancies in solutions with higher evaluation vs. solutions with lower evaluation.

4.3 IMPROVED VS. DEGRADED SOLUTIONS

We now compare the solutions generated by a greedy search with the solutions generated by beam
search with different widths. We then analyze the discrepancies in solutions that were improved by
increasing the beam width (with respect to the evaluation metric) vs. solutions that were degraded.

Figure 3 shows the number of discrepancies per position for WMT’14 En-De, comparing solutions
that were improved vs. solutions that were degraded. For B=5 there are 386 solutions in which the
first token is not based on a greedy decision. Of those, 200 have a better evaluation than the greedy
solution and 169 have a worse evaluation. However, as we increase the beam width, we see that
the increase in early discrepancies observed in Figure 1 is associated almost entirely with degraded

4



Under review as a conference paper at ICLR 2019

solutions. This result explains the observed performance degradation for larger beam widths. Similar
results for the other tasks are reported in Appendix A.
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Figure 3: WMT’14 En-De: Distribution of discrepancy positions for different beam widths.

Next, we compare the discrepancy gaps in degraded vs. improved solutions. Figure 4 presents the
mean discrepancy gap per position for the WMT’14 En-De dataset, for both the improved and the
degraded solutions. Interestingly, we find that the additional early discrepancies that are associated
with degraded solutions tend to have a much higher discrepancy gap compared to the ones associated
with improved solutions. Similar results for the other tasks are reported in Appendix A.
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Figure 4: WMT’14 En-De: Mean discrepancy gap per position for different beam widths.

4.4 SEARCH DISCREPANCIES AND THE MOST LIKELY HYPOTHESIS

In order for a sequence with early large discrepancy to be selected by a beam search as (approxi-
mately) the most likely hypothesis, it has to be followed by tokens with higher (conditional) prob-
ability. Figure 5 shows the average (conditional) token probability for WMT’14 En-De (we use
log-scale on the x axis to highlight the early positions). For larger beam widths, the average prob-
ability of early tokens decreases (due to larger discrepancy gaps) while the average probability of
later tokens increases explaining the overall higher probability.2 Figure 5 also shows the same graph
for the improved vs. degraded solutions (compared to greedy search). For improved solutions, we
do not see significant change as we increase the beam width. For degraded solutions, however,
as we increase the beam width we find more and more early discrepancies that lead to an overall
higher probability but a worse evaluation metric value. For all tasks, we found the differences for
the degraded solutions to be larger than the improved solutions (see Appendix A).

Ott et al. (2018) observed the same pattern for copies, i.e., they have low first token probability and
higher probabilities for subsequent tokens. Our analysis accounts for this behavior and suggests
that copies are one instance of a more general pattern that leads to degraded sequences. In the next
section, we show that our analysis generalizes copies, as well as training set predictions, and even
accounts for additional degraded sequences.

4.5 GENERALIZING COPIES AND TRAINING SET PREDICTIONS

Table 2 shows the number of copies in machine translation and training set predictions in summa-
rization and image captioning. For larger beams, the number of copies and training set predictions
grows. Table 2 also reports the mean discrepancy gap of the first token (second token for MSCOCO,
see Section 4.2). As our analysis predicts, the early gap of these predictions also grows significantly.

2When length normalization is not used, we should compare the product of token probabilities rather than
the average token probabilities. See Appendix A.3 for results on the unnormalized image captioning task.
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Figure 5: Average token probability per position for different beam widths.

Table 2: Number of copies and training set examples and the average first token discrepancy gap.

B=1 B=3 B=5 B=25 B=100 B=250

En-De # Copies 23 40 49 179 385 567
En-De First token gap (copies) 0.0 0.12 0.28 1.79 3.05 3.71
En-De First token gap (all) 0.0 0.05 0.07 0.18 0.46 0.77

En-Fr # Copies 25 28 41 89 227 358
En-Fr First token gap (copies) 0.0 0.12 0.31 1.69 3.68 4.38
En-Fr First token gap (all) 0.0 0.04 0.05 0.10 0.32 0.60

Gigaword # Training set predictions 81 86 86 115 163 224
Gigaword First token gap (train pred.) 0.0 0.07 0.07 0.98 1.84 2.61
Gigaword First token gap (all) 0.0 0.12 0.12 0.29 0.39 0.55

