
Published in Transactions on Machine Learning Research (04/2024)

Finite-Time Analysis of Entropy-Regularized Neural Natural
Actor-Critic Algorithm

Semih Cayci cayci@mathc.rwth-aachen.de
Department of Mathematics
RWTH Aachen University

Niao He niao.he@inf.ethz.ch
Department of Computer Science
ETH Zurich

R. Srikant rsrikant@illinois.edu
ECE and CSL
University of Illinois at Urbana-Champaign

Reviewed on OpenReview: https: // openreview. net/ forum? id= BkEqk7pS1I

Abstract

Natural actor-critic (NAC) and its variants, equipped with the representation power of neu-
ral networks, have demonstrated impressive empirical success in solving Markov decision
problems with large (potentially infinite) state spaces. In this paper, we present a finite-
time analysis of NAC with neural network approximation, and identify the roles of neural
networks, regularization and optimization techniques (e.g., gradient clipping and weight
decay) to achieve provably good performance in terms of sample complexity, iteration com-
plexity and overparametrization bounds for the actor and the critic. In particular, we prove
that (i) entropy regularization and weight decay ensure stability by providing sufficient ex-
ploration to avoid near-deterministic and strictly suboptimal policies and (ii) regularization
leads to sharp sample complexity and network width bounds in the regularized MDPs, yield-
ing a favorable bias-variance tradeoff in policy optimization. In the process, we identify the
importance of uniform approximation power of the actor neural network to achieve global
optimality in policy optimization due to distributional shift.

1 Introduction

In reinforcement learning (RL), an agent aims to find an optimal policy that maximizes the expected total
reward in a Markov decision process (MDP) by interacting with an unknown and dynamical environment
(Sutton & Barto, 2018; Szepesvári, 2010; Bertsekas & Tsitsiklis, 1996). Policy gradient methods, which em-
ploy first-order optimization methods to find the best policy within a parametric policy class, have demon-
strated impressive success in numerous complicated RL problems (Williams, 1992; Sutton et al., 1999; Konda
& Tsitsiklis, 2000). The success largely benefits from the versatility of policy gradient methods in accommo-
dating a rich class of function approximation schemes as demonstrated by Mnih et al. (2016); Silver et al.
(2016); Nachum et al. (2017); Duan et al. (2016).

Natural policy gradient (NPG), natural actor-critic (NAC) and their variants, which use Fisher information
matrix as a pre-conditioner for the gradient updates (Amari, 1998; Kakade, 2001; Bhatnagar et al., 2007;
Peters & Schaal, 2008), are particularly popular because of their impressive empirical performance in practical
applications. In practice, NPG/NAC methods are further combined with (a) neural network approximation
for high representation power of both the actor and the critic, and (b) entropy regularization for stability
and sufficient exploration, leading to remarkable performance in complicated control tasks that involve large
state-action spaces (Haarnoja et al., 2018; Nachum et al., 2017; Ahmed et al., 2019).
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Despite the empirical successes, a strong theoretical understanding of policy gradient methods, especially
when boosted with function approximation and entropy regularization, appears to be in a nascent stage.
Recently, there has been a plethora of theoretical attempts to understand the convergence properties of policy
gradient methods and the role of entropy regularization; see, e.g., Agarwal et al. (2020); Bhandari & Russo
(2019); Lan (2021); Cen et al. (2020); Mei et al. (2020), just to name a few. These works predominantly study
the tabular setting, where a parallelism between the well-known policy iteration and policy gradient methods
can be exploited to establish the convergence results. But for the more intriguing function approximation
regime, especially with neural network approximation, little theory is known. Two of the main challenges
come from the highly nonconvex nature of the problem when using neural network approximation for both
the actor and the critic, and the complex exploration dynamics.

In this paper, we provide the first non-asymptotic analysis of an entropy-regularized natural actor-critic
(NAC) method in which we use two separate two-layer neural networks for the actor and critic, and employ
a learning scheme based on approximate natural policy gradient updates to achieve optimality. We show
that the expressive power of these neural networks provide the ability to achieve optimality within a broad
class of policies.

1.1 Main Contributions

We elaborate some of our contributions below.

• Sharp sample complexity, convergence rate and overparameterization bounds: We prove sharp con-
vergence guarantees in terms of sample complexity, iteration complexity and network width. Par-
ticularly, we prove that the NAC method with an adaptive step-size achieves sharp Õ(1/ϵ) iteration
complexity and Õ(1/ϵ5) sample complexity to achieve an ϵ-gap with the optimal policy of the reg-
ularized MDP under mildest distribution mismatch conditions to the best of our knowledge. The
required network width for both the actor and critic are Õ(1/ϵ4) and Õ(1/ϵ2), respectively. Under
the standard distribution mismatch assumption as used by Wang et al. (2019), our sample complexity
bound for the unregularized MDP is Õ(1/ϵ6), which improves the existing bounds significantly.

• Stable policy optimization in the overparameterized regime: Existing works on neural policy gradient
methods with neural network approximation assume that the policies perform sufficient exploration
to avoid instability, i.e., convergence to near-deterministic and strictly suboptimal stationary policies.
In this paper, we prove that policy optimization is stabilized by incorporating (i) overparameteri-
zation, (ii) entropy regularization, (iii) gradient clipping, and (iv) weight-decay. In particular, we
show that the combination of these methods leads to “persistence of excitation" condition, which
ensures sufficient exploration to avoid near-deterministic and strictly suboptimal stationary policies.
Consequently, we prove convergence to the globally optimal policy under the mildest concentrability
coefficient assumption for on-policy NAC to the best of our knowledge.

• Understanding the dynamics of neural network approximation in policy optimization: Our analysis
reveals that the uniform approximation power of the actor network to approximate Q-functions
throughout policy optimization steps is crucial to ensure global (near-)optimality, which is a specific
feature of reinforcement learning that induces a distributional shift over time in contrast to a static
supervised learning problem. To that end, we establish high-probability bounds for a two-layer
feedforward actor neural network to uniformly approximate Q-functions of the policy iterates during
the training.

1.2 Related Work

Policy gradient and actor-critic: Policy gradient methods use a gradient-based scheme to find the optimal
policy (Williams, 1992; Sutton et al., 1999). Kakade (2001) proposed the natural gradient method, which uses
the Fisher information matrix as a pre-conditioner to fit the problem geometry better. Actor-critic method,
which learns approximations to both state-action value functions and policies for variance reduction, was
introduced by Konda & Tsitsiklis (2000).
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Neural actor-critic methods: Recently, there has been a surge of interest in direct policy optimization methods
for solving MDPs with large state spaces by exploiting the representation power of deep neural networks.
Particularly, deterministic policy gradient (Silver et al., 2014), trust region policy optimization (TRPO)
(Schulman et al., 2015), proximal policy optimization (PPO) (Schulman et al., 2017), soft actor-critic (SAC)
(Haarnoja et al., 2018; Lee et al., 2020) achieved impressive empirical success in solving complicated control
tasks.

Role of regularization: Entropy regularization is an essential part of policy optimization algorithms (e.g.,
TRPO, PPO and SAC) to encourage exploration and achieve fast and stable convergence. It has been
numerically observed that entropy regularization leads to a smoother optimization landscape, which leads
to improved convergence properties in policy optimization (Ahmed et al., 2019). For tabular reinforcement
learning, the impact of entropy regularization was studied by Agarwal et al. (2020); Cen et al. (2020);
Mei et al. (2020). On the other hand, the function approximation regime leads to considerably different
dynamics compared to the tabular setting mainly because of the generalization over a large state space,
complex exploration dynamics and distributional shift. As such, the role of regularization is very different
in the function approximation regime, which we study in this paper.

Theoretical analysis of policy optimization methods: Despite the vast literature on the practical performance
of PG/AC/NAC type algorithms, their theoretical understanding has remained elusive until recently. In the
tabular setting, global convergence rates for PG methods were established by Agarwal et al. (2020); Bhandari
& Russo (2019); Khodadadian et al. (2021b). By incorporating entropy regularization, it was shown that
the convergence rate can be improved significantly in the tabular setting (Shani et al., 2020; Lan, 2021; Cen
et al., 2020; Zhan et al., 2021). Recently, finite-time performances of off-policy actor-critic methods in the
tabular and linear function approximation regimes were investigated; see e.g., the works by Khodadadian
et al. (2021a); Chen et al. (2022). In our paper, we consider neural network approximation under entropy
regularization with on-policy sampling.

On the other hand, when the controller employs a function approximator for the purpose of generalization to
a large state-action space, the convergence properties of policy optimization methods radically change due to
more complicated optimization landscape and distribution mismatch phenomenon in reinforcement learning
(Agarwal et al., 2020). Under strong assumptions on the exploratory behavior of policies throughout learning
iterations, global optimality of NPG with linear function approximation up to a function approximation
error was established by Agarwal et al. (2020). For actor-critic and natural actor-critic methods with linear
function approximation, there are finite-time analyses by Chen et al. (2021); Xu et al. (2020); Zhang et al.
(2021). For general actor schemes with linear critic, convergence to stationary points was investigated by
Kumar et al. (2019); Wu et al. (2020); Qiu et al. (2021).

By incorporating entropy regularization, it was shown that improved convergence rates under much weaker
conditions on the underlying controlled Markov chain can be established by Cayci et al. (2021) with lin-
ear function approximation. Our paper uses results from the drift analysis in that work, but addresses
the significantly challenging complications due to using neural networks with ReLU activation functions
in the overparameterized regime, and establishes global convergence to the optimal policies. The neural
network approximation eliminates the function approximation error, which is a constant in linear function
approximation, by employing a sufficiently wide actor neural network.

Neural network analysis: The empirical success of neural networks, which have more parameters than the
data points, has been theoretically explained by Jacot et al. (2018); Du et al. (2018); Arora et al. (2019),
where it was shown that overparameterized neural networks trained by using first-order optimization methods
achieve good generalization properties. The need for massive overparameterization was addressed by Ji et al.
(2019); Oymak & Soltanolkotabi (2020), and it was shown that considerably smaller network widths can
suffice to achieve good training and generalization results in structured supervised learning problems. Our
analysis in this work is mainly inspired by the work of Ji et al. (2019). On the other hand, reinforcement
learning problem has significantly different and more challenging dynamics than the supervised learning
setting as we have a dynamic optimization problem in actor-critic, where distributional shift occurs as the
policies are updated. As such, uniform approximation power of the actor network in approximating various
functions through policy optimization steps becomes critical, different from the supervised learning setting
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(Ji & Telgarsky, 2019). Our analysis utilizes tools from the works Ji & Telgarsky (2019) and Ji et al. (2019):
(i) we consider max-norm geometry to achieve mild overparameterization, (ii) we bound the distance between
the neural tangent kernel (NTK) function class and the class of functions realizable by a finite-width neural
network by extending the ReLU analysis by Ji et al. (2019); Cayci et al. (2023). The distribution shift in the
system due to the dynamical RL setting also yields a significant challenge compared to the previous works,
which we address in this paper.

The most relevant work in the literature is Wang et al. (2019), where the convergence of NAC with a two-layer
neural network was studied without entropy regularization. It was shown that, under strong assumptions
on the exploratory behavior of policies throughout the trajectory, neural-NPG achieves ϵ-optimality with
O(1/ϵ14) sample complexity and O(1/ϵ12) network width bounds. In this paper, we incorporate widely-used
algorithmic techniques (entropy regularization, weight decay and gradient clipping) to NAC with neural net-
work approximation, and prove significantly improved sample complexity and overparameterization bounds
under weaker assumptions on the concentrability coefficients. Additionally, our analysis reveals that the
uniform approximation power of the actor neural network is critically important to establish global opti-
mality, where distributional shift plays a crucial role. In another relevant work, Fu et al. (2020) considers a
single-timescale actor-critic with neural network approximation, but the function approximation error was
not investigated due to the realizability assumption, which assumes that all policies throughout the policy
optimization steps are realizable by the neural network. One of the main goals of our work is to study the
benefits of employing neural networks in policy optimization, and we explicitly characterize the function
class and approximation error that stems from the use of finite-width neural networks.

1.3 Notation

For a sequence of numbers {xi : i ∈ I} where I is an index set, [xi]i∈I denotes the vector obtained by
concatenation of xi, i ∈ I. For a set A, |A| denotes its cardinality. For two distributions P, Q defined over
the same probability space, Kullback-Leibler divergence is denoted as follows: DKL(P∥Q) = Es∼P

[
log P (s)

Q(s)

]
.

