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Abstract

Automating cervical cancer screening has the potential to reduce high mortality
rates due to cervical cancer, especially in developing countries. The most promising
of these techniques is assisted screening in which preliminary analysis is validated
by a pathologist. Assisted screening requires classification algorithms for initial
screening that is later validated by a pathologist. It also needs attention, detection
or segmentation algorithms for drawing attention of pathologists to important
regions. Existing algorithms for cervical cancer screening focus on classification
of individual cells . This focus leads to need for accurate segmentation of cells and
inability to use extracellular information. In this work we propose a segmentation
free deep learning algorithm for classification of PAP smear images. The proposed
algorithm uses the intrinsic information in the network to generate a map of
important regions for the pathologist to look into. This map is generated with sub
image resolution while the training data contains annotations at the image level
only. Our analysis on a dataset of around 14000 images validate the approach of
assisted screening in reducing the pathologist workload by a large factor.

1 Introduction

Cervical cancer is one of the most prevalent cancer among women with more than half a million cases
reported every year[1]. It has been observed that the use of systematic screening using Papanicolaou
test (PAP-test) can reduce morality rate by as much as 70% or more[2]. However the current
procedure for cervical cancer screening with PAP-test depends on high skilled labour. It is also a
fatigue inducing process thereby limiting the number of slides that can be screened to a maximum of
100 per day according to clinical laboratory improvement amendments 1998 [3]. In light of these
challenges, automation of cervical cancer screening is an important problem to consider. One of the
most promising approaches for automation is assisted screening where algorithms provide initial
results and assist a pathologist in validating/reviewing the result.

In this work, we propose a new deep learning algorithm for assisted screening of cervical cancer.
Unlike existing approaches which are dependent on segmentation of individual cells, our approach
classifies images with multiple cells. In our knowledge this is the first strictly segmentation free
cervical cancer detection algorithm in the literature. This approach of segmentation free classification
will lead to massive reduction of effort in collecting training and testing data. By classifying whole
images, we are also able to use the extracellular information directly in the algorithm. In tune with the
requirements of assisted screening, we use the intrinsic information in the neural network to provide
the doctor with a map of important images and regions inside an image. While this map improves
the interpretability of our results, it also speeds up the review process for the doctor. The proposed
map has sub-image resolution while the training data only contains image level annotations. In our
knowledge, this is the first work in classification of cervical cancer that works at image level, use
extracellular information and gives results with higher spatial resolution than the training data.



2 Related work

During the past decade, extensive research has been devoted towards automating PAP-test. A common
characteristics of these approaches have been the focus on classification of individual cells [4] [5].
This focus introduces challenges in localisation and segmentation of single cells. It also raises
the challenge of integrating extracellular information to give a result at slide/image level. Hence
use of these algorithms in a clinical device would necessitate accurate segmentation algorithms for
delineating single cells as well as information aggregation modules to integrate the extracellular and
intracellular information.

Segmentation algorithm for PAP-test images should be able to separate single cells from the back-
ground, artefacts and other cells in large images. Herlev dataset [6], which is the most popular
dataset for PAP-test consists of single cells with a small amount of background. Hence the algorithms
evaluated only on Herlev dataset cannot be used as a prior segmentation step for classification of
cervical cells. Even discounting this fact, segmentation algorithms in literature [5, 7, 8, 9] do not
meet the required level of accuracy [10].

Another approach of classifying image patches with single cells [11, 12, 10] show impressive results
without the need for segmentation. Though this approach do ameliorate the need for segmentation, it
needs a prior detection or localisation algorithm for localising single cells.

From the medical literature [13], it is evident that the PAP-test screening is based on the features
of cells in context of extracellular information. Unfortunately the prevalent practice of classifying
single cells exclude the use of extracellular information. An illustrative example for extracellular
information would be the presence of inflammatory cells.

3 Our contributions

In this work, we propose a novel deep neural network based algorithm for classification of PAP-test
images along with an assistive map that provides inter-image score for ranking images and intra-image
ranking for patches in terms of their usefulness in diagnosis.

The proposed networks acts on images that contain multiple cells along with other artefacts and
predicts a label for the whole image. This is in contrast with other algorithms in literature, which
focused at classification of cells. In cell based approach, each cell has to be delineated and labelled.
Delineation and labelling are quite time consuming, especially since the labelling need experienced
pathologists. By classifying tiles instead of cells, we reduce the time and effort to collect the data.
We also hypothesise that since a image consists of cells in the local context, the image based decision
approach would be able to use the contextual information like the presence of neutrophils.