MSCOCO # Training set predictions 163 260 371 588 582 576
MSCOCO Second token gap (train pred.) 0.0 0.39 0.87 1.76 1.82 1.82
MSCOCO Second token gap (all) 0.0 0.20 0.29 0.49 0.51 0.51

Note that copies and training set predictions only partially account for the beam performance degra-
dation. In WMT’14 En-De machine translation withB = 25, we find that copies account for≈ 40%
of degraded solutions with first token gap. In Gigaword summarization with similar beam width,
we find that training set examples account for ≈ 68% of degraded solutions with first token gap.
Furthermore, in MSCOCO, since many of the solutions in the greedy search, as well as many of
the improved sequences, are training set captions, eliminating them all together is not desired. In-
stead, we are interested in avoiding the training set captions in the larger beam widths that led to the
performance degradation. These, as Table 2 shows, have larger difference in the discrepancy gap.

4.6 AN ILLUSTRATIVE EXAMPLE

Consider the following example of training set predictions in Gigaword summarization. As we
increase the beam width, we find more predictions with the structure: “〈weekday〉’s sports score-
board” (Table 3).3 As expected, these predictions have a large early discrepancy, followed by highly
(conditionally) probable tokens. For B = 100, the average first token discrepancy gap for these
summaries is ≈ 3.63 compared to ≈ 0.39 in the full test set. As none of the test references includes
“sports scoreboard”, these summaries have low evaluation score.

Table 3: Frequency of predicted summary for different beam widths.

B = 1 B = 3 B = 5 B = 25 B = 100 B = 250

“〈weekday〉’s sports scoreboard” 0 0 1 17 19 19

As a potential explanation for this phenomenon, we find that all texts that were summarized as
“〈weekday〉’s sports scoreboard” included the corresponding weekday. In the training set, we found

3Without length normalization, the numbers are higher as this sequence is shorter than most summaries.
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that in 2962 of the 2971 texts that were summarized to “〈weekday〉’s sports scoreboard” included
the corresponding weekday. This can lead to the weekday’s token suggested as a first token with
a low, but sufficiently high, probability to get into the top B tokens. Followed by high probability
tokens, it can, in some cases, have an overall probability that is higher than the alternatives.

5 DISCREPANCY-CONSTRAINED BEAM SEARCH

Building on our empirical analysis, we propose to constrain the beam search to avoid considering
highly unlikely discrepancies. To do so, we evaluate two methods of constraining the beam search:

1. Discrepancy gap: Given a thresholdM, we modify beam search to only consider candi-
dates with a discrepancy gap smaller or equal toM. Formally, we modify Eq. 1 to include
the constraint maxy∈V log Pθ(y | x; {y0, ..., yt−1})−log Pθ(yt | x; {y0, ..., yt−1}) ≤M.

2. Beam candidate rank: Given a thresholdN , we modify Yt to only include the topN one
token extensions in each beam. Note that the beam search still retains the topB candidates,
however it will not consider more than N candidates from the same beam.

Using the setup in Section 4.1, we compare these methods to the baseline. Although the analysis in
Section 4 was done on the test set (to account for the performance degradation that was previously
observed on the test set),M and N are tuned on a held-out validation set and no information from
the test set was used to tune our methods.

As shown in Table 4, both methods significantly reduce, and in some cases completely eliminate,
the performance degradation. In translation and summarization, we improve performance compared
to baseline with the best test beam width. In general, the gap constraint seems to be perform better
(most notably, for MSCOCO). The gap constraint allows for a finer-grained control over the accepted
discrepancies, however the rank constraint is simpler and easier to tune.

Table 4: A comparison of the baseline results vs. the constrained beam search methods (higher
values are better, best baseline results in bold).

