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ABSTRACT

Measuring divergence between two distributions is essential in machine learning
and statistics and has various applications including binary classification, change
point detection, and two-sample test. Furthermore, in the era of big data, design-
ing divergence measure that is interpretable and can handle high-dimensional and
complex data becomes extremely important. In this paper, we propose a post se-
lection inference (PSI) framework for divergence measure, which can select a set
of statistically significant features that discriminate two distributions. Specifically,
we employ an additive variant of maximum mean discrepancy (MMD) for features
and introduce a general hypothesis test for PSI. A novel MMD estimator using the
incomplete U-statistics, which has an asymptotically normal distribution (under
mild assumptions) and gives high detection power in PSI, is also proposed and
analyzed theoretically. Through synthetic and real-world feature selection experi-
ments, we show that the proposed framework can successfully detect statistically
significant features. Last, we propose a sample selection framework for analyzing
different members in the Generative Adversarial Networks (GANs) family.

1 INTRODUCTION

Computing the divergence between two probability distributions is fundamental to machine learning
and has many important applications such as binary classification (Friedman et al., 2001), change
point detection (Yamada et al., 2013a; Liu et al., 2013), two-sample test (Gretton et al., 2012; Ya-
mada et al., 2013b), and generative models such as generative adversarial networks (GANs) (Good-
fellow et al., 2014; Li et al., 2015b; Nowozin et al., 2016), to name a few. Recently, interpreting the
difference between distributions has become an important task in applied machine learning (Mueller
& Jaakkola, 2015; Jitkrittum et al., 2016) since it can facilitate scientific discovery. For instance,
in biomedical binary classification tasks, it is common to analyze which variables or features are
different between two different distributions (classes).

The simplest approach to measure divergence between two probability densities would be paramet-
ric methods. For example, t-test can be used if the distributions to be compared are known and
well-defined (Anderson, 2001). However, in many real-world problems, the property of distribu-
tion is not known a priori, and therefore model assumptions are likely to be violated. In contrast,
non-parametric methods can be applied to any distributions without prior assumptions. The maxi-
mum mean discrepancy (MMD) (Gretton et al., 2012) is an example of non-parametric discrepancy
measures and is defined as the difference between the mean embeddings of two distributions in a
reproducing kernel Hilbert space (RKHS). For RKHSs associated with characteristic kernels (Sripe-
rumbudur et al., 2011), the difference in mean embeddings defines a proper metric, and thus MMD
can capture potentially non-linear difference between distributions (i.e., higher order moments).
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Figure 1: Comparison between Unbiased, Block, Linear, and Incomplete MMD estimation.

However, since MMD considers the entire d dimensional vector, it is hard to interpret how individ-
ual features contribute to the discrepancy.

To deal with the interpretability issue, divergence measure with feature selection has been actively
studied (Yamada et al., 2013a; Mueller & Jaakkola, 2015; Jitkrittum et al., 2016). For instance,
in Mueller & Jaakkola (2015), the Wasserstein divergence is employed as a divergence measure
and `1 regularizer is used for feature selection. However, these approaches focus on detecting a
set of features that discriminate two distributions. But for scientific discovery applications such as
biomarker discovery, it might be preferable to test the significance of each selected feature (e.g., one
biomarker). A naive approach would be to select features from one dataset and then test the selected
features using the same data. However, in such case, selection bias is included and thus the false
positive rate cannot be controlled. Therefore, it is crucial in hypothesis testing that the selection
event should be taken into account to correct the bias. To the best of our knowledge, there is not yet
an existing framework that tests the significance of selected features that distinguish between two
different distributions on the same dataset.

