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ABSTRACT

Deep residual networks (ResNets) made a recent breakthrough in deep learning.
The core idea of ResNets is to have shortcut connections between layers that allow
the network to be much deeper while still being easy to optimize avoiding vanish-
ing gradients. These shortcut connections have interesting properties that make
ResNets behave differently from other typical network architectures. In this work
we use these properties to design a network based on a ResNet but with parameter
sharing and adaptive computation time. The resulting network is much smaller
than the original network and can adapt the computational cost to the complexity
of the input image.

1 INTRODUCTION AND RELATED WORK

After their impressive results on the ILSVRC2015 challenge, deep residual networks (He et al.,
2016) quickly became one of the default architectures for computer vision tasks. Instead of just
stacking layers on top of each other where each layer has to transform the output of the previous
layer (hi+1 = Fi(hi)), they add skip connections, identity mappings that copy the input of the layer
to the output. The layer then learns a residual to add to the input (hi+1 = hi + Fi(hi)). ResNets
are closely related to Highway networks (Srivastava et al., 2015) where the flow of information is
regulated by gates instead of using a fixed skip connection.

The residual connections have some very interesting properties. Various works have shown that
ResNets are remarkably robust against deleting or reordering layers from a trained network (Veit
et al., 2016) (Srivastava et al., 2015), while this behavior is not found in the more traditional ar-
chitectures. Veit et al. (2016) argue that ResNets should be interpreted as an exponential ensemble
of shallower models. Greff et al. (2016) argue that the layers in a ResNet do not learn completely
new representations but instead they gradually refine the features extracted by the previous layers.
In this unrolled iterative estimation view successive layers cooperate to compute a single level of
representation. Jastrzebski et al. (2017) provided a formal view of iterative feature refinement and
showed that a each residual layer refines the feature representation to reduce the loss with respect to
the hidden representation.

In this work we follow the iterative estimation view and exploit these properties to design networks
with less parameters and a smaller computational cost. To reduce the model size we enforce a strict
parameter sharing between the layers in the network. Since each layer refines the features extracted
by the previous layer instead of learning completely new features, it seems plausible that there is a
certain redundancy in having different parameters for each layer. Sharing parameters between layers
has been proposed before (Jastrzebski et al., 2017) (Boulch, 2017) and both papers report impressive
model size reductions.

To reduce the computational cost we incorporate an Adaptive Computation Time (ACT) mechanism.
In a traditional ResNet every sample follows the exact same path through the network where every
layer refines features. Not all samples are equally hard to classify and some of them will need more
refinement steps than others. With ACT we can include a component that will decide how many
steps are needed. ACT was introduced by Graves (2016) for recurrent neural networks where the
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Figure 1: The IamNN network has the same structure as a ResNet but multiple residual units in each
block are replaced with the architecture on the left which reuses the same weights multiple times.

network adapts the number of calculation steps to the complexity of the input. ACT can also be
applied to networks for image recognition. Figurnov et al. (2016) introduced a Spatial ACT for
ResNet which adapts the amount of computation for spatial locations.

2 ARCHITECTURE

A typical ResNet starts with a convolutional layer with batch normalization and ReLu nonlinearity
followed by maxpooling. Then, a sequence of four blocks is stacked where each block consists of
multiple stacked residual units. Each residual unit consists of one or more convolutional layers and
a shortcut connection. The first convolutional layer in each block uses a convolution with stride 2 to
reduce the spatial size.

We propose to replace each block by the architecture shown in Figure 1 (left). Each residual unit in
a block is replaced by an iteration of this module. We use maxpooling between each block to reduce
the spatial size. Our block consist of three main parts: a processing block with three convolutional
layers, a state buffer where the results are accumulated and the ACT block that decides how many
iterations of this block are needed. The state buffer is used to gradually build the output of the block.
The output of each iteration is added to the state which allows for an iterative refinement of the
features. The initial state (s0) is initialized with zero values.

The processing block consists of three convolutional layers with a bottleneck structure (He et al.,
2016). At each iteration we concatenate the original input of the block (x0) with the current state
(si−1) before passing the concatenated vector through the processing block. The output of the
processing block is added to the state. Each convolutional layer is followed by batch normalization.
We found that it is important to use a different set of statistics in each iteration for batchnorm. This
only incurs a small overhead since the number of batchnorm statistics is very small compared to the
full network. The same approach was used in Jastrzebski et al. (2017) in their experiments.