The proposed network provides classification label along with an assistive map for each image.
The network is able to classify each image into one of the two classes, normal and abnormal. The
abnormal class consists of low-grade squamous intraepithelial lesion (LSIL), high-grade squamous
intraepithelial lesion (HISIL) and Squamous cell carcinoma(SCC) while normal class consists of the
normal cells, all according to the Bethesda system [14]. The assistive map acts as an assistive tool for
the pathologist. The map provides a score for each 30 × 30 pixel block in the image. The sum of
scores of all the constituent blocks is the net score (assistive score) for an image. Unlike segmentation
algorithms which aim to accurately segment cells, assistive map highlights regions/images that
contribute to classification. We hypothesise that by presenting images in order of assistive score, a
pathologist would be able to confirm the classification results by viewing minimal number of images.

Summary of contributions

1. Strictly segmentation free PAP-test image classification

2. Assistive map that helps pathologist focus on important tiles and regions.

3. A workflow that will reduce the workload of pathologist
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Figure 1: Network architecture

4 Proposed Network

The proposed network consists of a CNN feature extractor followed by a classification network in
parallel to the assistive map network Figure 1. The CNN network consist of block-1 to block-5 of
VGG-16 network. We use the output of block5-maxpool layer as the features from the CNN layers.
For the classification we use a simple network with two neuron fully connected layer with softmax
activation.

The assistive map network is designed to give a score for small blocks in the image. The standard
size of a cell at 40x magnification is around 30× 30 pixels. The features of the VGG CNN layer at
block-5 maxpool layer has an effective receptive field of 32× 32. Hence the assistive network uses
these features for the map generation. The assistive network consists of a 1× 1 convolution layer
with just 1 feature output dimension. By using this architecture, we force the network to give a single
representative value for each 32× 32 pixel block. To ensure that these values are non-negative but
unbounded in magnitude, we use Relu as the activation function for this layer. Though the assistive
network is complete at this level, we cannot train the said network since the training data does not
contain annotation for 32× 32 pixel blocks. To train the assistive network with image level labels,
we append a two neuron fully connected layer with softmax activation on top of the network. We
use the actual tile label as the target for this layer while training. We hypothesise that since the final
layer is just a softmax function, and due to the bottleneck at assistive layer, the network will train in
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Figure 2: Sample images from the dataset that demonstrate variability in the distribution of cells,
presence of neutrophils etc

such a way as to have the output of assistive map to be the likelihood of the region being normal or
abnormal.

For training, we use categorical cross entropy loss. We compute the cross entropy loss for both the
networks and sum them to get the final loss. We use the Adam optimiser[15] with a learning rate of
10−5 to train the network. Since the network was not optimised for performance, we do not report
training/testing speeds or model size.

5 Experiments and results

The proposed network for joint classification and assistive map generation for PAP-test images is the
first of its kind. The existing datasets for classification of PAP smear are not suitable for evaluating
the network as they contain single cells. While the datasets for segmentation like the ISBI overlapping
cervical cell segmentation challenge consists of multiple cells, the dataset does not have labels for
stages of cancer and consequently classification. Hence we benchmark the proposed algorithm on a
new dataset consisting of PAP smear images and the corresponding annotations.

5.1 Dataset

The proposed dataset is designed to evaluate algorithms that classify PAP-test images. The dataset
consists 14301 images of size 961 × 961 pixels. These images are from conventional PAP smear
slides digitised at a magnification of 40x. Some sample images from the dataset is given in Figure 2.

PAP smear usually contains large regions that are not usable for diagnosis. We reject these images
from the our classification experiments. Among the leftover, we use the popular data collection
strategy as exemplified by Herlev dataset. Each of the images are annotated by three experienced
pathologists. We select only those images where all three pathologists agree to be part of dataset used
to evaluate classification. Following this process, out of the original 14301 images 7745 images are
not usable, 1220 images had disagreement between annotators, 5432 images had annotation agreed
upon by annotators. Following the practice in literature, we balance the final 5432 images to contain
equal number of normal and abnormal images. Hence our final dataset for classification consist of
1124 images equally distributed between normal and abnormal classes.