For a convex set C ⊂ Rd and x ∈ Rd, PC(x) denotes the projection of x onto C: PC(x) = arg miny∈C ∥x−y∥2.
For n ∈ Z+, [n] = {1, 2, . . . , n}. For d, m ∈ N, R > 0 and v ∈ Rm×d, we denote

Bd
m,R(v) =

{
y ∈ Rm×d : sup

i∈[m]
∥vi − yi∥2 ≤

R√
m

}
,

where vi denotes the ith row of v. 1A denotes the indicator function for any event A.

2 Background and Problem Setting

In this section, we introduce basic backgrounds of the problem setting, the natural actor critic method, as
well as entropy regularization and neural network approximation that we consider.

2.1 Markov Decision Processes

We consider a discounted Markov decision process (S,A, P, r, γ) where S and A are the state and action
spaces, P is a (unknown) transition kernel, r : S ×A → [0, rmax], 0 < rmax <∞ is the reward function, and
γ ∈ (0, 1) is the discount factor. In this work, we consider a state space S and a finite action space A such
that S ×A ⊂ Rd. Also, we assume that, by appropriate representation of the state and action variables, the
following bound holds: ∥(s, a)∥2 ≤ 1, throughout the paper.

Value function: Under a randomized policy π : S → A, an action a ∈ A is taken at a given state s ∈ S
with probability π(a|s). A policy π introduces a trajectory by specifying at ∼ π(·|st) and st+1 ∼ P (·|st, at).
For any s0 ∈ S, the corresponding value function of a policy π is as follows:

V π(s0) = E
[ ∞∑

t=0
γtr(st, at)|s0

]
, (1)
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where at ∼ π(·|st) and st+1 ∼ P (·|st, at).

Entropy regularization: In order to avoid near-deterministic suboptimal policies in policy optimization by
encouraging exploration, entropy regularization is commonly used in practice (Silver et al., 2016; Haarnoja
et al., 2018; Nachum et al., 2017; Ahmed et al., 2019). For a policy π, let

Hπ(s0) = E
[ ∞∑

t=0
γtH

(
π(·|st)

)∣∣∣s0

]
, (2)

where H(π(·|s)) = −
∑

a∈A π(a|s) log
(
π(a|s)

)
is the entropy functional. Then, for the regularization param-

eter λ > 0, the entropy-regularized value function is defined as follows:

V π
λ (s0) = V π(s0) + λHπ(s0). (3)

The max-entropy policy, which assigns probability 1/|A| to each action in each state, maximizes the reg-
ularizer Hπ(s0) for any s0 ∈ S. Thus, the regularizer Hπ(s0) term in equation 3 encourages exploration,
controlled by λ > 0.

Entropy-regularized objective: For a given initial state distribution µ and for a given regularization
parameter λ > 0, the objective in this paper is to maximize the entropy-regularized value function

max
π

V π
λ (µ), (4)

where V π
λ (µ) := Es0∼µ [V π

λ (s0)]. We denote the optimal policy for the regularized MDP as π∗ throughout
the paper.

Q-function and advantage function: The (entropy-regularized) Q-function qπ
λ(s, a) is defined as:

qπ
λ(s, a) = E

[ ∞∑
k=0

γk
(
r(sk, ak)− λ log π(ak|sk)

)∣∣∣s0 = s, a0 = a
]
. (5)

Note that qπ
λ is the fixed point of the Bellman equation q(s, a) = T πq(s, a) where the Bellman operator T π

is defined as:
T πq(s, a) = r(s, a)− λ log π(a|s) + γEs′∼P (·|s,a),a′∼π(·|s′)[q(s′, a′)]. (6)

As we will see, for NAC algorithms, the following function, called the soft Q-function under a policy π, turns
out to be a useful quantity (Cen et al., 2020):

Qπ
λ(s, a) = r(s, a) + γEs′∼P (·|s,a) [V π

λ (s′)] . (7)

Note that the two Q-functions are related as follows:

qπ
λ(s, a) = Qπ

λ(s, a)− λ log π(a|s).

The advantage function under a policy π is defined as follows:

Aπ
λ(s, a) = qπ

λ(s, a)− V π
λ (s). (8)

Similarly, the soft advantage function is defined as follows:

Ξπ
λ(s, a) = Qπ

λ(s, a)−
∑

a′∈A
π(a′|s)Qπ

λ(s, a′). (9)

Lastly, we can bound the entropy-regularized value function as follows:

0 ≤ V π
λ (µ) ≤ rmax + λ log |A|

1− γ
, (10)

for any λ > 0, π since r ∈ [0, rmax] and H(p) ≤ log |A| for any distribution p over A (Cen et al., 2020).
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2.2 Natural Policy Gradient under Entropy Regularization

For a given randomized policy πθ parameterized by θ ∈ Θ where Θ is a given parameter space, policy
gradient methods maximize V πθ (µ) by using the policy gradient ∇θV πθ (µ). Natural policy gradient, as a
quasi-Newton method, adjusts the gradient update to fit problem geometry by using the Fisher information
matrix as a pre-conditioner (Kakade, 2001; Cen et al., 2020).

Let
Gπθ (µ) = Es∼d

πθ
µ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)∇⊤

θ log πθ(a|s)
]
,

be the Fisher information matrix under policy πθ, where dπ
µ(·) = (1 − γ)

∑∞
k=0 γkP(sk ∈ ·|s0 ∼ µ), is the

discounted state visitation distribution under a policy π. Then, the update rule under NPG can be expressed
as

θ ← θ + η ·
[
Gπθ (µ)

]−1∇V πθ

λ (µ), (11)

where η > 0 is the step-size. Equivalently, the NPG update can be written as follows:

θ+ ∈ arg max
θ∈Rd

{
∇⊤

θ Vλ(πθ−)(θ − θ−)− 1
2η

(θ − θ−)⊤Gπθ− (µ)(θ − θ−)
}

. (12)

The above update scheme is closely related to gradient ascent and policy mirror ascent. Note that the
gradient ascent for policy optimization performs the following update:

θ+ ∈ arg max
θ∈Rd

{
∇⊤

θ Vλ(πθ−)(θ − θ−)− 1
2η
∥θ − θ−∥2

2

}
. (13)

The update in equation 13 leads to the policy gradient algorithm (Williams, 1992). Compared to equa-
tion 13, the natural policy gradient uses a generalized Mahalanobis distance (i.e., weighted-ℓ2 distance) as
the Bregman divergence instead of ℓ2 distance (Cen et al., 2020; Lan, 2021; Agarwal et al., 2020).

In the following, we provide necessary tools to compute the policy gradient and the update rule in equation 11
based on Cayci et al. (2021).
Proposition 1 (Policy gradient). For any θ and λ > 0, we have:

∇θV πθ

λ (µ) = 1
1− γ

Es∼d
πθ
µ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)qπθ

λ (s, a)
]
. (14)

Based on Proposition 1, the gradient update of natural policy gradient can be computed by the following
lemma, which is an extension of the works by Kakade (2001); Agarwal et al. (2020); Cayci et al. (2021).
Lemma 1. Let

L(w, θ) = Es∼d
πθ
µ ,a∼πθ(·|s)

[(
∇⊤

θ log πθ(a|s)w − qπθ

λ (s, a)
)2]

, (15)

be the error for a given policy parameter θ. Define

wπθ

λ ∈ arg min
w

L(w, θ). (16)

Then, we have:
Gπθ (µ)wπθ

λ = (1− γ)∇θV πθ

λ (µ), (17)

where Gπθ is the Fisher information matrix.

The above results for general policy parameterization will provide basis for the entropy-regularized natural
actor-critic (NAC) with neural network approximation that we will introduce in the following section, with
certain modifications for variance reduction and stability that we will describe; see Remark 2 later.
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3 Natural Actor-Critic with Neural Network Approximation

In this section, we introduce the entropy-regularized natural actor critic algorithm formally, where both the
actor and critic are represented by single-hidden-layer neural networks.

Throughout this paper, we make the following assumption on the sampling process, which is standard in
policy optimization (Agarwal et al., 2020).
Assumption 1 (Sampling oracle). For a given initial state distribution µ and policy π, we assume that the
controller is able to obtain an independent sample from dπ

µ at any time.

The sampling process involves a resetting mechanism and a simulator, which are available in many important
application scenarios, and sampling from a state visitation distribution dπ

µ can be performed by using the
sampler in Algorithm 4 without the knowledge of dπ

µ (Agarwal et al., 2020; Konda & Tsitsiklis, 2003). For
further discussion on the sampling and its impacts on the analysis, please see Section B.

3.1 Actor Network and Natural Policy Gradient

For a network width m ∈ Z+ and ci ∈ R, θi ∈ Rd for i ∈ [m], the actor network is given by the single-
hidden-layer neural network:

f(s, a; (c, θ)) = 1√
m

m∑
i=1

ciσ
(
⟨θi, (s, a)⟩

)
, (18)

where c = [ci]i∈[m], θ = [θi]i∈[m], σ(x) = max{0, x} is the ReLU activation function. As a common practice
(Ji et al., 2019; Oymak & Soltanolkotabi, 2020; Arora et al., 2019), we fix the output layer c after a random
initialization, and only train the weights of hidden layer, namely, θ ∈ Θ ⊂ Rm×d. We note that training the
output layer c would lead to an additional additive kernel term in the neural tangent kernel, resulting in a
function class that is at least as rich as the original one (Cucker & Zhou, 2007). We consider a fixed output
layer in this work for the sake of simplicity.

Given a (possibly random) parameter θ0 ∈ Rm×d, a design parameter R > 0, regularization parameter λ > 0
and network width m ∈ Z+, the parameter space that we consider is as follows:

Θ =
{

θ ∈ Rm×d : max
i∈[m]

∥θi − θ0
i ∥2 ≤

R

λ
√

m

}
. (19)

For this parameter space Θ, the policy class that we consider is Π = {πθ : θ ∈ Θ}, where the policy that
corresponds to θ ∈ Θ is as follows:

πθ(a|s) = exp(f(s, a; (c, θ))∑
a′∈A exp(f(s, a′; (c, θ)) . (20)

We randomly initialize the actor neural network by using the symmetric initialization in Algorithm 1,
(c, θ(0)) ∼ sym_init(m, d) (Bai & Lee, 2019). Later, we will employ a similar symmetric initialization
scheme for the critic neural network.

Algorithm 1: sym_init(m, d) - Symmetric Initialization
inputs: m: network width, d: ambient dimension;
for i = 1, 2, . . . , m/2 do

ci = −ci+m/2 ∼ Rademacher;
θi = θi+m/2 ∼ N (0, Id);

return network weights (c, θ)

We denote the policy at iteration t < T as πt = πθ(t) and neural network output as ft(s, a) = f(s, a; (c, θ(t))).
In the absence of the prior knowledge of Ξπt

λ and dπt
µ , we construct a stochastic estimate of

u⋆
t = min

u∈Bd
m,R

(0)
Es∼d

πt
µ ,a∼πt(·|s)[(∇⊤ log πt(a|s)u− Ξπt

λ (s, a))2], (21)
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by using samples from the system via the following actor-critic meta-algorithm:

• Critic: Temporal difference learning algorithm (Algorithm 3 in Section 3.2), which employs a critic
neural network, returns a set of neural network weights that yield a sample-based estimate for the
soft advantage function {Ξ̂πt

λ (s, a) : (s, a) ∈ S ×A}.

• Policy update: Given this, we construct a stochastic estimate of u⋆
t by using stochastic gradient

descent (SGD) with N iterations and step-size αA > 0. To that end, starting with u
(t)
0 = 0, an

iteration of SGD is as follows

u
(t)
n+1/2 = u(t)

n − αA

(
∇⊤

θ log πt(an|sn)u(t)
n − Ξ̂πt

λ (sn, an)
)
∇θ log πt(an|sn), (22)

u
(t)
n+1 = PBd

m,R
(0)

(
u

(t)
n+1/2

)
, (23)

where sn ∼ dπt
µ and an ∼ πt(·|sn) for n = 0, 1, . . . , N − 1, Ξ̂πt

λ is the output of the critic. Then, the
final estimate is ut = 1

N

∑N
n=1 u

(t)
n . By using ut, we perform the following update:

θ(t + 1) = θ(t) + ηt · wt,

where wt = ut − λ
(
θ(t)− θ(0)

)
.