In this paper, we propose mmdInf, a post selection inference (PSI) algorithm for distribution com-
parison, which finds a set of statistically significant features that discriminate between two distri-
butions. mmdInf enjoys several compelling properties. First, it is a non-parametric method based
on kernels, and thus it can detect features that distinguish various types of distributions. Second,
the proposed framework is general and can be applied to not only feature selection but also other
distribution comparison problems, such as dataset comparison. In mmdInf, we employ the recently
developed PSI algorithm (Lee et al., 2016) and use MMD as a divergence measure. However, the
standard empirical squared MMD estimator has a degenerated null distribution, which violates the
requirement of a proper Normal distribution for the current PSI algorithm. To address this issue,
we apply the block estimate (Zaremba et al., 2013) and the linear estimate (Gretton et al., 2012)
of MMD. Furthermore, we propose a new empirical estimate of MMD based on the incomplete
U-statistics (incomplete MMD estimator) (Blom, 1976; Janson, 1984; Lee, 1990) and show that it
asymptotically follows the normal distribution, and has much greater detection power (compared to
the existing estimators of MMD) in PSI. Finally, we propose a framework to analyze different mem-
bers in the GAN (Goodfellow et al., 2014) family based on mmdInf. We elucidate the theoretical
properties of the incomplete U-statistics estimate of MMD and show that mmdInf can successfully
detect significant features through feature selection experiments.

The contributions of our paper are summarized as follows: (1) We propose a non-parametric PSI
algorithm mmdInf for distribution comparison. (2) We propose the incomplete MMD estimator and
investigate its theoretical properties (see Figure 1). (3) We propose a sample selection framework
based on mmdInf that can be used for analyzing generative models.

2 RELATED WORK

Divergence measures in general can be divided into two categories: f -divergence (Ali & Silvey,
1966), such as the Kullback-Leibler divergence (Cover & Thomas, 2012) or the α-divergence (Rényi
et al., 1961; Póczos & Schneider, 2011), and integral probability metric (Müller, 1997), including
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the total variation distance (Shorack & Shorack, 2000) and the Wasserstein distance in its dual
(Villani, 2008). In this work we consider the maximum mean discrepancy (MMD) (Gretton et al.,
2012), which falls into the second category. Although these divergence measures can be used for
testing the discrepancy between p(x) and q(x), it is hard to test the significance of one of k selected
features from the entire d features, where the setup is useful for scientific discovery tasks such as
biomarker discovery. Recently, a MMD-based change point detection algorithm, which can compute
the p-value of the largest score, has been proposed (Li et al., 2015a). However, this method can only
test the largest score (i.e., one-feature). Thus, it is not clear whether the approach can be extended
to feature selection in general.

A novel testing framework for the post selection inference (PSI) has been recently proposed (Lee
et al., 2016), in which statistical inference after feature selection with Lasso (Tibshirani, 1996) is
investigated. This work shows that statistical inference conditioned on the selection event can be
done for linear regression models with Gaussian noise if the selection event can be written as a set
of linear constraints. However, the PSI algorithm needs to assume a Gaussian response, which is a
relatively strong assumption, and consequently it cannot be directly applied for non-Gaussian output
problems such as classification. To deal with this issue, a kernel based PSI algorithm (hsicInf)
for independence test has been proposed (Yamada et al., 2018), in which the Hilbert-Schmidt Inde-
pendence Criterion (HSIC) (Gretton et al., 2005) is employed to measure the independence between
input and its output, and thus significance test can be performed on non-Gaussian data. In this pa-
per, we propose an alternative kernel based inference algorithm for distribution comparison called
mmdInf, which can be used for both feature selection and binary classification.

In Sections 3.4 and 5.3, we manifest how we analyze different members in the GANs (Goodfellow
et al., 2014) family. Here, we discuss several evaluation metrics that have been proposed to compare
generative models. For example, the inception scores (Salimans et al., 2016) and the mode scores
(Che et al., 2016) measure the quality and diversity of the generated samples, but they were not able
to detect overfitting and mode dropping / collapsing for generated samples. The Frechet inception
distance (FID) (Heusel et al., 2017) defines a score using the first two moments of the real and
generated distributions, whereas the classifier two-sample tests (Lopez-Paz & Oquab, 2016) consid-
ers the classification accuracy of a binary classifier as a statistic for two-sample test. Although the
above metrics are reasonable in terms of discriminability, robustness, and efficiency, the distances
between samples are required to be computed in a suitable feature space. We can also use the ker-
nel density estimation (KDE); or more recently, Wu et al. (2016) proposed to apply the annealed
importance sampling (AIS) to estimate the likelihood of the decoder-based generative models. Nev-
ertheless, these approaches need the access to the generative model for computing the likelihood,
which are less favorable comparing to the model agnostic approaches which rely only on a finite
generated sample set. On the other hand, the maximum mean discrepancy (MMD) (Gretton et al.,
2012) is preferred against its competitors (Sutherland et al., 2016; Huang et al., 2018). Therefore,
we propose the mmdInf based GANs analysis framework.