The ACT block is a small two-layer fully connected network (2 times 64 hidden units) that decides
whether to keep evaluating the block or to move on to the next block. We concatenate the current
state, the original input and the output of the processing block and apply global average pooling to
obtain a vector with a single value for each channel. The ACT network uses this vector to calculate
a halting score between 0 and 1 (sigmoidal activation). We sum the halting scores of each iteration
and as soon as the cumulative halting score reaches one we stop evaluating this block and move on
to the next block. We add an additional loss term to encourage the network to use fewer iterations.

3 RESULTS

We trained our models on three datasets for image recognition: CIFAR10, CIFAR100 and ImageNet.
We report the number of parameters, the theoretical number of operations and the test accuracy
in Table 3. We designed our models after a ResNet architecture and constrained them to use at
maximum the same number of iterations in each block as the the number of units in that block. For
example IamNN based on ResNet152 is constrained to use at maximum 3, 8, 36 and 3 iterations for
each block respectively. The computational cost of the IamNN networks varies depending on the
complexity of the input image, we report the average required FLOPS over all images in the test set.

For CIFAR10 and CIFAR100 we reduce the number of parameters by 90% compared to the corre-
sponding ResNet101. The number of FLOPS varies between 0.8 – 2.0 GFLOPs, depending on the
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Figure 3: The spectrum of easy (left) to hard (right) to classify images for the network trained on CI-
FAR10 (top row) and ImageNet (bottom row). The network automatically adapts the computational
cost to the complexity of the input image.

complexity on the input image. On average we require 1.1G and 1.6G operations for CIFAR10 and
CIFAR100 respectively, a reduction of 56% and 36% respectively. For CIFAR10 we obtain a slightly
higher accuracy compared to the ResNet, probably because weight sharing acts as a regularizer for
the small dataset. On CIFAR100 however the accuracy drops from 79.3% to 77.8%.

For the ImageNet dataset we used ResNet152 as a baseline. We are again able to reduce the number
of parameters by 90% and the computations by 65%; the top5 accuracy drops from 93.3% to 89%.
To illustrate the benefit of iterative refinement using the same weights, we also include the result
when our IamNN network is only allowed one iteration per block. In this case there is no iterative
refinement possible and the network obtains a top5 accuracy of 83.2%. We also compare to other
architectures that were built to be very efficient in terms of computational cost and memory footprint
(MobileNet (Howard et al., 2017), ShuffleNet (Zhang et al., 2017) and GoogleNet (Szegedy et al.,
2014)). These networks obtain a similar accuracy with a similar number of parameters but at a
lower computational cost. This is because we did not change the basic operations of the network
(1x1 and 3x3 convolutions). Some of the techniques used in the efficient networks such as depthwise
separable convolutions are however orthogonal to our weight sharing and ACT approach and could
be used to reduce the computational cost even further.

Figure 2 shows how many iterations are used for each block in the ImageNet network. The vertical
line indicates the number of residual units in the corresponding ResNet (= the maximum number of
iterations for the IamNN). Figure 3 illustrates how the network is able to adapt the computational
cost to the complexity of the image. We show some typical images ranked from fast (left) to slow
(right) computation. The computation cost varies between 0.7G and 2G FLOPS for CIFAR10 and
between 2.5G and 9G FLOPS for ImageNet.

Dataset Network Params FLOPS Top1/ Top5 (%)

CIFAR10 ResNet101 42 M 2.5G 93.8
IamNN 4.5 M 1.1G (.7G - 2G) 94.6

CIFAR100 ResNet101 43 M 2.5G 79.3
IamNN 4.6 M 1.6G (.7G - 2G) 77.8

ImageNet ResNet152 60 M 11.5 G 77.0 / 93.3
ResNet18 12 M 1.8 G 69.5 / 89.2

Single crop IamNN 1 iter 4.8 M 0.9 G 60.8 / 83.2
Single network IamNN 5 M 4 G (2.5G - 9G) 69.6 / 89.0

ShaResNet34 14 M 11 G 71.0 / 91.5
Googlenet 7 M 1.6 G 65.8 / 87.1
MobileNet1 4.2 M 570 M 70.6 / 89.5
ShuffleNet2x 5.6 M 524 M 70.9 / 89.8

Table 1: Number of parameters and classification accuracy
on three benchmark datasets for our IamNN architecture and
the corresponding ResNet architecture.
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Figure 2: Number of iterations used in
each of the four blocks (ImageNet net-
work)

4 CONCLUSION AND FUTURE WORK

We proposed a new ResNet based architecture based on insights in the iterative refinement behavior
of ResNets and Highway networks. By using the same set of weights multiple times we can reduce
the model size by 90%. With adaptive computation time the computation cost of the model depends
on the complexity of the input image and is on average much lower than a typical ResNets. In future
work, we will incorporate other techniques such as depthwise separable convolutions to reduce the
computational cost even further.
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