The natural actor-critic algorithm is summarized as a meta-algorithm in Algorithm 2. Below, we summarize
the modifications in the algorithm that we consider in this paper with respect to the NPG described in the
previous section.
Remark 1 (Weight decay and projection). The update in each iteration of the NAC algorithm described
in Algorithm 2 can be equivalently written as follows:

θ(t + 1)− θ(0) = (1− ηtλ) · (θ(t)− θ(0)) + (1− ηt)ut, (24)

where ut is an approximate solution to the optimization problem (21). As we will see, the projection of ut onto
Bd

m,R(0) (which can be considered as gradient clipping since this operation clips the natural policy gradient
update ut to ensure max1≤i≤m ∥ui,t∥2 ≤ R/

√
m), in conjunction with the weight decay in the policy update

(24) enables us to control maxi∈[m] ∥θi(t)−θi(0)∥2 while taking (natural) gradient steps towards the optimal
policy. Controlling maxi∈[m] ∥θi(t)− θi(0)∥2 is critical for two reasons: (i) to ensure sufficient exploration to
achieve global optimality (see Proposition 2), and (ii) to establish the so-called kernel regime, which holds
near the random initialization (see Lemma 3 and Theorem 1).

Alternatively, one may be tempted to project θ(t) onto a ball around θ(0) in the ℓ2-geometry to control
maxi ∥θi(t) − θi(0)∥2. However, as the algorithm follows the natural policy gradient, which uses a different
Bregman divergence than ∥ · ∥2, projection of θ(t) with respect to the ℓ2-norm may not result in mov-
ing the policy in the direction of improvement. Similarly, since we parameterize the policies by using a
lower-dimensional vector θ ∈ Rm×d to avoid storing and computing |S × A|-dimensional policies, Bregman
projection in the probability simplex, which is commonly used in direct parameterization, is not a feasible
option for policy optimization with function approximation. As such, simultaneous use of weight decay and
projection of the update ut are critical to control the network weights and policy improvement.
Remark 2 (Baseline). Note that the update u⋆

t in equation 21 uses the soft-advantage function Ξπ
λ rather

than the state-action value function qπ
λ . The soft-advantage function uses

∑
a∼πt

πt(a|s)Qπt

λ (s, a) as a baseline
for variance reduction, which is a common practice in policy gradient methods (Sutton & Barto, 2018).

In the following subsection, we describe the critic algorithm in detail.

3.2 Critic Network and Temporal Difference Learning

We estimate Ξπt

λ by using the neural TD learning algorithm with max-norm regularization (Cayci et al., 2023).
Note that Ξπt

λ can be directly obtained from qπθ

λ via Qπθ

λ (s, a) = qπθ

λ (s, a) − λ log πθ(a|s) and equation 9.

8
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Algorithm 2: Entropy-regularized Neural NAC
initialize (c, θ(0)) ∼ sym_init(m, d);
for t = 0, 1, . . . , T − 1 do

Critic: Ξ̂πt

λ = MN-NTD(πt, R, m′, T ′, αC) // See Alg. 3 for details;
Initialize: u

(t)
0 = 0;

for n = 0, 1, . . . , N do
Sampling: sn ∼ dπt

µ , an ∼ πt(·|sn).;
u

(t)
n+1/2 = u

(t)
n − αA

(
∇⊤

θ log πt(an|sn)u(t)
n − Ξ̂πt

λ (sn, an)
)
∇θ log πt(an|sn);

u
(t)
n+1 = PBd

m,R
(0)

(
u

(t)
n+1/2

)
;

ut = 1
N

∑N
n=1 u

(t)
n ;

θ(t + 1) = θ(t) + ηtut − ηtλ[θ(t)− θ(0)];

Since qπθ

λ is the fixed point of the Bellman equation (5), it can be approximated by using temporal difference
(TD) learning algorithms.

For the critic, we use a two-layer neural network of width m′, which is defined as follows:

q̂(s, a; (b, W )) = 1√
m′

m′∑
i=1

biσ (⟨Wi, (s, a)⟩) . (25)

The critic network is initialized according to the symmetric initialization scheme in Algorithm 1. Let
(b, W (0)) denote the initialization.

To estimate the value function, we aim to solve the following problem:

W ⋆ = arg min
W

Es∼d
πθ
µ ,a∼πθ(·|s)

[(
q̂(s, a; (b, W ))− T πθ q̂(s, a; (b, W ))

)2]
. (26)

where T π is the Bellman operator in equation 6. Particularly, we consider max-norm regularization in the
updates of the critic, which was shown to be effective in supervised learning and reinforcement learning (see
Goodfellow et al. (2016; 2013); Srivastava et al. (2014); Cayci et al. (2023)). For a given w0 ∈ Rd and R > 0,
let

GR(w0) = {w ∈ Rd : ∥w − w0∥2 ≤ R/
√

m′}. (27)

Under max-norm regularization, each hidden unit’s weight vector is confined within the set GR(Wi(0)) for a
given projection radius R.

The critic update for a given policy πθ, θ ∈ Θ is summarized in Algorithm 3, which we call MN-NTD. At each
iteration of MN-NTD, we perform the update:

Wi(k + 1) = PGR(Wi(0))
(
Wi(k) + α

(
rk + γq̂k(s′

k, a′
k)− q̂k(sk, ak)

)
∇Wi

q̂k(sk, ak)
)

,∀i ∈ [m′],

where q̂k(s, a) = q̂(s, a; (b, W (k))), rk = r(sk, ak) − λ log πθ(ak|sk) and PC is the projection operator onto
a set C ⊂ Rd. For k = 0, 1, . . . , T ′ − 1, we assume that (sk, ak) is sampled from dπθ

µ , i.e., sk ∼ dπθ
µ , ak ∼

πθ(·|sk). Upon obtaining (sk, ak), the next state-action pair is obtained by following πθ: s′
k ∼ P (·|sk, ak),

a′
k ∼ πθ(·|s′

k). One can replace the i.i.d. sampling here with Markovian sampling at the cost of a more
complicated analysis as shown by Bhandari et al. (2021). However, since experience replay is used in
practice, the actual sampling procedure is neither purely Markovian or i.i.d., and here for simplicity of the
analysis, we choose to model it as i.i.d. sampling.

The output of the critic, which approximates qπθ

λ , is then obtained as:

qπθ

T ′ (s, a) = q̂
(

s, a;
(
b,

1
T ′

∑
k<T ′

W (k)
))

, (s, a) ∈ S ×A,

9
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Algorithm 3: MN-NTD - Max-Norm Regularized Neural TD Learning
Inputs: Policy πθ, proj. radius R, network width m′, sample size T ′, step-size αC ;
Initialization: (b, W (0)) = sym_init(m′, d);
for k < T ′ − 1 do

Observe (sk, ak) ∼ dπθ
µ ◦ πθ(·|sk), s′

k ∼ P (·|sk, ak) a′
k ∼ πθ(·|s′

k);
Observe reward: rk := r(sk, ak)− λ log πθ(ak|sk);
Compute semi-gradient: gk =

(
rk + γq̂k(s′

k, a′
k)− q̂k(sk, ak)

)
∇θ q̂k(sk, ak);

Take a semi-gradient step: W (k + 1/2) = W (k) + αCgk;
Max-norm regularization: Wi(k + 1) = PGR(Wi(0)) {Wi(k + 1/2)} ,∀i ∈ [m′];

return qπθ

T ′ (s, a) = q̂
(

s, a;
(
b, 1

T ′

∑
k<T ′ W (k)

))
for all (s, a) ∈ S ×A

where T ′ is the number of iterations of MN-NTD. We obtain an approximation of the soft Q-function as

Q
πθ

λ (s, a) = qπθ

T ′ (s, a)− λ log πθ(a|s).

The corresponding estimate for the soft advantage function is the following:

Ξ̂πθ

λ (s, a) = Q
πθ

λ (s, a)−
∑

a′∈A
πθ(a′|s)Qπθ

λ (s, a′). (28)

4 Sample Complexity and Overparameterization Bounds for Neural NAC

In this section, we analyze the convergence of the entropy-regularized neural NAC algorithm and provide
sample complexity and overparameterization bounds for both the actor and the critic.

4.1 Regularization and Persistence of Excitation under Neural NAC

The persistence of excitation, which broadly refers to a strictly positive exploration probability of each action
at each state, is an important general condition to guarantee the convergence in stochastic control problems
(Kumar & Varaiya, 2015). The following important proposition states that the persistence of excitation
condition is satisfied by the entropy-regularized Neural NAC, which implies sufficient exploration is achieved
to ensure convergence to global optimality.
Proposition 2 (Persistence of excitation under overparameterization). For any regularization parameter
λ > 0, projection radius R, the entropy-regularized NAC satisfies the following:

max
i∈[m]

∥θi(t)− θi(0)∥2 ≤
Rκt

λ
√

m
, (29)

where

κt =
{

1, ηt = 1
λ(t+1) ,

1− (1− ηλ)t, ηt = η ∈
(
0, 1

λ

)
,

(30)

for all t ≥ 0 almost surely. Consequently,

πmin := inf
(s,a)∈S×A

πt(a|s) ≥
exp

(
−2R/λ− 2ρ0

(
Rκt

λ , m, δ
))

|A|
> 0, (31)

for all t ≥ 0 with probability at least 1 − δ over the random initialization of the actor network, where the
function ρ0 is given by

ρ0(R0, m, δ) = 16R0√
m

(
R0 +

√
log

(1
δ

)
+

√
d log(m)

)
. (32)

10
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Proposition 2 has two critical implications:

(i) Any action a ∈ A is explored with strictly positive probability at any given state s ∈ S, which implies
that all policies throughout the policy optimization steps satisfy the “persistence of excitation" condition
with high probability over the random initialization. As we will see in the convergence analysis, this
property implies sufficient exploration, which ensures that near-deterministic suboptimal policies are
avoided. Sufficient exploration is achieved by the combination of (i) entropy regularization, (ii) weight
decay, (iii) max-norm projection of ut, and (iv) large network width m for the actor network.

(ii) We can control the deviation of the actor network weights by R, λ and m. This property is key for the
neural network analysis in the lazy-training regime.

4.2 Transportation Mappings and Function Classes

We first present a brief discussion on kernel approximations of neural networks, which will be useful to state
our convergence results. Consider the following space of mappings:

Hν̄ = {v : Rd → Rd : sup
w∈Rd

∥v(w)∥2 ≤ ν̄}, (33)

and the function class:

Fν̄ =
{

g(·) = Ew0∼N (0,Id)[⟨v(w0), ·⟩1{⟨w0,·⟩>0}] : v ∈ Hν̄

}
. (34)

Note that Fν̄ is a provably rich subset of the reproducible kernel Hilbert space (RKHS) induced by the
neural tangent kernel, which is dense in the space of continuous functions on a compact set as shown by Ji
et al. (2019). For a given class of transportation maps V = {vk ∈ Hν̄ : k ∈ [K]} for K ≥ 1, we also consider
the following space of functions:

FK,ν̄,V =
{

g(·) = Ew0∼N (0,Id)[
〈 ∑

k∈[K]

αkvk(w0), ·
〉
1{⟨w0,·⟩>0}] : ∥α∥1 ≤ 1

}
. (35)

Note that the above set depends on the choice of {vk}k∈[K] but these maps can be arbitrary. Any separable
subspace of continuous functions f : Rd → R over a compact domain has a countable basis {φk : k = 0, 1, . . .}
(Kreyszig, 1991). There exist vk ∈ Hν̄ such that gk(s, a) = E[vk(w0) · (s, a)1{(s,a)·w0≥0}⟩] approximates φk

well by the universal approximation results (Ji et al., 2019). As such, FK,ν̄,V is able to approximate any
separable subspace of continuous functions over a compact space as K → ∞ for sufficiently large ν̄ and an
appropriate V.

4.3 Convergence of the Critic

We make the following realizability assumption for the Q-function.
Assumption 2 (Realizability of the Q-function). For any t ≥ 0, we assume that qπt

λ ∈ Fν̄ for some ν̄ > 0.