3 PROPOSED METHOD (MMDINF)

In this section, we introduce a PSI algorithm with MMD (Gretton et al., 2012).

3.1 POST SELECTION INFERENCE (PSI)

Suppose we are given independent and identically distributed (i.i.d.) samples X = {xi}mi=1 ∈
Rd×m from a d-dimensional distribution p and i.i.d. samples Y = {yj}nj=1 ∈ Rd×n from another
d-dimensional distribution q. Our goal is to find k < d features that differentiate betweenX and Y
and test whether each selected feature is statistically significant.

Let S be a set of selected features, we consider the following hypothesis test:

• H0:
∑d
s=1 ηsD̂(X(s),Y (s)) = 0 | S was selected,

• H1:
∑d
s=1 ηsD̂(X(s),Y (s)) 6= 0 | S was selected,
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where D̂(X(s),Y (s)) is the estimated discrepancy measure for the selected feature s and η =
[η1, . . . , ηd]

> ∈ Rd is an arbitrary pre-defined parameter. To test the s-th feature, we can set η as a
unit vector whose s-th position is 1 and zero otherwise.

We employ the post-selection inference (PSI) framework (Lee et al., 2016) to test the hypoth-
esis. Thanks to the cumulative distribution of Theorem 1, we can compute the p-value of∑d
s=1 ηsD̂(X(s),Y (s)) under feature selection.

Theorem 1 (Lee et al., 2016) Suppose that z ∼ N (µ,Σ), and the feature selection event can be
expressed as Az ≤ b for some matrix A and vector b, then for any given feature represented by
η ∈ Rn we have

F
[V −(A,b),V +(A,b)]

η>µ,η>Ση
(η>z) | Az ≤ b ∼ Unif(0, 1),

where F [a,b]
µ,σ2(x) is the cumulative distribution function (CDF) of a truncated normal distribution

with mean µ and variance σ2 truncated at [a,b]. Given that α = A Ση
η>Ση

, the lower and upper
truncation points are given by

V −(A, b) = max
j:αj<0

bj − (Az)j
αj

+ η>z, V +(A, b) = min
j:αj>0

bj − (Az)j
αj

+ η>z.

Feature Selection with Discrepancy Measure: Assume we have an estimate of a discrepancy
measure for each feature: z = [D̂(X(1),Y (1)), . . . , D̂(X(d),Y (d))]> ∈ Rd ∼ N (µ,Σ), where
D̂(·, ·) has large positive value when two distribution are different. We select the top-k features with
largest discrepancy scores. We denote the index set of the selected k features by S, and that of the
unselected k̄ = d− k features by S̄. This feature selection event can be characterized by

D̂(X(s),Y (s)) ≥ D̂(X(`),Y (`)), for all (s, `) ∈ S × S̄.

Note that we have in total k · k̄ constraints.

The selection event can be rewritten as As,`z ≤ 0, for all (s, `) ∈ S × S̄, where As,` =

[0 · · · 0 −1︸︷︷︸
s

0 · · · 0 1︸︷︷︸
`

0 · · · 0] and A>s,` ∈ Rd is a row vector of A ∈ R(k·k̄)×d. Under such

construction,Az ≤ b can be satisfied by setting b = 0.

3.2 MAXIMUM MEAN DISCREPANCY (MMD)

We employ the maximum mean discrepancy (MMD) (Gretton et al., 2012) as divergence measure.