Dataset Method Threshold B=1 B=3 B=5 B=25 B=100 B=250

En-De
(BLEU-4)

Baseline 25.27 26.00 26.11 25.11 23.09 21.38
Constr. Gap M = 1.5 25.27 26.00 26.18 26.18 26.22 26.29
Constr. Rank N = 2 25.27 26.07 26.01 26.08 26.10 26.10

En-Fr
(BLEU-4)

Baseline 40.15 40.77 40.83 40.52 38.64 35.03
Constr. Gap M = 2.0 40.15 40.78 40.86 40.98 41.05 41.06
Constr. Rank N = 3 40.15 40.77 40.81 40.99 41.05 41.02

Gigaword
(R-1 F)

Baseline 33.56 34.22 34.16 34.01 33.67 33.23
Constr. Gap M = 0.85 33.56 34.27 34.29 34.43 34.33 34.32
Constr. Rank N = 2 33.56 34.48 34.45 34.25 34.23 34.32

MSCOCO
(BLEU-4)

Baseline 29.66 32.36 31.96 30.04 29.87 29.79
Constr. Gap M = 0.45 29.66 32.24 32.33 32.36 32.35 32.35
Constr. Rank N = 2 29.66 32.52 31.97 30.88 30.87 30.87

We also compared the number of copies and training set predictions in the baseline vs. the two
discrepancy-constrained variants of beam search. We find that the constrained methods reduce the
growth in the number of copies and training set predictions that happen as we increase the beam
width. The detailed comparison can be found in Appendix B.

Finally, we repeated our analysis above and find that both constrained beam search variations sub-
stantially reduce the discrepancy phenomena observed in Section 4. Complete results and graphs
for both constrained methods on WMT’14 En-De are in Appendix C (other tasks exhibited similar
results).
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6 DISCUSSION

Our results show that larger beam width leads to increasingly large early discrepancies. These
very unlikely early tokens are later compensated by subsequent tokens with a much higher (condi-
tional) probability compared to the subsequent tokens of the more probable early tokens. The large
difference in the conditional probability of the subsequent tokens is at the heart of the observed
performance degradation. Previous work has highlighted two potential biases that can account for
this difference. Exposure bias (Ranzato et al., 2015) occurs since the model is only exposed to the
training data and can be biased towards the training set distribution (our illustrative example demon-
strates such bias due to a repetitive pattern in the training data). Label bias (Wiseman & Rush, 2016)
occurs since token probabilities at each time step are locally normalized and therefore the successors
of incorrect histories receive the same probability mass as the successors of a correct history.

These above biases help explain the observed behavior with large beam width: a biased (conditional)
probability that concentrates high probability mass on one token and is locally normalized to sum to
one compensates for earlier low probability tokens. The negative effects of these biases have been
discussed before, however the described connection to the performance degradation in beam search
and the explanatory framework to allow such analysis is, to our best knowledge, novel.

The use of the search discrepancy concept from heuristic and combinatorial search views the prob-
abilities predicted by the neural network as a heuristic to guide the search. Early mistakes in such
search have been shown to have a large negative effect on performance (Gent & Walsh, 1994). Sub-
stantial work has analyzed and proposed techniques to mitigate the phenomenon (Gomes et al., 2005;
Cohen & Beck, 2018), including limited discrepancy search (Harvey & Ginsberg, 1995). Further
investigation of the connection between such work and neural decoding may lead to further insight.

7 RELATED WORK

Search discrepancies have been the base of many search techniques in combinatorial search and
optimization (e.g., Harvey & Ginsberg, 1995; Walsh, 1997; Beck & Perron, 2000). Furcy & Koenig
(2005) proposed BULB, a complete variant of beam search that backtracks based on search discrep-
ancies, as a memory-efficient alternative to best-first heuristic search for path-finding problems.

Several works have modified or constrained beam search for different purposes. Vijayakumar et al.
(2018) changed the objective to allow diverse decoding. Hokamp & Liu (2017) proposed grid beam
search to support lexical constraints. Anderson et al. (2016a) proposed a constrained beam search
that forces inclusion of selected tokens in the output. Freitag & Al-Onaizan (2017) analyzed pruning
techniques for beam search in machine translation. Their strategy of limiting “maximum candidates
per node” is similar to the rank constraint in our work, however their analysis is focused on speeding
up beam search rather than addressing the phenomenon of performance degradation.

A recent line of work in machine translation suggested the performance degradation is due to length
bias (Yang et al., 2018; Murray & Chiang, 2018). For larger beams, an end-of-sentence token with
a lower probability that leads to an overall more probable hypothesis is more likely to be considered
by the beam search. However, we showed peformance degradation above even when using length
normalization and in tasks where length bias does not appear (see Appendix D for more details).