Assumption 2 is a condition on the class of realizable functions that can be approximated by the critic
network, which is dense in the space of continuous functions over Ωd (see Section 4.2). One can also replace
the above condition by a slightly stronger condition which states that qπθ

λ ∈ Fν̄ , ∀θ ∈ Θ. Note that the class
of functions Fν̄ is deterministic and its approximation properties are well-known (Ji et al., 2019). Wang
et al. (2019) assumed that the state-action value functions lie in a random function class, which is obtained
by shifting Fν̄ with a Gaussian process. By employing a symmetric initialization, we eliminate this Gaussian
process noise, and therefore the realizable class of functions is deterministic and provably rich.
Lemma 2 (Convergence of the Critic, Theorem 2, Cayci et al. (2023)). Under Assumption 2, for any error
probability δ ∈ (0, 1), let

ℓ(m′, δ) = 4
√

log(2m′ + 1) + 4
√

log(T/δ),

11
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and R > ν̄. Then, for any target error ε > 0, number of iterations T ′ ∈ N, network width

m′ >
16

(
ν̄ +

(
R + ℓ(m′, δ)

)(
ν̄ + R

))2

(1− γ)2ε2 ,

and step-size

αC = ε2(1− γ)
(1 + 2R)2 ,

the critic yields the following bound:

E
[√

Es∼d
πt
µ ,a∼πt(·|s)

[(
qπt

T ′(s, a)− qπt

λ (s, a)
)2

]
1A2

]
≤ (1 + 2R)ν̄

ε(1− γ)
√

T ′
+ 3ε,

where A2 holds with probability at least 1− δ over the random initializations of the critic network.

Note that in order to achieve a target error less than ε > 0, a network width of m′ = Õ
(

ν̄4

ε2

)
and iteration

complexity T ′ = O
(

(1+2ν̄)2ν̄2

ε4

)
suffice. The analysis of TD learning algorithm by Cayci et al. (2023) uses

results from Ji & Telgarsky (2019), which was given for classification (supervised learning) problems with
logistic loss. On the other hand, TD learning requires a significantly more challenging analysis because of
bootstrapping in the updates (i.e., using a stochastic semi-gradient instead of a true gradient) and quadratic
loss function. Furthermore, for improved sample complexity and overparameterization bounds, max-norm
regularization is employed instead of early stopping (Cayci et al., 2023).

4.4 Global Optimality and Convergence of Neural NAC

In this section, we provide the main convergence result for the entropy-regularized NAC with neural network
approximation.
Assumption 3 (Realizability). For K ≥ 1, we assume that for all θ ∈ Θ, Qπθ

λ ∈ FK,ν̄,V , where the function
class FK,ν̄,V is defined in Section 4.2.

Note that FK,ν̄,V approximates a rich class of functions over a compact space well for large K (see Section
4.2). Also, Assumption 3 implies that there is a structure among the soft Q-functions in the policy class Θ
since each Qπθ

λ can be written as a linear combination of K functions that correspond to the transportation
maps vk. Thus, by the discussion in Section 4.2, if Qπθ

λ for the constrained parameter set θ ∈ Bd
m,R(θ(0))

lies in a separable subspace of continuous functions, then the assumption holds for sufficiently large K and
ν̄ for some V.
Remark 3 (Realizability assumption for the actor). The main results in this work (i.e., Theorem 1) can be
established without the realizability assumptions in Assumptions 2-3, which would bring function approxima-
tion errors ϵcritic

app and ϵactor
app , in both the critic and the actor, respectively. For the convergence results without

the realizability assumptions, see Corollary 2.

The approximation error for the critic can be easily characterized by the infinite-width limit Fν̄ , which was
shown to be a universal approximator (Ji et al., 2019). Unlike the critic network, which learns only one
function at each iteration of policy optimization, the actor network requires to approximate Qπt

λ for all
t = 0, 1, . . . , T −1 by a shared random initialization. This causes a significant challenge in characterizing the
class of soft-Q functions that can be learned by using the actor network. To that end, the structure among
Qπt

λ is assumed in Assumption 3, which enables us to establish uniform approximation error bounds to handle
the dynamic structure of the policy optimization over time steps. For further discussion on these uniform
approximation results, see Section A.4 (particularly Remark 8).

4.4.1 Performance Bounds under a Weak Distribution Mismatch Condition

First, we establish sample complexity and overparameterization bounds under a weak distribution mismatch
condition, which is provided below. This condition is significantly weaker compared to the existing literature

12



Published in Transactions on Machine Learning Research (04/2024)

(see, e.g., Wang et al. (2019); Liu et al. (2019); Agarwal et al. (2020)) as we proved that the policies achieve
sufficient exploration by Proposition 2 (see Remark 4 for details).
Assumption 4 (Weak distribution mismatch condition). There exists a constant C∞ <∞ such that

sup
t≥0

Es∼d
πt
µ

[(dπ∗

µ (s)
dπt

µ (s)

)2]
≤ C2

∞.

Remark 4 (Weak distribution mismatch condition). Note that a sufficient condition for Assumption 4 is an
exploratory initial state distribution µ, which covers the support of the state visitation distribution of dπ∗

µ :

sup
s∈supp(dπ∗

µ )

dπ∗

µ (s)
µ(s) <∞, (36)

since
√
Es∼d

πt
µ

[(
dπ∗

µ (s)
d

πt
µ (s)

)2]
≤ 1

1−γ

∥∥∥∥ dπ∗
µ

µ

∥∥∥∥
∞

. Hence, if the initial distribution has a sufficiently large support

set, then Assumption 4 is satisfied without any assumptions on {πt : t ≥ 0}. Together with Proposition 2,
it ensures stability of the policy optimization with minimal assumptions on µ, as Bhandari & Russo (2019)
indicates that the condition ∥dπ∗

µ /µ∥∞ <∞ is indeed necessary for convergence.

The following theorem is one of the main results in this paper, which establishes the convergence bounds of
the NAC algorithm.

Theorem 1 (Global Optimality and Convergence). Let m′ = Õ
(

ν̄4

ε2

)
, T ′ = O

(
(1+2ν̄)2ν̄2

ε4

)
as specified in

Lemma 2. Under Assumptions 1-4, Algorithm 2 with R > ν̄ and regularization coefficient λ > 0 satisfies the
following bounds:

(1) with step-size ηt = 1
λ(t+1) , t ≥ 0, we have

(1− γ) min
t∈[T ]

E[(V π∗

λ (µ)− V πt

λ (µ))1A] ≤ 2R2(1 + log T )
λT

+ 2R
√

ρ0 + 4ρ0Tλ + M∞

(
ρ1 + ε + Rqmax

N1/4

)
,

(2) with step-size ηt = η ∈ (0, 1/λ), we have

(1−γ) min
t∈[T ]

E[(V π∗

λ (µ)−V πt

λ (µ))1A] ≤ λe−ηλT log |A|
1− e−ηλT

+2R
√

ρ0+4ρ0Tλ+M∞

(
ρ1+ε+Rqmax

N1/4

)
+2ηR2,

for any δ ∈ (0, 1/3) where P(A) ≥ 1 − 3δ over the random initialization of the actor and critic networks,
where M∞ = C∞(1+π−1

min), ρ0 = 16R
λ

√
m

(
R
λ +

√
log(1/δ)+

√
d log(m)

)
, ρ1 = 16ν̄√

m

(
(d log(m)) 1

4 +
√

log(K/δ)
)

,
and qmax = 4(2R− λ log πmin).

Below we characterize the sample complexity, iteration complexity and overparameterization bounds based
on Theorem 1.
Corollary 1 (Sample Complexity and Overparameterization Bounds). For any ϵ > 0 and δ ∈ (0, 1/3),
Algorithm 2 with R > ν̄ satisfies:

min
t∈[T ]

E[(V π∗

λ (µ)− V πt

λ (µ))1A] ≤ ϵ,

where P(A) ≥ 1− 3δ over the random initialization of the actor-critic networks for the following parameters:

• iteration complexity: T = Õ
(

R2

(1−γ)λϵ

)
,

• actor network width: m = Õ
(

R8

(1−γ)4λ4ϵ4 + R6 log(1/δ)
λ2(1−γ)4ϵ4 + M∞ν̄2 log(K/δ)

ϵ2(1−γ)2

)
,
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• critic sample complexity: T ′ = O
(

M2
∞R4

(1−γ)2ϵ4

)
,

• critic network width: m′ = Õ
(

M2
∞R4 log(1/δ)
(1−γ)2ϵ2

)
,

• actor sample complexity: N = O
(

M4
∞R4q4

max

ϵ4(1−γ)4

)
.

Hence, the overall sample complexity of the Neural NAC algorithm is Õ
(

1
ϵ5

)
.

Remark 5 (Bias-variance tradeoff in policy optimization). By Proposition 2, the network parameters evolve
such that

sup
t≥0

max
i∈[m]

∥θi(0)− θi(t)∥2 ≤
R

λ
√

m
,

and supt≥0 sups,a πt(a|s) < 1. Hence, the NAC always performs a policy search within the class of randomized
policies, which leads to fast and stable convergence under minimal regularity conditions. In particular,
Assumption 4 is the mildest distributional mismatch condition in on-policy NPG/NAC settings to the best
of our knowledge, and it suffices to establish convergence results in Theorem 1. On the other hand, entropy
regularization introduces a bias term controlled by λ, hence the convergence is in the regularized MDP.
Another way to see this is that deterministic policies, which require limt ∥θ(t)∥2 =∞, may not be achieved
for λ > 0 since θ(t) is always contained within a compact set. Letting λ ↓ 0 eliminates the bias, but at
the same time reduces the convergence speed and may lead to instability due to lack of exploration. Hence,
there is a bias-variance tradeoff in policy optimization, controlled by λ > 0.
Remark 6 (Different network widths for actor and critic). Corollary 1 indicates that the actor network
requires Õ(1/ϵ4) neurons while the critic network requires Õ(1/ϵ2) although both approximate (soft) state-
action value functions. This difference is because the actor network is required to uniformly approximate all
state-action value functions over the trajectory, while the critic network approximates (pointwise) a single
state-action value function at each iteration.
Remark 7 (Fast initial convergence rate under constant step-sizes). The second part of Theorem 1 indicates
that the convergence rate is e−Ω(T ) under a constant step-size η ∈ (0, 1/λ), while there is an additional error
term 2ηR2. This justifies the common practice of “halving the step-size" in optimization (see, e.g., Karimi
et al. (2016)) for the specific case of natural actor-critic that we investigate: one achieves a fast convergence
rate with a constant step-size until the optimization stalls, then the process is repeated after halving the
step-size.

The convergence bounds in Theorem 1 avoid the approximation errors that stem from the use of neural
networks in the actor and the critic by Assumptions 2-3. In the following, we characterize the impact of
these approximation errors on the performance of the algorithm. To that end, let

ϵcritic
app = max

0≤t<T
E min

f∈Fν̄

√
Es,a[(f(s, a)− qπt

λ (s, a))2], (37)

ϵactor
app = max

0≤t<T
E min

u∈Bd
m,R

(0)

√
Es,a[(∇⊤f0(s, a)u−Qπt

λ (s, a))2], (38)

be the approximation errors for the critic and the actor, respectively, where the outer expectation is over
the parameter θ(t) given the random initialization. Note that ∇f0(s, a)u is the linear approximation of
f(s, a; (c, u + θ(0))) around the initialization (see Prop. 3). We have the following result.

Corollary 2 (Global Optimality and Convergence). Let m′ = Õ
(

ν̄4

ε2

)
, T ′ = O

(
(1+2ν̄)2ν̄2

ε4

)
. Under Assump-

tions 1 and 4, Algorithm 2 with R > ν̄, λ > 0 and step-size ηt = 1
λ(t+1) satisfies

(1− γ) min
t∈[T ]

E[(V π∗

λ (µ)− V πt

λ (µ))1A] ≤ 2R2(1 + log T )
λT

+ 2R
√

ρ0 + 4ρ0Tλ

+ 4M∞

(
ϵactor

app + ϵcritic
app + ε + Rqmax

N1/4

)
,
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where M∞ = C∞(1 + π−1
min) and ρ0 = 16R

λ
√

m

(
R
λ +

√
log(1/δ) +

√
d log(m)

)
for any δ ∈ (0, 1/3) where

P(A) ≥ 1− 3δ over the random initialization of the actor and critic networks.

Corollary 2 explicitly shows the impact of the approximation errors for the actor and the critic.