LetF be the unit ball in a reproducing kernel Hilbert space (RKHS) andK(x,x′) the corresponding
positive definite kernel with Ex,x′∼p[

√
K(x,x)] < ∞,Ex,x′∼q[

√
K(x,x)] < ∞, the squared

population MMD is defined as

MMD2[F , p, q] = Ex,x′ [K(x,x′)]− 2Ex,y[K(x,y)] + Ey,y′ [K(y,y′)],

where Ex,y denotes the expectation over independent random variables x with distribution p and
y with distribution q. It has been shown that if the kernel function K(x,x′) is characteristic, then
MMD[F ,X,Y ] = 0 if and only if p = q (Gretton et al., 2012). In the following, we introduce two
existing MMD estimators and then propose the incomplete U-statistics MMD estimator.

(Complete) U-statistics estimator (Gretton et al., 2012): We use the Gaussian kernel: K(x,x′) =

exp
(
−‖x−x

′‖22
2σ2

x

)
, where σx > 0 is the Gaussian width. When m = n, the complete U-statistics of

MMD is defined as

MMD2
u[F ,X,Y ] =

1

m(m− 1)

∑
i 6=j

h(ui,uj),

where h(u,u′)=K(x,x′)+K(y,y′)−K(x,y′)−K(x′,y) is the U-statistics kernel for MMD and
u = [x> y>]> ∈ R2d. However, since the complete U-statistics estimator of MMD is degenerated
under p = q and does not follow normal distribution, this estimator cannot be used in PSI.
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Algorithm 1 mmdInf (Feature Selection) H0 :
∑d
s=1 ηsMMD2

inc(X
(s),Y (s)) =

0 | S was selected
Input: Data matricesX = [Xsel Xc] ∈ Rd×m and Y = [Ysel Yc] ∈ Rd×n. Params: η ∈ Rd and k.

1: Compute ẑ = [MMD2
inc(X

(1)
sel ,Y

(1)
sel ), . . . ,MMD2

inc(X
(d)
sel ,Y

(d)
sel )]

> ∈ Rd.
2: Select k features (i.e., k = |S|) and computeA using ẑ and Σ̂ usingXc and Yc. Set b = 0.

3: Compute p-value as p = 1− F [V−(A,b),V +(A,b)]

0,η>Σ̂η
(η>ẑ).

Block estimator (Zaremba et al., 2013): The block estimate of MMD is given by

MMD2
b [F ,X,Y ] =

B1

n

n/B1∑
i=1

MMD2
u[F ,Xi,Yi],

where X = [X1, . . . ,Xm/B1
], Y = [Y1, . . . ,Yn/B2

], and Xi ∈ Rd×B1 and Yi ∈ Rd×B2 are
i-th partitioned data. Here, we assume that the number of blocks m/B1 = n/B2 is an integer and
B = B1 = B2. A commonly used heuristic for the block size is to set B =

√
n. This estimator

asymptotically follows the normal distribution whenB1 andB2 are finite andm and n go to infinity.
The block estimator can be used for PSI, but the variance and normality depends on the partition of
X and Y . Specifically, when the total number of samples is small, then a small block size would
result in high variance, whereas larger block size tends to result in non-Gaussian response.

Incomplete U-statistics estimator: The described problems of the block-estimator motivated us to
design a new MMD estimator that is normally distributed and has smaller variance. We therefore
propose an MMD estimator based on the incomplete U-statistics (Blom, 1976; Janson, 1984; Lee,
1990). The incomplete U-statistics estimator of MMD is given by

MMD2
inc[F ,X,Y ] =

1

`

∑
(i,j)∈D

h(ui,uj),

where D is a subset of Sn = {(i, j)}i 6=j , and ` = |D|. D can be fixed design or random design.
In particular, if we design D as D = {(1, 2), (3, 4), . . . , (n− 1, n)} then the incomplete U-statistic
corresponds to the linear-time MMD estimator (Gretton et al., 2012).

3.3 COVARIANCE MATRIX ESTIMATION

For PSI, we need to estimate the covariance matrix Σ from data.