8 CONCLUSION

In this work, we perform an empirical analysis of the performance degradation in beam search
across three neural sequence decoding tasks. We find that the performance degradation for large
beam widths is due to the increasing number of early and large search discrepancies. Our analysis
generalizes previous results including the existence of copy predictions in machine translation and
the training set predictions in image captioning, and accounts for additional degraded sequences.
Based on our analysis, we propose two constrained variants of beam search that avoid large discrep-
ancy gaps and successfully eliminate the performance degradation in beam search.

This work provides a deeper understanding of beam search behavior and an analytical framework to
study search discrepancies. We believe the analysis, the framework, and the proposed solutions can
support the development of better training methods and decoding algorithms.
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A FULL EMPIRICAL ANALYSIS

A.1 MACHINE TRANSLATION ON WMT’14 EN-FR
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Figure 6: WMT’14 En-Fr: Distribution of discrepancy positions for different beam widths.
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Figure 7: WMT’14 En-Fr: Mean discrepancy gap per position for different beam widths.
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Figure 8: WMT’14 En-Fr: Distribution of discrepancy positions for different beam widths.
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Figure 9: WMT’14 En-Fr: Mean discrepancy gap per position for different beam widths.
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Figure 10: WMT’14 En-Fr: Average token probability per position for different beam widths.

A.2 SUMMARIZATION ON GIGAWORD
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Figure 11: Gigaword: Distribution of discrepancy positions for different beam widths.
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Figure 12: Gigaword: Mean discrepancy gap per position for different beam widths.
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Figure 13: Gigaword: Distribution of discrepancy positions for different beam widths.
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Figure 14: Gigaword: Mean discrepancy gap per position for different beam widths.
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Figure 15: Gigaword: Average token probability per position for different beam widths.

A.3 IMAGE CAPTIONING ON MSCOCO
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Figure 16: MSCOCO: Distribution of discrepancy positions for different beam widths.
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Figure 17: MSCOCO: Mean discrepancy gap per position for different beam widths.
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Figure 18: MSCOCO: Distribution of discrepancy positions for different beam widths.
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Figure 19: MSCOCO: Mean discrepancy gap per position for different beam widths.

Table 5: MSCOCO: Probability of the early (first two) tokens vs. the probability of the rest.

All Improved Degraded

Beam Early Rest Early Rest Early Rest

B=1 -1.48 -6.98 N/A N/A N/A N/A
B=3 -1.68 -5.11 -1.76 -5.32 -1.78 -5.09
B=25 -2.02 -4.09 -2.04 -4.26 -2.21 -3.99
B=100 -2.07 -4.02 -2.06 -4.21 -2.30 -3.91
B=250 -2.08 -4.01 -2.06 -4.20 -2.31 -3.90

B COPIES AND TRAINING SET PREDICTIONS IN
DISCREPANCY-CONSTRAINED BEAM SEARCH

Table 6 compares the number of copies in the baseline vs. the discrepancy-constrained methods for
the machine translation tasks for each beam width. For the baseline, we can see that as we increase
the beam width, the number of copies grows significantly. However, both discrepancy-constrained
methods significantly reduce this growth.

Table 6: Number of copies in machine translations for the baseline and the two types of discrepancy-
constrained beam search for different beam widths.

Dataset Method Parameter B=1 B=3 B=5 B=25 B=100 B=250

En-De Baseline 23 40 49 179 385 567
En-De Constr. Gap M = 1.5 23 39 42 50 53 55
En-De Constr. Rank N = 2 23 38 44 46 54 55

En-Fr Baseline 25 28 41 89 227 358
En-Fr Constr. Gap M = 2.0 25 27 37 43 46 45
En-Fr Constr. Rank N = 3 25 28 38 42 42 46

Table 7 compares the number of training set predictions in the baseline vs. the discrepancy-
constrained methods for the summarization and image captioning tasks for each beam width. For
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the baseline, we can see that as we increase the beam width, the number of training set predictions
grows significantly. However, as with copies, both discrepancy-constrained methods significantly
reduce the growth in training set predictions.

Table 7: Number of predictions that are in the training set for the baseline and the two types of
discrepancy-constrained beam search for different beam widths.