4.4.2 Performance Bounds under a Strong Distribution Mismatch Condition

In the following, we consider the standard distribution mismatch condition (e.g., Liu et al. (2019); Wang
et al. (2019)) and establish sample complexity and overparameterization bounds based on Theorem 1, for
the unregularized MDP.
Assumption 4’ (Strong distribution mismatch condition). There exists a constant C̃∞ <∞ such that

sup
t≥0

E(s,a)∼d
πt
µ ⊗πt(·|s)

[(dπ∗

µ (s)π∗(a|s)
dπt

µ (s)πt(a|s)

)2]
≤ C̃2

∞. (39)

Note that Assumption 4’ implies Assumption 4, and it is a considerably stronger assumption that necessitates
our policies {πt : t = 0, 1, . . . , T − 1} being sufficiently exploratory throughout policy optimization.
Corollary 3. Under Assumptions 1-3 and 4’, for any ϵ > 0 and δ ∈ (0, 1/3), Algorithm 2 with R > ν̄ and
λ = O(1/

√
T ) satisfies:

min
t∈[T ]

E[(max
π

V π(µ)− V πt(µ))1A] ≤ ϵ,

where P(A) ≥ 1− 3δ over the random initialization of the actor-critic networks for the following parameters:

• iteration complexity: T = Õ
(

R2

(1−γ)ϵ2

)
,

• actor network width: m = Õ
(

R8

(1−γ)4ϵ8 + R6 log(1/δ)
(1−γ)4ϵ6 + C̃∞ν̄2 log(K/δ)

ϵ2(1−γ)2

)
,

• critic sample complexity: T ′ = O
(

M̃2
∞R4

(1−γ)2ϵ4

)
,

• critic network width: m′ = Õ
(

M̃2
∞R4 log(1/δ)
(1−γ)2ϵ2

)
,

• actor sample complexity: N = O
(

M̃4
∞R4q4

max

ϵ4(1−γ)4

)
,

where M̃∞ = C̃∞(1 + π−1
min).

Hence, the overall sample complexity of Neural NAC for finding an ϵ-optimal policy of the unregularized
MDP is Õ

(
1
ϵ6

)
.

4.5 Comparison With Prior Work

Among the existing work that theoretically investigate policy gradient methods, the most related one is
Wang et al. (2019), which considers Neural PG/NPG methods equipped with a two-layer neural network.
We point key differences between our work and prior work:

• Prior work do not incorporate entropy regularization. As a result, they need a stronger concentra-
bility coefficient assumption like Assumption 4’ instead of the weaker Assumption 4 under which we
are able to prove our main results.

• In the proofs in Appendix A, we will observe that one needs uniform function approximation bounds
for the linearized actor network at finite-width in approximating soft Q-functions throughout policy
optimization steps. We show that the problem structure, which will impose shared features among
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Algorithm Width of actor, critic Sample comp. Error Condition Objective
Neural NPG (Wang
et al., 2019)

O(1/ϵ12), O(1/ϵ12) O(1/ϵ14) ϵ + ϵ0
1 Strong Unregularized

Neural NAC (ours) Õ(1/ϵ4), Õ(1/ϵ2) Õ(1/ϵ5) ϵ Weak Regularized
Neural NAC (ours) Õ(1/ϵ8), Õ(1/ϵ2) Õ(1/ϵ6) ϵ Strong Unregularized

Table 1: The overparameterization and sample complexity bounds for variants of natural policy gradient
with neural network approximation.

soft Q-functions throughout policy optimization steps, will be of critical importance to achieve good
performance. To address this challenge, which was not addressed in the prior work, we devise new
techniques.

• While our algorithm is similar in spirit to the algorithms analyzed in the prior works, we also incorpo-
rate a number of important algorithmic ideas that are used in practice (e.g., entropy regularization,
weight decay, gradient clipping). As a result, we have to use different analysis techniques. As a
consequence of these algorithmic and analytical techniques, we obtain considerably sharper sample
complexity and overparameterization bounds (see Table 1). Interestingly, all of these algorithmic
improvements to the original NAC algorithms seem to be important to obtain the sharper bounds.

• We employ a symmetric initialization scheme proposed by Bai & Lee (2019) to ensure that f0(s, a) =
0 for all s, a despite the random initialization. As a consequence of symmetric initialization, we
eliminate the impact of f0 in the infinite width limit, which is effectively a noise term ϵ0 in the
performance bounds (Wang et al., 2019; Liu et al., 2019; Cai et al., 2019).

5 Conclusion

In this paper, we established global convergence of the two-timescale entropy-regularized NAC algorithm
with neural network approximation. We observed that entropy regularization, in combination with max-norm
gradient clipping and weight-decay, led to significantly improved sample complexity and overparameteriza-
tion bounds under weaker conditions since it (i) encourages exploration, (ii) controls the movement of the
neural network parameters. We characterized the bias due to function approximation and sample-based
estimation, and showed that overparameterization and increasing sample-size eliminates bias. Our analysis
revealed the significant difference between the actor and critic in terms of the approximation and statistical
errors, as the actor network to approximate all soft-Q functions throughout the policy optimization steps,
requiring larger sample complexity and representation power. To that end, the extension of our work with
a finer characterization of the uniform approximation error for the actor network, which would potentially
lead to a larger hypothesis class than FK,ν̄,V , is an interesting direction for neural policy optimization.

In practice, single-timescale natural policy gradient methods are predominantly used in conjunction with
entropy regularization and off-policy sampling (Haarnoja et al., 2018). The analysis techniques that we
develop in this paper can be used to analyze these algorithms.

In supervised learning, softmax parameterization is predominantly used for multiclass classification problems,
where natural gradient descent is employed for a better adjustment to the problem geometry (Goodfellow
et al., 2016; Pascanu & Bengio, 2013; Zhang et al., 2019). The techniques that we developed in this paper
can be useful in establishing convergence results and understanding the role of entropy regularization as well.
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A Finite-Time Analysis of Neural NAC

In this section, we provide the convergence analysis of the algorithm.

A.1 Analysis of Neural Network at Initialization

For δ ∈ (0, 1) and any R0 > 0, let

ρ0(R0, m, δ) = 16R0√
m

(
R0 +

√
log(1/δ) +

√
d log(m)

)
, (40)

and define

A0 =
{

sup
x:∥x∥2≤1

R0

m

m∑
i=1

1

{
|θ⊤

i (0)x| ≤ R0√
m

}
≤ ρ0(R0, m, δ)

}
. (41)

The following lemma bounds the deviation of the neural network from its linear approximation around the
initialization, and it will be used throughout the convergence analysis.

20



Published in Transactions on Machine Learning Research (04/2024)

Lemma 3. Let θi(0) ∼ N (0, Id) for all i ∈ [m], θ ∈ Bd
m,R0

(θ(0)) and θ′ ∈ Bd
m,R0

(0) for some R0 > 0. Then,

sup
x∈Rd:∥x∥2≤1

1√
m

m∑
i=1

∣∣∣(1{θ⊤
i

x≥0} − 1{θ⊤
i

(0)x≥0}

)
θ⊤

i (0)x
∣∣∣ ≤ ρ0(R0, m, δ), (42)

sup
x∈Rd:∥x∥2≤1

1√
m

m∑
i=1

∣∣∣(1{θ⊤
i

x≥0} − 1{θ⊤
i

(0)x≥0}

)
θ⊤

i x
∣∣∣ ≤ ρ0(R0, m, δ), (43)

sup
x∈Rd:∥x∥2≤1

1√
m

m∑
i=1

∣∣∣(1{θ⊤
i

x≥0} − 1{θ⊤
i

(0)x≥0}

)
x⊤θ′

i

∣∣∣ ≤ ρ0(R0, m, δ), (44)

under the event A0 defined in equation 41, which holds with probability at least 1 − δ over the random
initialization of the actor.

Proof. Let Ωd = {x ∈ Rd : ∥x∥2 ≤ 1}. For x ∈ Ωd, let

S(x, θ) =
{

i ∈ [m] : 1{θ⊤
i

x≥0} ̸= 1{θ⊤
i

(0)x≥0}
}

.

For any i ∈ S(x, θ), the following is true:

|θ⊤
i (0)x| ≤ |θ⊤

i (0)x− θ⊤
i x| ≤ ∥θi − θi(0)∥2, (45)

where the first inequality is true since sign(θ⊤
i (0)x) ̸= sign(θ⊤

i x) and the second inequality follows from
Cauchy-Schwarz inequality and x ∈ Ωd. Therefore,

S(x, θ) ⊂ {i ∈ [m] : |θ⊤
i (0)x| ≤ ∥θi − θi(0)∥2}.

Since

1√
m

m∑
i=1

∣∣∣(1{θ⊤
i

x≥0} − 1{θ⊤
i

(0)x≥0}

)
θ⊤

i (0)x
∣∣∣ = 1√

m

∑
i∈S(x,θ)

|θ⊤
i (0)x|,

we have:

1√
m

m∑
i=1

∣∣∣(1{θ⊤
i

x≥0} − 1{θ⊤
i

(0)x≥0}

)
θ⊤

i (0)x
∣∣∣ ≤ 1√

m

m∑
i=1

1{|θ⊤
i

(0)x|≤∥θi−θi(0)∥2}∥θi − θi(0)∥2.

Since maxi∈[m] ∥θi − θi(0)∥2 ≤ R0√
m

, the above inequality leads to the following:

1√
m

m∑
i=1

∣∣∣(1{θ⊤
i

x≥0} − 1{θ⊤
i

(0)x≥0}

)
θ⊤

i (0)x
∣∣∣ ≤ R0

m

m∑
i=1

1{|θ⊤
i

(0)x∥≤R0/
√

m}.

Taking supremum over x ∈ Ωd, and using Lemma 4 in Satpathi et al. (2020) on the RHS of the above
inequality concludes the proof.

In order to prove equation 43, similar to equation 45, we have the following inequality:

|θ⊤
i x| ≤ |θ⊤

i x− θ⊤
i (0)x| ≤ ∥θi − θi(0)∥2.

Using this, the proof follows from exactly the same steps.

Note that Lemma 3 is an extension of the concentration bounds in Ji & Telgarsky (2019); Du et al. (2018);
Satpathi et al. (2020) for neural networks. On the other hand, our concentration result provides uniform
convergence over Ωd = {x ∈ Rd : ∥x∥2 ≤ 1} rather than finitely many points, thus it is a stronger con-
centration bound compared to the ones in the literature, which are used to analyze neural networks (Ji &
Telgarsky, 2019; Du et al., 2018). We need these uniform concentration inequalities to address the challenges
due to the dynamics policy optimization, e.g., distributional shift.
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A.2 Impact of Entropy Regularization

First, we analyze the impact of entropy regularization, which will yield key results in the convergence analysis.

Proof of Proposition 2. Recall from Line 2 in Algorithm 3 that the policy update is as follows:

θ(t + 1) = θ(t) + ηtut − ηtλ(θ(t)− θ(0)).

Let θ(t) = θ(t)− θ(0) for all t ≥ 0. Then, the update rule can be written as:

θ(t + 1) = θ(t)(1− ηtλ) + ηtut.

Since the step-size is ηtλ = 1
t+1 , we have:

θ(t + 1) = 1
λ(t + 1)

t∑
k=0

uk,

by induction. Hence, by triangle inequality:

∥θi(t + 1)∥2 = ∥θi(t + 1)− θi(0)∥2 ≤
1

λ(t + 1)

t∑
k=0
∥ui,k∥2, (46)

for any i ∈ [m]. Note that uk ∈ Bd
m,R(0) as a consequence of projection, therefore ∥ui,k∥ ≤ R/

√
m for all

i ∈ [m]. Hence, by equation 46, we conclude that

max
i∈[m]

∥θi(t)− θi(0)∥2 ≤
R

λ
√

m
, (47)

for any t ≥ 0. Also, since wt = ut − λ(θ(t)− θ(0)), we have:

sup
t≥0
∥wt∥2 ≤ ∥ut∥2 + λ∥θ(t)− θ(0)∥2 ≤ 2R. (48)

Under a constant step-size η ∈ (0, 1/λ), we can expand the parameter movement for any t ≥ 1 as follows:

θi(t + 1) = θi(t) · (1− ηλ) + η · ui,t,

= θi(t− 1) · (1− ηλ)2 + η(1− λη)ui,t−1 + ηui,t,
...