Block estimator To estimate Σ, we first compute Hb ∈ Rd×(n/B) whose elements are the mean-
subtracted MMDs. Then, we regard Hb as the data matrix and use a standard covariance estimator
for estimating Σ̂b. Note that for small n, the number of blocks n/B tends to be smaller than the
dimension d, and thus, the estimation accuracy of covariance matrix is low and affects the detection
accuracy. To handle this issue, we employ the POET algorithm (Fan et al., 2013).

Incomplete U-statistics estimator To estimate Σ, we first compute Hinc ∈ Rd×` whose elements
are the mean-subtracted U-stat kernels. Then, we regard Hinc as the data matrix and can use a
standard covariance estimator to compute Σ̂inc.

The estimation performance of the covariance estimation for the block estimate heavily depends on
the block size B. That is, if B is large, we need to estimate Σ̂b from a small number of samples. On
the other hand, in the incomplete U-statistics estimator, we can set ` = rn � n/B, where r > 0
is a constant (See Section 4). Thus, in practice, the estimated covariance matrix tends to be more
accurate than the block estimator counterpart. Figure 6 in the supplementary material shows the
MSEs between the true and the estimated covariance matrices of the incomplete estimate and the
block estimate, respectively. As can be seen, the error of the incomplete estimate is smaller than that
of the block estimate, which is an advantage of the incomplete MMD over the block MMD in PSI.

3.4 ADDITIONAL APPLICATIONS (GANS ANALYSIS)

The proposed PSI framework is general and can be used for not only feature selection but also sample
selection. In generative modeling, the generated distribution should match the data distribution;
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in other words, the discrepancy between the generated data and real data should be small. We
can therefore apply the selective inference algorithm and use the significance value to evaluate the
generation quality. In this paper we apply mmdInf to compare the performance of GANs. We first
select the model whose generated samples has the smallest MMD score with the real data and then
perform the hypothesis test.

Let x(s)
i ∈ Rp be a feature vector generated by s-th GAN model with random seed i and yj ∈ Rp

is a feature vector of an original image. Image features can be extracted by pre-trained Resnet (He
et al., 2016) or auto-encoders. The hypothesis test can be written as

• H0: MMD2
inc[F ,X(s),Y ]=0 | s generates samples closest to the real distribution,

• H1: MMD2
inc[F ,X(s),Y ] 6= 0| s generates samples closest to the real distribution.

Since we want to test the best generator that minimizes the discrepancy between generated and true
samples (e.g., low MMD score), this sample selection event can be characterized by

MMD2
inc[F ,X(s),Y ] ≤ MMD2

inc[F ,X(`),Y ], (s, `) ∈ S × S̄.

4 THEORETICAL ANALYSIS OF INCOMPLETE MMD

We investigate the theoretical properties of the incomplete MMD estimator under the random design
with replacement. For simplicity, we denote MMD2

inc[F ,X,Y ] = MMD2
inc, MMD2[F , p, q] =

MMD2, MMD2
inc[F ,X(s),Y (s)] = MMD2,(s)

inc , and MMD2[F , p(s), q(s)] = MMD2,(s), respec-
tively. We introduce the conditional expectations for the U-statistic kernel h(u,u′) as h1 =
Eu′ [h(u,u′)] and h2 = h(u,u′). See the supplementary material for proof.

Theorem 2 Let c be the smallest integer such that hc 6= MMD2, and let n and ` tend to infinity
such that γ = limn,`→∞ n−c`, 0 ≤ γ ≤ ∞. For sampling with replacement, we have
`

1
2 (MMD2

inc −MMD2)
D−→ N (0, σ2), if γ = 0.

n
c
2 (MMD2

inc −MMD2)
D−→ V, if γ =∞.

`
1
2 (MMD2

inc−MMD2)
D−→γ

1
2V + T, if 0 < γ <∞,

where V is the random variable of the limit distribution of n
c
2 (MMD2

u −MMD2), T is the random
variable of N (0, σ2), σ2 = V ar(h(u,u′)), and T and V are independent.

Corollary 3 Assume limn,`→∞ n−2` = 0 and 0 < γ = limn,`→∞ n−1` < ∞. For sampling with
replacement, incomplete U-statistics estimator of MMD is asymptotically normally distributed as{
`

1
2 MMD2

inc
D−→ N (0, σ2), if p = q.