To evaluate the assistive network, we utilise the full set of images. The dataset consists of two class,
class A and B. Class A consists of all images rejected as not usable for diagnosis while class B
consists of the rest. We club the images where pathologists agree along with those on which all of
them do not agree into class A. This is because disagreement between pathologists on the type of
cells do not discount the usefulness of the image in diagnosis.

5.2 Assistive map results

5.2.1 Using assistive map for sub-tile regions

The output of assistive network can be seen in Figure 3. In Figure 3 first column shows images from
the dataset and the second column shows the respective images assistive maps. The third column
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Figure 3: Images and their corresponding assistive maps. The first column contains the original
images, the second row contains the respective assistive maps. The third column is the normalised
version of the assistive map where the minimum value has been set to zero and maximum to 255.
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Figure 4: Normalised histogram of the number of images of each class against their assistive score.
The histogram is normalised such that the area under histogram of each class sum to one. It can be
clearly observed that most of the class B images have very low assistive score

shows normalised assistive map where we modified each map to have a minimum value of zero and
maximum 255 for the purpose of visibility. From the Figure 3 is clear that assistive map is able to
identify relevant patches in the images.

In the images 3a and 3b with lesser cell concentration towards bottom left and top left respectively,
we can see that the assistive map follows the trend. This phenomena can be seen much more clearly
in 3c. The image corresponding to 3c has a blob of cells at the bottom right corner. While the center
of the blob is quite dense with no clear cells, the surrounding portion consists of less dense but clear
cells. In the assistive map of 3c, this distribution manifests as a bright region with dark inner core
and exterior. The same phenomena can be seen in 3e where the edge of the diagonal shaft is bright
in the assistive map. We also show an image with uniform distribution of cells in 3d. As expected,
the corresponding activation map shows a uniformly bright map.

The results in Figure 3 clearly shows that the assistive map is able to identify relevant regions inside a
tile. Since the dataset annotation is only at tile level, we are unable to provide quantitative results that
demonstrate the utility of assistive map for subtile regions. However an indirect quantitative result
can be seen in section 5.2.2

5.2.2 Using assistive map for inter-tile ordering

The assistive map has the capability to identify relevant regions inside of each image. However, much
more important from the perspective of assistive screening is the ability to score images on their
importance to screening. By the estimate based on our observations while collecting dataset, about
half of the total images are not usable for diagnosis. If we are able to use the assistive score to present
images such that the pathologist is able to see most of the usable images before the unusable ones,
work load of the pathologist would be reduced significantly.

The Figure 4 shows the histogram of the assistive score for each image for class A and B. The top row
shows the normalised counts and bottom row shows the raw counts. From the normalised histogram it
is clear that most of the class B images have low assistive score in comparison to the class A images.
Hence the proposed workflow can potentially work. The Figure 5 shows a further validation of this
point. Figure 5 shows the percent of images from each class among the images pathologist has seen
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Figure 5: Percentage of total images from each class seen by pathologist when presented in the
decreasing order of assistive score. Note that the percentage of class A images are high at the start
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Figure 6: Percentage of total images of each class seen by pathologist when presented in the
decreasing order of assistive score

when presented in the inverse order of assistive score. The figure clearly shows that most of the
images that pathologist has seen at the start are useful images.

To further quantify the use of assistive score, we can look at how much percentage of the total images
in each class the pathologist would have seen at any point in time. This is given in Figure 6. This
figure reinforces our approach. It can be clearly seen that the pathologist is able to review more good
images than bad images initially. In fact according to the figure, by the time the pathologist reviews
90% of good images, he would come across only around 10% of bad images.

5.3 Classification results

The results of tile classification can be seen in Table 1. From the table we can see that we are able
to achieve a relatively high accuracy of 83% on the data considering the fact that PAP-smear test
is highly subjective. Since there are no other works in literature to compare, we do not analyse the
results in detail.
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Table 1: Classification performance

Accuracy

83.01%

6 Conclusion

In this work we propose a deep neural network for assistive screening of cervical cancer. The
proposed network assists screening by providing a classification at image level along with an assistive
map that helps in evaluating the usefulness of a tile. We propose using the output of classification
network for initial results and the assistive network to prioritise review of the these results, thereby
reducing the work load on pathologist. Our experiments and the subsequent analysis clearly shows
that the proposed network is able to achieve the target of reducing pathologist workload.
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