= θi(0)(1− ηλ)t + η

t∑
k=0

(1− ηλ)kui,t−k = η

t∑
k=0

(1− ηλ)kui,t−k,

for any neuron i ∈ [m]. Then, we have:

∥θi(t + 1)− θi(0)∥2 ≤ η

t∑
k=0

(1− ηλ)k∥ui,k∥2 ≤
R

λ
√

m
(1− (1− ηλ)t+1),

≤ R

λ
√

m
, (49)

which follows from triangle inequality, ∥ui,k∥2 ≤ R/
√

m due to the projection, and the fact that (1 − (1 −
ηλ)t) ≤ 1 for any t ≥ 0.

In order to prove the lower bound for inft≥0,(s,a)∈S×A πt(a|s), first recall that πt(a|s) ∝ exp(ft(s, a)). Hence,
a uniform upper bound on |ft(s, a)| over all t ≥ 0 and (s, a) ∈ S × A suffices to lower bound πt(a|s). By
symmetric initialization, f0(s, a) = 0 for all (s, a) ∈ S ×A. Hence,

ft(s, a) = 1√
m

m∑
i=1

ci

(
[θi(t)− θi(0)]⊤(s, a)1{θ⊤

i
(t)(s,a)≥0}

)
+ 1√

m

m∑
i=1

ci(1{θ⊤
i

(s,a)≥0} − 1{θ⊤
i

(0)(s,a)≥0})θ⊤
i (t)(s, a). (50)
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First, we bound the first summand on the RHS of equation 50 by using equation 47 and triangle inequality:

sup
s,a

∣∣∣ 1√
m

m∑
i=1

ci

(
[θi(t)− θi(0)]⊤(s, a)1{θ⊤

i
(t)(s,a)≥0}

)∣∣∣ ≤ R

λ
, (51)

since |ci1{θ⊤
i

(t)(s,a)≥0} ·(s, a)| ≤ 1. For the last term in equation 50, first note that maxi∈[m] ∥θi(t)−θi(0)∥2 ≤
R

λ
√

m
, so we can use Lemma 3. By using triangle inequality and Lemma 3:

1√
m

m∑
i=1

∣∣∣(1{θ⊤
i

(s,a)≥0} − 1{θ⊤
i

(0)(s,a)≥0})θ⊤
i (t)(s, a)

∣∣∣ ≤ ρ0

(R

λ
, m, δ

)
,

with probability at least 1− δ over the random initialization of the actor network. Hence, with probability
at least 1− δ,

sup
s,a
|ft(s, a)| ≤ R/λ + ρ0

(R

λ
, m, δ

)
,

and πt(a|s) ≥ 1
|A| e

−2R
λ −2ρ0

(
R
λ ,m,δ

)
.

A.3 Lyapunov Drift Analysis

First, we present a key lemma which will be used throughout the analysis.
Lemma 4 (Log-linear approximation error). Let

π̃t(a|s) = exp(∇⊤
θ f0(s, a)θ(t))∑

a′∈A exp(∇⊤
θ f0(s, a′)θ(t))

,

be log-linear approximation of the policy πt(a|s). Then, for any δ ∈ (0, 1), we have:

sup
t≥0

sup
s,a

∣∣∣ log π̃t(a|s)
πt(a|s)

∣∣∣ ≤ 3ρ0

(R

λ
, m, δ

)
, (52)

over A0.

Proof. Note that ft(s, a) = ∇ft(s, a)θ(t) for a ReLU neural network. By using this, we can write the
log-linear approximation error as follows:∣∣∣ log π̃t(a|s)

πt(a|s)

∣∣∣ ≤ |(∇ft(s, a)−∇f0(s, a))⊤θ(t)|+
∣∣∣ log

∑
a′ e∇⊤f0(s,a′)θ(t)e(∇ft(s,a′)−∇f0(s,a′))⊤θ(t)∑

a′ e∇⊤f0(s,a′)θ(t)

∣∣∣. (53)

By log-sum inequality (Theorem 2.7.1 in Cover & Thomas (2006)), for any xa, ya > 0,

log
∑

a xa∑
a ya

≤
∑

a

xa∑
a′ xa′

log xa

ya
.

Setting xa = e∇⊤f0(s,a)θ(t) and ya = e∇⊤f0(s,a)θ(t)e(∇ft(s,a)−∇f0(s,a))⊤θ(t), we have:

log
∑

a′ e∇⊤f0(s,a′)θ(t)∑
a′ e∇⊤ft(s,a′)θ(t) ≤

∑
a′

π̃t(a′|s)|(∇ft(s, a′)−∇f0(s, a′))⊤θ(t)|. (54)

Setting ya = e∇⊤f0(s,a)θ(t) and xa = e∇⊤f0(s,a)θ(t)e(∇ft(s,a)−∇f0(s,a))⊤θ(t), we have:

log
∑

a′ e∇⊤ft(s,a′)θ(t)∑
a′ e∇⊤f0(s,a′)θ(t) ≤

∑
a′

πt(a′|s)|(∇ft(s, a′)−∇f0(s, a′))⊤θ(t)|. (55)
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Using equation 54 and equation 55 to bound the last term in equation 53, we obtain:∣∣∣ log π̃t(a|s)
πt(a|s)

∣∣∣ ≤ |(∇ft(s, a)−∇f0(s, a))⊤θ(t)|+
∑
a′

[
πt(a′|s) + π̃t(a′|s)

]
|(∇ft(s, a′)−∇f0(s, a′))⊤θ(t)|. (56)

By Lemma 3, under the event A0, |(∇ft(s, a)−∇f0(s, a))⊤θ(t)| ≤ ρ0(R/λ, m, δ) for all t ≥ 0, s ∈ S, a ∈ A.
Hence, under the event A0, we have:

sup
t≥0

sup
s,a

∣∣∣ log π̃t(a|s)
πt(a|s)

∣∣∣ ≤ 3ρ0(R/λ, m, δ),

which concludes the proof.

The following result is standard in the analysis of policy gradient methods (Kakade & Langford, 2002; Cayci
et al., 2021).
Lemma 5 (Lemma 5, (Cayci et al., 2021)). For any θ, θ′ ∈ Rd and µ, we have:

V πθ

λ (µ)− V
πθ′

λ (µ) = 1
1− γ

Es∼d
πθ
µ ,a∼πθ(·|s)

[
A

πθ′
λ (s, a) + λ log πθ′(a|s)

πθ(a|s)

]
, (57)

where Aπθ

λ is the advantage function defined in equation 8.

Lemma 5 is an extension of the performance difference lemma in Kakade & Langford (2002), and the proof
can be found in Cayci et al. (2021). In the following, we provide the main Lyapunov drift, which is central
to the proof. This Lyapunov function is widely used in the analysis of natural gradient descent algorithms
(Peters & Schaal, 2008; Agarwal et al., 2020; Wang et al., 2019; Cayci et al., 2021).
Definition 1 (Potential function). For any policy π ∈ Π, the potential function Ψ is defined as follows:

Ψ(π) = Es∼dπ∗
µ

[
DKL

(
π∗(·|s)∥π(·|s)

)]
. (58)

Lemma 6 (Lyapunov drift). For any t ≥ 0, let ∆t = V π∗

λ (µ)− V πt

λ (µ). Then,

Ψ(πt+1)−Ψ(πt) ≤− ηtλΨ(πt)− ηt(1− γ)∆t + 2η2
t R2

+ ηtEs∼dπ∗
µ ,a∼πt(·|s)

[
∇⊤f0(s, a)ut −Qπt

λ (s, a)
]

− ηtEs∼dπ∗
µ ,a∼π∗(·|s)

[
∇⊤f0(s, a)ut −Qπt

λ (s, a)
]

+ (ηtλ + 6)ρ0(R/λ, m, δ) + 2ηtR
√

ρ0(R/λ, m, δ),

(59)

in the event A0 which holds with probability at least 1− δ over the random initialization of the actor.

Proof. First, note that the log-linear approximation of πθ is smooth (Agarwal et al., 2020):

∥∇ log π̃θ(a|s)−∇ log π̃θ′(a|s)∥2 ≤ ∥θ − θ′∥2, (60)

for any s, a since ∥∇f0(s, a)∥2 ≤ 1. Also,

Ψ(πt+1)−Ψ(πt) = Es∼dπ∗
µ ,a∼π∗(·|s)

[
log πt(a|s)

πt+1(a|s)

]
.

To use the smoothness of log-linear approximation, we use a telescoping sum and obtain:

Ψ(πt+1)−Ψ(πt) = Es∼dπ∗
µ ,a∼π∗(·|s)

[
log π̃t(a|s)

π̃t+1(a|s) + log πt(a|s)
π̃t(a|s) + log π̃t+1(a|s)

πt+1(a|s)

]
.
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By Lemma 4, the last two terms are bounded by ρ0(R/λ, m, δ). Let

Dt = Es∼dπ∗
µ ,a∼π∗(·|s)

[
log π̃t(a|s)

π̃t+1(a|s)

]
.

Then, by the smoothness of the log-linear approximation, we have:

Dt ≤ −ηtEs∼dπ∗
µ ,a∼π∗(·|s)∇⊤

θ log π̃t(a|s)wt + η2
t ∥wt∥2

2
2 ,

Recall ∆t = V π∗

λ (µ)− V πt

λ (µ). Using Lemma 5 and the definition of the advantage function, we obtain:

Dt ≤ −ηtλΨ(πt)− ηt(1− γ)∆t − ηtEs∼dπ∗
µ (s),a∼πt(a|s)[Qπt

λ (s, a)− λ log πt(a|s)]

− ηtEs∼dπ∗
µ ,a∼π∗(·|s)[∇⊤ log π̃t(a|s)wt − qπt

λ (s, a)] + η2
t ∥wt∥2

2
2 . (61)

Since we have ∇ log π̃t(a|s) = ∇f0(s, a)− E
a′∼π̃t(·|s)[∇f0(s, a′)], we have the following inequality:

Dt ≤ −ηtλΨ(πt)− ηt(1− γ)∆t

+ ηtEs∼dπ∗
µ (s),a∼πt(a|s)[∇⊤f0(s, a)wt −Qπt

λ (s, a) + λft(s, a)]

− ηtEs∼dπ∗
µ ,a∼π∗(·|s)[∇⊤f0(s, a)wt −Qπt

λ (s, a) + λft(s, a)]

+ ηtEs∼dπ∗
µ

[
∑
a∈A

(π̃t(a|s)− πt(a|s))∇⊤f0(s, a)wt] + η2
t ∥wt∥2

2
2 .

By the definition of wt = ut−λ[θ(t)−θ(0)] and the fact that f0(s, a) = 0 due to the symmetric initialization,
we have:

∇⊤f0(s, a)wt = ∇⊤f0(s, a)ut − λ∇⊤f0(s, a)θ(t).
Substituting this identity to the above inequality, we have:

Dt ≤ −ηtλΨ(πt)− ηt(1− γ)∆t

+ ηtEs∼dπ∗
µ (s),a∼πt(a|s)[∇⊤f0(s, a)ut −Qπt

λ (s, a)]

− ηtEs∼dπ∗
µ ,a∼π∗(·|s)[∇⊤f0(s, a)ut −Qπt

λ (s, a)]

+ 2ηtREs∼dπ∗
µ

[ ∑
a

|π̃t(a|s)− πt(a|s)|
]

+ ηtλEs∼dπ∗
µ

[ ∑
a∈A
|πt(a|s)− π∗(a|s)| · (∇ft(s, a)−∇f0(s, a))⊤θ(t)

]
+ 2η2

t R2,

(62)

where we used equation 48 to bound ∥wt∥2. Furthermore, note that

|(∇ft(s, a)−∇f0(s, a))⊤θ(t)| ≤ 1√
m

m∑
i=1

∣∣∣(1{θ⊤
i

x≥0} − 1{θ⊤
i

(0)x≥0}

)
θ⊤

i (t)x
∣∣∣,

for any x = (s, a)⊤ ∈ Rd. Thus, by Lemma 3,

sup
s,a
|(∇ft(s, a)−∇f0(s, a))⊤θ(t)| ≤ ρ0(R/λ, m, δ).

This bounds the penultimate term in equation 62. Finally, in order to bound the fifth term in equation 62,
we use Pinsker’s inequality and then Lemma 4:

sup
s∈S
∥π̃t(·|s)− πt(·|s)∥1 ≤ sup

s∈S

√∑
a

πt(a|s) log πt(a|s)
π̃t(a|s) ≤

√
ρ0(R/λ, m, δ).