`
1
2 (MMD2

inc −MMD2)
D−→ N (0, σ2 + γσ2

u), if p 6= q.

where σ2 = V ar(h(u,u′)) and σ2
u = 4(Eu[(Eu′ [h(u,u′)]]− Eu,u′ [h(u,u′)])2).

Corollary 4 Assume limn,`→∞ n−1` = 0. For sampling with replacement, the incomplete U-
statistics estimator of MMD is asymptotically normally distributed as

`
1
2 (MMD2

inc −MMD2)
D−→ N (0, σ2).

Thus, in practice, by setting `� n2, the incomplete estimator is asymptotically normal and therefore
can be applied in PSI. More specifically, we can set ` = rn � n2, where r is a small constant. In
practice, we found that r = 10 works well in general.

Figure 2 shows the empirical distribution under p = q and p 6= q for the complete estimator, the
block estimator and the incomplete estimator. As can be observed, the empirical distribution of the
incomplete estimator is normal for small sampling parameter r, and becomes similar to its complete
counterpart if r is large; this is supported by Theorem 2 (γ =∞).

Finally, the following theorem assure the joint normality of the z vector in Theorem 1.
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(a) MMDu. (b) MMDinc, r = 100. (c) MMDinc, r = 10. (d) MMDinc, r = 1.

Figure 2: Empirical distribution under p = q and p 6= q. (a) Complete U-statistics. (b)-(d): The incomplete
MMD estimator with different sampling parameter r. For all plots, we fixed the number of samples as n = 200
and the dimensionality d = 1.
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Figure 3: (a)(b): False positive rates at significant level α = 0.05 of the proposed incomplete estimator, block
estimator and linear estimator with/without PSI. For incomplete MMD, we set ` = 10n. For block MMD, we
set the block size B =

√
n. The MMD without PSI computes the p-values without adjusting for the selection.

(c)(d): True positive rate comparison of the following three empirical estimates for mmdInf.

Theorem 5 Suppose 0 ≤ γ <∞. Then,

`1/2
{[

MMD2,(1)
inc , . . . ,MMD2,(d)

inc

]
−
[
MMD2,(1), . . . ,MMD2,(d)

]}
converges to multivariate normal distribution.

5 EXPERIMENTS

We compared mmdInf with a naive testing baseline (mmd), which first selects features using MMD
and estimates corresponding p-values with the same data of feature selection without adjustment
for the selection event. For mmdInf, we used the three MMD estimators: the linear-time MMD
(Gretton et al., 2012), the block MMD (Zaremba et al., 2013), and the incomplete MMD. We used
1/2 of data to calculate the covariance matrix of MMD and the rest to perform feature selection and
inference. We fixed the number of selected features (prior to PSI) k to 30. In PSI the significance of
each of the 30 selected features (from ranking MMD) is computed and features with p-value lower
than the significance level α = 0.05 are selected as statistically significant features.

For block MMD, in each experiment we set the candidate of block size as B = {10, 20, 50} . For
incomplete MMD, in each experiment the ratio between number of pairs (i, j) sampled to compute
incomplete MMD score and sample size is fixed at r = `

n ∈ {0.5, 5, 10}. We reported the true
positive rate (TPR) k′

k∗ where k′ is the number of true features selected by mmdInf or mmd and
k∗ is the total number of true features in synthetic data. We further computed the false positive
rate (FPR) k′′

k−k∗ where k′′ is the number of non-true features reported as positives. We ran all
experiments over 200 times, and reported the average TPR and FPR.