Dataset Method Parameter B=1 B=3 B=5 B=25 B=100 B=250

Gigaword Baseline 81 86 86 115 163 224
Gigaword Constr. Gap M = 0.85 81 81 77 79 78 78
Gigaword Constr. Rank N = 2 81 81 79 79 79 79

MSCOCO Baseline 163 260 371 588 582 576
MSCOCO Constr. Gap M = 0.45 163 265 271 271 271 271
MSCOCO Constr. Rank N = 2 163 242 262 231 231 231

C RESULTS FOR CONSTRAINED BEAM SEARCH ON WMT’14 EN-DE

C.1 RESULTS FOR DISCREPANCY GAP CONSTRAINED BEAM SEARCH (M = 1.5)
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Figure 20: WMT’14 En-De: Distribution of discrepancy positions (M = 1.5).
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Figure 21: WMT’14 En-De: Mean discrepancy gap per position (M = 1.5).
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Figure 22: WMT’14 En-De: Distribution of discrepancy positions (M = 1.5).
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Figure 23: WMT’14 En-De: Mean discrepancy gap per position (M = 1.5).
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Figure 24: WMT’14 En-De: Average token probability per position (M = 1.5).

C.2 RESULTS FOR RANK CONSTRAINED BEAM SEARCH (N = 2)
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Figure 25: WMT’14 En-De: Distribution of discrepancy positions (N = 2).
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Figure 26: WMT’14 En-De: Mean discrepancy gap per position (N = 2).
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Figure 27: WMT’14 En-De: Distribution of discrepancy positions (N = 2).
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Figure 28: WMT’14 En-De: Mean discrepancy gap per position (N = 2).
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Figure 29: WMT’14 En-De: Average token probability per position (N = 2).
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D ANALYSIS OF LENGTH BIAS

Table 8 shows the mean length of generated sentences for different beam widths for the baseline,
normalized to the best tested beam width. All values are very close 1.0, which suggest that the
observed performance degradation is not due to length bias. We note that for machine translation
and summarization this is due to the use of length normalization on the hypotheses log-likelihood, as
suggested by Koehn & Knowles (2017) (without normalization, the performance degradation would
have been worse).4 In image captioning, however, there is no observed length bias even when length
normalization is not used.5

In Section 4.1, we showed substantial performance degradation as we increase the beam width.
As the results in Table 8 demonstrate that there is no significant change in the length of generated
sequences, the observed performance degradation cannot be attributed to length bias.

Table 8: Analysis of the mean length, normalized to best test width (in bold).

Task Dataset B=1 B=3 B=5 B=25 B=100 B=250

Translation En-De 0.99 1.0 1.0 1.0 0.99 0.98
En-Fr 0.99 1.0 1.0 1.0 0.99 0.91

Summarization Gigaword 1.03 1.0 0.99 0.99 1.0 1.01
Captioning MSCOCO 1.04 1.0 0.99 0.98 0.98 0.98

E IMAGE CAPTIONING: CIDER AND SPICE

Table 9 compares the baseline vs. the constrained beam search methods on the MSCOCO image
caption task using the metrics CIDEr and SPICE. The results show similar trends to those observed
for BLEU in Section 5. In particular, we see that the performance degradation for larger beams
also occurs for CIDEr and SPICE in the baseline, and that our gap constraint method eliminates this
degradation. Similar to our results for BLEU, we note that our rank constraint is not as effective as
our gap constraint for the image captioning task.

Table 9: Evaluation of image captioning on MSCOCO dataset using the CIDEr and SPICE metrics
(higher values are better, best baseline in bold).

Dataset Method Threshold B=1 B=3 B=5 B=25 B=100 B=250

CIDEr Baseline 0.974 1.018 1.005 0.953 0.946 0.945
Constr. Gap M = 0.4 0.974 1.016 1.018 1.016 1.016 1.016
Constr. Rank N = 2 0 1.022 1.006 0.978 0.977 0.977

SPICE Baseline 18.13 18.54 18.43 17.76 17.68 17.64
Constr. Gap M = 0.45 18.13 18.41 18.44 18.43 18.43 18.43
Constr. Rank N = 2 0 18.60 18.51 18.15 18.15 18.15

4This is consistent with Ott et al.’s (2018) results on performance degradation even when using length
normalization.

5In fact, as we stated earlier, we found that length normalization reduces the overall performance.
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