Substituting these into equation 62 and then into equation 59, the desired result follows.
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A.4 Analysis of the Function Approximation Error: How Do Neural Networks Address Distributional
Shift in Policy Optimization?

As a specific feature of reinforcement learning, policy optimization in particular, the probability distribution
of the underlying system changes over time as a function of the control policy. Consequently, the function
approximator (i.e., the actor network in our case) needs to adapt to this distributional shift throughout the
policy optimization steps. In this subsection, we analyze the function approximation error, which sheds light
on how neural networks in the NTK regime address the distributional shift challenge.

Now we focus on the error term in Lemma 6:

ϵπt

bias = Es∼d∗
µ

[ ∑
a∈A

(
πt(a|s)− π∗(a|s)

)(
∇⊤f0(s, a)ut −Qπt

λ (s, a)
)]

. (63)

Note that ϵπt

bias can be equally expressed as follows:

ϵπt

bias = Es∼d∗
µ

[ ∑
a∈A

(
πt(a|s)− π∗(a|s)

)(
∇⊤ log πt(a|s)ut − Ξπt

λ (s, a)
)]

+ Es∼dπ∗
µ

[ ∑
a∈A

(
πt(a|s)− π∗(a|s)

)([
∇f0(s, a)−∇ft(s, a)

]⊤
ut

)]
,

where Ξπ
λ is the soft advantage function. The above identity provides intuition about the choice of sample-

based gradient update ut in Algorithm 2, which we will investigate in detail later.

Let
L0(u, θ) = E[(∇⊤f0(s, a)u−Qπθ

λ (s, a))2].
In the following, we answer the following question: given the perfect knowledge of the soft Q-function Qπθ

λ ,
what is minu L0(u, θ(t))?
Proposition 3 (Approximation Error). Under symmetric initialization of the actor network, we have the
following results:

• Pointwise approximation error: For any θ ∈ Θ and Qπθ

λ ∈ Fν̄ ,

E
[

min
u∈Rm×d

L0(u, θ)
]
≤ 4ν̄2

m
, (64)

where the expectation is over the random initialization of the actor network.

• Uniform approximation error: Let

A1 =
{

sup
s,a

θ∈Θ

min
u
|∇⊤f0(s, a)u−Qπθ

λ (s, a)| ≤ 2ν̄√
m

(
(d log(m)) 1

4 +
√

log
(K

δ

))}
.

Then, under Assumption 3, A1 holds with probability at least 1−δ over the random initialization of the actor
network. Furthermore,

E
[
1A0∩A1 sup

θ
min

u
L0(u, θ)

]
≤ 4ν̄2

m

(
(d log(m)) 1

4 +
√

log
(K

δ

))2
. (65)

Proof. For a given policy parameter θ ∈ Θ, let the transportation mapping of Qπθ

λ be vθ and let

Y θ
i (s, a) = v⊤

θ (θi(0))(s, a) · 1{θ⊤
i

(0)(s,a)≥0}, i ∈ [m].

Note that E[Y θ
i (s, a)] = Qπθ

λ (s, a) for any (s, a) ∈ S ×A. Also, let

u∗
θ =

[ 1√
m

civθ(θi(0))
]

i∈[m]
.
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Since u∗
θ ∈ Bd

m,ν̄(0) for all θ ∈ Θ, projected risk minimization within Bd
m,R(0) for R ≥ ν̄ suffices for optimality.

We have

∇⊤f0(s, a)u∗
θ = 1

m

m∑
i=1

Y θ
i (s, a),

and

min
u

L0(u, θ) ≤ Es∼d
πθ
µ ,a∼πθ(·|s)

[( 1
m

m∑
i=1

Y θ
i (s, a)− E[Y θ

1 (s, a)]
)2]

. (66)

1. Pointwise approximation error: First we consider a given fixed θ ∈ Θ. Taking the expectation in
equation 66 and using Fubini’s theorem,

E[min
u

L0(u, θ)] ≤ Es,aE
[( 1

m

m∑
i=1

Y θ
i (s, a)− E[Y θ

1 (s, a)]
)2]

,

= 2Es,a

[ 4
m2

m/2∑
i=1

V ar(Y θ
i (s, a)) + 4

m2

m/2∑
i,j=1
i ̸=j

Cov(Y θ
i (s, a), Y θ

j (s, a))
]
, (67)

= 4Es,a

[V ar(Y θ
1 (s, a))

m2

]
, (68)

≤ 4
m2Es,aE[(Y θ

1 (s, a))2], (69)

where the identity equation 67 is due to the symmetric initialization, equation 68 holds because {Y θ
i (s, a) :

i = 1, 2, . . . , m/2} is independent (since {θi(0) : i ∈ [m/2]} is independent). By Cauchy-Schwarz inequality
and the fact that vθ ∈ Hν̄ , we have:

|Y θ
i (s, a)| ≤ ∥vθ(θi(0))∥2 ≤ ν̄.

Hence, using this in equation 69, we obtain:

Emin
u

L0(u, θ) ≤ 4ν̄2

m2 . (70)

2. Uniform approximation error: For any θ ∈ Θ, since Qπθ

λ ∈ FK,ν̄,V there exists αθ =
(αθ

1, αθ
2, . . . , αθ

K) ∈ RK such that ∥αθ∥1 ≤ 1 and vθ =
∑

k αθ
kvk. We consider the following error:

Rm(Θ) = sup
(s,a)∈S×A

sup
θ∈Θ

∣∣∣ 1
m

m∑
i=1

Y θ
i (s, a)− E[Y θ

1 (s, a)]
∣∣∣. (71)

Then, we have the following identity from the definition of vθ:

Rm(Θ) = sup
s,a

sup
θ

∣∣∣ K∑
k=1

αθ
k ·

( 1
m

m∑
i=1

Zk
i (s, a)− E[Zk

1 (s, a)]
)∣∣∣, (72)

where Zk
i (s, a) = v⊤

k (θi(0))(s, a)1{θ⊤
i (0)(s, a) ≥ 0}. Then, by triangle inequality,

Rm(Θ) ≤ sup
s,a

sup
θ

max
k∈[K]

∣∣∣ 1
m

m∑
i=1

Zk
i (s, a)− E[Zk

1 (s, a)]
∣∣∣ · ∥αθ∥1,

≤ max
k∈[K]

sup
s,a

∣∣∣ 1
m

m∑
i=1

Zk
i (s, a)− E[Zk

1 (s, a)]
∣∣∣. (73)

By using union bound and equation 73, for any z > 0, we have the following:

P(Rm(Θ) > z) ≤
K∑

k=1
P

(
sup
s,a

∣∣∣ 1
m

m∑
i=1

Zk
i (s, a)− E[Zk

1 (s, a)]
∣∣∣ > z

)
. (74)

We utilize the following to obtain a uniform bound for | 1
m

∑m
i=1 Zk

i (s, a)−E[Zk
1 (s, a)]| over all (s, a) ∈ S×A.
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Lemma 7. For any k ∈ [K], for any δ ∈ (0, 1), the following holds:

sup
s,a

∣∣∣ 1
m

m∑
i=1

Zk
i (s, a)− E[Zk

1 (s, a)]
∣∣∣ ≤ 4ν̄(d log m)1/4

√
m

+
4ν̄

√
log(1/δ)√

m
, (75)

with probability at least 1− δ.

Hence, using Lemma 7 and equation 74 with z = 4ν̄(d log m)1/4
√

m
+ 4ν̄
√

log(K/δ)√
m

, we conclude that

Rm(Θ) ≤ 4ν̄(d log m)1/4
√

m
+

4ν̄
√

log(K/δ)√
m

,

with probability at least 1− δ. The expectation result follows from this inequality.

Now, we have the following result for the approximation error under πt.
Corollary 4. Under Assumption 3, we have:

E[1A0∩A1 min
u

L0(u, θ(t))] ≤ 16ν̄2

m

(
(d log(m)) 1

4 +
√

log
(K

δ

))2
,

where the event A1, defined in Proposition 3, holds with probability at least 1−δ over the random initialization
of the actor.
Remark 8 (Why do we need a uniform approximation error bound?). Note that for a given fixed
policy πθ, θ ∈ Θ, Proposition 3 provides a sharp pointwise approximation error bound as long as Qπθ

λ ∈ Fν̄

with a corresponding transportation map vθ. In order for this result to hold, v⊤
θ (θi(0))(s, a)1{θ⊤

i
(0)(s,a)≥0}

is required to be iid for i ∈ [m/2], which is the main idea behind the random initialization schemes for
the NTK analysis. On the other hand, in policy optimization, θ(t) depends on the initialization θ(0),
therefore v⊤

θ(t)(θi(0))(s, a)1{θ⊤
i

(0)(s,a)≥0} is not independent – hence, Cov(Y θ
i (s, a), Y θ

j (s, a)) ̸= 0 for i ̸= j

in equation 67. Furthermore, the distribution of (s, a) at time t > 0 also depends on π0. Therefore,
the pointwise approximation error cannot be used to provide an approximation bound for Qπt

λ under the
entropy-regularized NAC. In the existing works, this important issue regarding the temporal correlation and
its impact on the NTK analysis was not addressed. In this work, we utilize the uniform approximation error
bound provided in Proposition 3 to address this issue for K functions to define the function class, while it
may be possible to extend this to infinitely-many basis functions by using more general statistical complexity
concepts.

In the absence of Qπθ

λ , the critic yields a noisy estimate Q
πθ

λ . Additionally, the samples {(sn, an) ∼ dπθ
µ ◦

πθ(·|s) : n ≥ 0} are used to obtain the update ut. These two factors are the sources of error in the natural
actor-critic method: minu L0(u, θ(t)) ≤ L0(ut, θ(t)). In the following, we quantify this error and show that:

1. Increasing number of SGD iterations, N ,

2. Increasing representation power of the actor network in terms of the width m,

3. Low mean-squared Bellman error in the critic (by large m′, T ′),

lead to vanishing error.

First, we study the error introduced by using SGD for solving:

L̂t(u, θ(t)) = Es∼d
πt
µ ,a∼πt(·|s)

[(
∇⊤

θ log πt(a|s)u− Ξ̂πt

λ (s, a)
)2]

, u ∈ Bd
m,R(0), (76)

Note that the auxiliary objective in equation 76 is Lipschitz continuous with modulus qmax = 4(2R −
λ log πmin) due to ∥u∥2 ≤ R for u ∈ Bd

m,R(0), ∥∇ log πt(a|s)∥ ≤ 2∥∇ft(s, a)∥ ≤ 2 for ReLU networks, and
the bound on |Ξ̂πt

λ (s, a)| ≤ 2|Qπt

λ (s, a)| ≤ 2|qπt

T ′(s, a) − λ log πt(a|s)| ≤ 2(R − λ log πmin) that follows from
πt(a|s) ≥ πmin by Proposition 2 and |qπt

T ′(s, a)| ≤ R from the max-norm projection with radius R for MN-NTD.
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Proposition 4 (Theorem 14.8, Shalev-Shwartz & Ben-David (2014)). Algorithm 2 (Lines 2-2) with step-size
αA = R/

√
q2

maxN yields the following result:

E[L̂t(ut, θ(t))]−min
u

L̂t(u, θ(t)) ≤ Rqmax√
N

, (77)

for any R ≥ ν̄ where the expectation is over the random samples {(sn, an) : n ∈ [N ]}.

The following proposition provides an error bound in terms of the statistical error for finding the optimum
ut via SGD as well as TD-learning error in estimating the soft Q-function. Let

Lt(u, θ(t)) = Es∼d
πt
µ ,a∼πt(·|s)

[(
∇⊤

θ log πt(a|s)u− Ξπt

λ (s, a)
)2]

. (78)

Proposition 5. Let A = A0 ∩A1 ∩A2, hence P(A) ≥ 1− 3δ. We have the following inequality:

E[1ALt(ut, θ(t))] ≤ 8 min
u

{
1AL0(u, θ(t)) + E

[
1A

∣∣[∇f0(s, a)−∇ft(s, a)]⊤u
∣∣2]}

+ 2Rqmax√
N

+ 6E[1A|Qπt

λ (s, a)−Q
πt

λ (s, a)|2], (79)

where the expectation is over the samples for critic (TD learning) and actor (SGD) updates. Consequently,
we have:

E[
√

Lt(ut, θ(t))] ≤ 3
√
E[ min

u∈Bd
m,R

(0)
L0(u, θ(t))] + 2

√
Rqmax

N
1
4

+ 3ρ0(R/λ, m, δ)

+ 3E
√
Es,a

[
|Qπt

λ (s, a)−Q
πt

λ (s, a)|2
]
, (80)

under the event A.