5.1 SYNTHETIC EXPERIMENTS (PSI)

The number of features d is fixed to 50, and for each feature, data is randomly generated following a
Gaussian distribution with set mean and variance. 10 out of the 50 features are set to be significantly
different by shifting the distribution of one class away from the other (mean or variance). More
specifically, we generate the synthetic data as

(a) Mean shift x ∼ N (050, I50), y ∼ N (µ, I), µ = [1>10 0>40]> ∈ R50,
(b) Variance shift x ∼ N (050, I50), y ∼ N (0,Σ), Σ = diag([1.51>10 1>40]>),

whereN (µ,Σ) is a multivariate normal distribution with mean µ ∈ Rd and covariance Σ ∈ Rd×d,
1p ∈ Rd is a vector whose elements are all one, 0d ∈ Rd is a vector whose elements are all zero,
and diag(a) ∈ Rd×d is a diagonal matrix whose diagonal elements are a ∈ Rd.
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Table 1: Post selection inference experimental results for real-world datasets. The average TPR and FPR over
200 trials are reported.

Linear-Time Block Incomplete
Datasets d n B = 10 B = 20 B = 50 r = 0.5 r = 5 r = 10

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR
Diabetis 8 768 0.05 0.06 0.20 0.04 0.40 0.12 0.46 0.18 0.13 0.06 0.52 0.07 0.65 0.10
Wine (White) 11 4898 0.13 0.06 0.26 0.01 0.56 0.04 0.68 0.09 0.32 0.06 0.71 0.06 0.79 0.06
Wine (Red) 11 1599 0.08 0.06 0.26 0.04 0.37 0.09 0.49 0.15 0.15 0.06 0.51 0.07 0.61 0.07
Australia 7 690 0.08 0.06 0.36 0.06 0.47 0.11 0.65 0.21 0.16 0.05 0.66 0.07 0.79 0.09
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Figure 4: (a) Histogram of p-values over 5000 runs. (b) Averaged incomplete MMD scores.

Figure 3(a) and (b) show the FPRs of linear MMD, block MMD and incomplete MMD with or
without PSI. As can be clearly seen, PSI successfully controls FPR with significance level α =
0.05 for all the three estimators, whereas the naive approach tends to have higher FPRs. Figures 3
shows the TPRs of the synthetic data. In both cases, the TPR of incomplete MMD converges to 1
significantly faster than the the other two empirical estimates.

5.2 REAL-WORLD DATA (BENCHMARK)

We compared the proposed algorithm by using real-world datasets. Since it is difficult to decide
what is a ”true feature” in real-world data, we choose a few datasets for binary classification with
small amount of features, and regard all the original features as true. We then concatenated random
features to the true features (the total number of features d = 100). Table 1 shows TPRs and
FPRs of mmdInf with different MMD estimators. It can be observed that the incomplete estimator
significantly outperforms the other empirical estimates. Note that a higher TPR can be achieved with
higher r, while the FPR is still controlled at 0.05 with r = 5. Additional comparison of different
empirical estimates on real dataset (with varying sample size) can be found in Figures 8.

5.3 GANS ANALYSIS (SAMPLE SELECTION)

We also applied mmdInf for evaluating the generation quality of GANs. We trained BEGAN
(Berthelot et al., 2017), DCGAN (Radford et al., 2015), STDGAN (Miyato et al., 2017), Cramer
GAN (Bellemare et al., 2017), DFM (Warde-Farley & Bengio, 2016), DRAGAN (Kodali et al.,
2017), Minibatch Discrimination GAN (Salimans et al., 2016), and WGAN-GP (Gulrajani et al.,
2017), generated 5000 images (using Chainer GAN package 1 with CIFAR10 datasets), and ex-
tracted 512 dimensional features by pre-trained Resnet18 (He et al., 2016). For the true image sets,
we subsampled 5000 images from CIFAR10 datasets and computed the 512 dimensional features
using the same Resnet18. We then tested the difference between the generated images and the real
images using mmdInf on extracted features (see Sec. 3.4).

We found that for all the members in the GAN family, the null hypothesis was rejected, i.e., the gen-
erated distribution and the real distribution are different. This result is consistent with the findings in
(Sutherland et al., 2016), which demonstrate that optimized MMD has perfect discriminative power
in GANs evaluation. As sanity check, we evaluated mmdInf by constructing an ”oracle” generative
model that generates real images from CIFAR10. Next, we randomly selected 5000 images (a dis-
joint set from the oracle generative images) from CIFAR10 in each trial, and set the sampling ratio
to r = 5. Figure 4(a) shows the distribution of p-values computed by our algorithm. We can see that
the p-values are distributed uniformly in the tests for the ”oracle” generative model, which matches
the theoretical result in Theorem 1. Thus the algorithm is able to detect the distribution difference
and control the false positive rate. In other words, if the generated samples do not follow the original
distribution, we can safely reject the null hypothesis with a given significance level α.