Proof. We extensively use the inequality (x + y) ≤ 2x2 + 2y2 for x, y ∈ R. First, note that

L̂t(u, θ(t)) ≤ 2Lt(u, θ(t)) + 2Es,a∼dt

[
|Qπt

λ (s, a)−Q
πt

λ (s, a)|2
]
, (81)

for any u ∈ Bd
m,R(0). Hence, under A = A0 ∩A1 ∩A2, we have:

E[Lt(ut, θ(t))] ≤ 2E[L̂t(ut, θ(t))] + 2E
[
|Qπt

λ (s, a)−Q
πt

λ (s, a)|2
]
, (82)

≤ 2 min
u∈Bd

m,R
(0)

L̂t(u, θ(t)) + 2Es,a

[
|Qπt

λ (s, a)−Q
πt

λ (s, a)|2
]

+ 2Rqmax

N1/2 , (83)

≤ 4 min
u∈Bd

m,R
(0)

Lt(u, θ(t)) + 6Es,a

[
|Qπt

λ (s, a)−Q
πt

λ (s, a)|2
]

+ 2Rqmax

N1/2 , (84)

where the second line follows from Prop. 4 and the last line follows from equation 81. Consequently, we
have:

E[Lt(ut, θ(t))] ≤ 8 min
u∈Bd

m,R
(0)

{
E[(∇⊤f0(s, a)u−Qπt

λ (s, a))2] + E[|(∇ft(s, a)−∇f0(s, a))⊤u|2]
}

+ 6Es,a

[
|Qπt

λ (s, a)−Q
πt

λ (s, a)|2
]

+ 2Rqmax

N1/2 , (85)

where we use (x + y)2 ≤ 2x2 + 2y2 and the following inequality:

E[(∇⊤ log πt(a|s)u− Ξπt

λ (s, a))2] = Es∼d
πt
µ

V ar(∇⊤ft(s, a)u−Qπt

λ (s, a)),

≤ E[(∇⊤ft(s, a)u−Qπt

λ (s, a))2].

Using equation 85 and Theorem 2 in Cayci et al. (2023) together with the inequality
√

x + y + z ≤
√

x +√
y +
√

z for x, y, z > 0, we obtain equation 80.
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Hence, we obtain the following bound on the approximation error ϵπt

bias.
Corollary 5 (Approximation Error). Under Assumption 1-4, we have the following bound on the approxi-
mation error:

E[1A · ϵπt

bias] ≤M∞

[ 8ν̄√
m

(
(d log(m)) 1

4 +
√

log
(K

δ

))
+ 2
√

Rqmax

N
1
4

+ 4ε
]
,

where A = A0 ∩A1 ∩A2, m′ = Õ
(

ν̄4

(1−γ)2ε2

)
and T ′ = O

(
(1+2ν̄)2ν̄2

ε4

)
and P(A) ≥ 1− 3δ.

Proof. In order to prove Corollary 5, we substitute the results of Corollary 4 and Lemma 2 into equation 80.

The main message of Corollary 5 is as follows: in order to eliminate the bias introduced by using (i) function
approximation, (ii) sample-based estimation for actor and critic, one should employ more representation
power in both actor and critic networks (via m and m′), and also use more samples in actor and critic
updates (via N and T ′). Furthermore, Corollary 5 quantifies the required network widths and sample
complexities to achieve a desired bias ϵ > 0.

In the following subsection, we finally prove Theorem 1 by using the Lyapunov drift result (Lemma 6) and
the approximation error bound (Corollary 5).

A.5 Convergence of Entropy-Regularized Natural Actor-Critic

Proof of Theorem 1. In the following, we prove the first part of Theorem 1, where the second part follows
identical steps with a constant step size η ∈ (0, 1/λ). First, note that Lemma 6 implies the following bound:

1A

[
Ψ(πt+1)−Ψ(πt)

]
≤ −ηtλΨ(πt)1A − ηt(1− γ)∆t1A + 2η2

t R2 + ηt1Aϵπt

bias

+ (ηtλ + 6)ρ0(R/λ, m, δ) + 2ηtR
√

ρ0(R/λ, m, δ).
(86)

By Corollary 5,

E[1Aϵπt

bias] ≤M∞

[
ρ1 + 2

√
Rqmax

N1/4 + 4ε
]

=: ϵbias,

where
ρ1 = 16ν̄√

m

(
(d log(m)) 1

4 +
√

log(K/δ)
)

.

Let Ψt := E[Ψ(πt)1A]. Then,

Ψt+1 −Ψt ≤ −ηtλΨt − ηt(1− γ)E[1A∆t] + 2η2
t R2 + ηtϵbias

+ 7ρ0(R/λ, m, δ) + 2ηtR
√

ρ0(R/λ, m, δ).

Since ηt = 1
λ(t+1) , by induction,

Ψt+1 ≤ (1− ηtλ)Ψt + ηt(1− γ)E[1A∆t] + 2η2
t R2

+ ηt

(
ϵbias + 2R

√
ρ0(R/λ, m, δ)

)
+ 7ρ0(R/λ, m, δ),

≤ − (1− γ)
λ(t + 1)

∑
k≤t

E[1A∆t] + 1
λ

(
ϵbias + 2R

√
ρ0(R/λ, m, δ)

)
+ 2R2 log(t + 1)

λ2(t + 1)

+ 4(t + 1)ρ0(R/λ, m, δ).

Hence,

min
0≤t<T

E[1A∆t] ≤
1

1− γ

(
ϵbias + 2R

√
ρ0(R/λ, m, δ)

)
+ 2R2(1 + log T )

λ(1− γ)T + 4Tλ

(1− γ)ρ0(R/λ, m, δ), (87)

which concludes the proof.
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Proof of Corollary 2. Note that, without the realizability assumptions, we have

E
√
E[ min

u∈Bd
m,R

(0)
L0(u, θ(t))] ≤ ϵactor

app ,

and

3E
√

Es,a

[
|Qπt

λ (s, a)−Q
πt

λ (s, a)|2
]
≤ 3
√

2
(
E[

√
Es,a|Qπt

λ (s, a)− Q̌πt

λ (s, a)|2 + ϵcritic
app

)
,

where Q̌πt

λ (s, a) ∈ arg minf∈Fν̄ Es,a(f(s, a)−Qπt

λ (s, a))2. Substituting these inequalities into equation 80 and
replacing ϵbias accordingly, the proof follows from the same steps as the proof of Theorem 1.

B Sampling from the Discounted State-Action Visitation Distribution

Given an initial state distribution µ and policy π, under a generative model that enables obtaining an
independent and identically distributed s0 from the initial state distribution µ, the procedure summarized in
Algorithm 4 yields an iid sample (s, a) such that s ∼ dπ

µ and a ∼ π(·|s) (Konda & Tsitsiklis, 2003; Agarwal
et al., 2020).

Algorithm 4: Sampler from dπ
µ ⊗ π under a generative model

inputs: µ: initial state distribution, π: policy, γ: discount factor;
Set s0 ∼ µ and a0 ∼ π(·|s0);
for k = 0, 1, . . . do

ik ∼ Ber(γ);
if ik = 1 then

sk+1 ∼ P (·|sk, ak);
ak+1 ∼ π(·|sk+1);

else
return (s, a) = (sk, ak)

The generative model enables the controller to access iid samples from the state-action visitation distribution
dπt

µ by resetting from the initial state distribution µ, which is critical in the actor-critic framework in
Algorithm 2 that we analyzed in this paper. In the absence of such a generative model, the sampling
procedure in an on-policy RL setting is performed by using a single Markovian trajectory (Sutton & Barto,
2018). Ergodicity is required in this case, which is always satisfied for irreducible and aperiodic Markov
chains with a finite state space, where the verification of ergodicity for Markov chains with an infinite state
space is more complicated (Norris, 1998). Under a Markovian sampling procedure in the ergodic setting,
the distribution mismatch that led to the concentrability coefficient assumptions (Assumption 4’) needs to
be replaced by the stationary distribution {ξπt}t under policies {πt}t as

max
0≤t<T

max
(s,a)∈S×A

dπ∗

µ (s)π∗(a|s)
ξπt(s, a) <∞.

Furthermore, a finite-time analysis in the Markovian sampling would introduce new terms that depend on
the mixing-times to analyze the transient behavior under each policy (Bhandari et al., 2021; Cayci et al.,
2023).
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C Proof of Lemma 7

Consider g ∈ Fν̄ with a corresponding transportation map v ∈ Hν̄ . Using Cauchy-Schwarz inequality,

E sup
x:∥x∥2≤1

∣∣∣g(x)− 1
m

m∑
i=1

v⊤(θi(0))x1{θ⊤
i (0)x ≥ 0}

∣∣∣2

≤ E sup
x:∥x∥2≤1

∥∥∥ 1
m

m∑
i=1

v(θi(0))1{θ⊤
i

(0)x≥0} − E[v(θi(0))1{θ⊤
i

(0)x≥0}]
∥∥∥2

.

Define bi := v(θi(0))1{θ⊤
i

(0)x≥0}. Define a class B containing all possible values taken by b := {bi}m
i=1 over

{x : ∥x∥2 ≤ 1} for a fixed θ(0). Further, using Cauchy-Schwarz inequality,

E sup
x:∥x∥2≤1

∣∣∣g(x)− 1
m

m∑
i=1

v⊤(θi(0))x1{θ⊤
i

(0)x≥0}

∣∣∣2

≤ E sup
b∈B

1
m2

m∑
i ̸=j

(bi − Ebi)⊤(bj − Ebj) + 4ν̄2

m
.

Using the symmetrization argument with Rademacher random variables σij ’s,

E sup
x:∥x∥2≤1

∣∣∣g(x)− 1
m

m∑
i=1

v⊤(θi(0))x1{θ⊤
i

(0)x≥0}

∣∣∣2
≤ 4Eθ(0)Er sup

b∈B

1
m2

m∑
i ̸=j

σijb⊤
i bj + 4ν̄2

m
.

Note that given θ(0), B is a finite set. We apply Massart’s Finite Class lemma to have,

Er

[
sup

b:b∈B

1
m2

m∑
i ̸=j

σijb⊤
i bj |θ(0)

]
≤

√√√√ m∑
i ̸=j

∥v(θi(0))∥2∥v(θj(0))∥2

√
2 log |B|

m2

We calculate |B| using VC-theory. Each element bi of b, partitions the space {∥x∥ = 1} ⊂ Rd into two half
planes where one half takes value v(θi(0)) and another half takes value 0. Hence all possible values taken by
b in space {∥x∥ = 1} is equal to the number of components in the partition made by m half planes {bi}m

i=1.
The number of such components is bounded by md+1 + 1 using the growth function defined by Vapnik &
Chervonenkis (1971). Hence |B| ≤ m2d, and the following holds:

E sup
x:∥x∥2≤1

∣∣∣g(x)− 1
m

m∑
i=1

v⊤(θi(0))x1{θ⊤
i

(0)x≥0}

∣∣∣2
≤ 12ν̄2√d log m

m
.

The result follows from Jensen’s inequality.

32


	Introduction
	Main Contributions
	Related Work
	Notation

	Background and Problem Setting
	Markov Decision Processes
	Natural Policy Gradient under Entropy Regularization

	Natural Actor-Critic with Neural Network Approximation
	Actor Network and Natural Policy Gradient
	Critic Network and Temporal Difference Learning

	Sample Complexity and Overparameterization Bounds for Neural NAC
	Regularization and Persistence of Excitation under Neural NAC
	Transportation Mappings and Function Classes
	Convergence of the Critic
	Global Optimality and Convergence of Neural NAC
	Performance Bounds under a Weak Distribution Mismatch Condition
	Performance Bounds under a Strong Distribution Mismatch Condition

	Comparison With Prior Work

	Conclusion
	Finite-Time Analysis of Neural NAC
	Analysis of Neural Network at Initialization
	Impact of Entropy Regularization
	Lyapunov Drift Analysis
	Analysis of the Function Approximation Error: How Do Neural Networks Address Distributional Shift in Policy Optimization?
	Convergence of Entropy-Regularized Natural Actor-Critic

	Sampling from the Discounted State-Action Visitation Distribution
	Proof of Lemma 7