1https://github.com/pfnet-research/chainer-gan-lib

8

https://github.com/pfnet-research/chainer-gan-lib


Published as a conference paper at ICLR 2019

Figure 4(b) shows the estimated MMD scores of each model. Based on the results, we could tell that
DFM was the best model and DCGAN was the second best model to approximate the true distri-
bution. However, the difference between various members is not obvious. Developing a validation
pipeline based on mmdInf for GANs analysis would be one interesting line of future work.

6 CONCLUSION

In this paper, we proposed a novel statistical testing framework mmdInf, which can find a set of
statistically significant features that can discriminate two distributions. Through synthetic and real-
world experiments, we demonstrated that mmdInf can successfully find important features and/or
datasets. We also proposed a method for sample selection based on mmdInf and applied it in the
evaluation of generative models.
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SUPPLEMENTARY MATERIALS

THEORETICAL ANALYSIS OF INCOMPLETE MMD

We investigate the theoretical properties of the incomplete MMD estimator under the random design
with replacement. For simplicity, we denote MMD2

inc[F ,X,Y ] = MMD2
inc and MMD2[F , p, q] =

MMD2, respectively.

We introduce the conditional expectations for the U-statistic kernel h(u,u′)=K(x,x′)+K(y,y′)−
K(x,y′)−K(x′,y):

h1 = Eu′ [h(u,u′)], h2 = h(u,u′).

Then, we define c be the smallest integer such that hc 6= MMD2.

For p = q, since the U-statistics is degenerated:
h1 = Eu′ [h(u,u′)]

= Ex′ [K(x,x′)] + Ey′ [K(y,y′)]−Ey′ [K(x,y′)]− Ex′ [K(x′,y)]

= 0,

and MMD2 = 0, we have c = 2. On the other hand, since h1 6= MMD2 for p 6= q, we have c = 1.

Theorem 2 Let c be the smallest integer such that hc 6= MMD2, and let n and ` tend to infinity
such that γ = limn,`→∞ n−c`, 0 ≤ γ ≤ ∞. For sampling with replacement, we have
`

1
2 (MMD2

inc −MMD2)
D−→ N (0, σ2), if γ = 0.

n
c
2 (MMD2

inc −MMD2)
D−→ V, if γ =∞.

`
1
2 (MMD2

inc−MMD2)
D−→γ

1
2V + T, if 0 < γ <∞.

where V is the random variable of the limit distribution of n
c
2 (MMD2

u −MMD2), T is the random
variable of N (0, σ2), σ2 = V ar(h(u,u′)), and T and V are independent.

Proof: Use Corollary 1 of Janson (1984) (or Theorem 1 of Lee (1990), pp. 200). In MMD, c = 2
for p = q and c = 1 for p 6= q. �

Corollary 3 Assume limn,`→∞ n−2` = 0 and 0 < γ = limn,`→∞ n−1` < ∞. For sampling with
replacement, the incomplete U-statistics estimator of MMD is asymptotically normally distributed
as{
`

1
2 MMD2

inc
D−→ N (0, σ2), if p = q.

`
1
2 (MMD2

inc −MMD2)
D−→ N (0, σ2 + γσ2

u), if p 6= q.

where σ2 = V ar(h(u,u′)) and σ2
u = 4(Eu[(Eu′ [h(u,u′)]]− Eu,u′ [h(u,u′)])2).

Proof: Under p = q (c = 2), since limn,`→∞ n−2` = 0 and MMD2 = 0, we can immediately
obtain the limit distribution by Theorem 2. Under p 6= q (c = 1), MMDu converges in distribution
to a Gaussian according to (Gretton et al., 2007)

n
1
2 (MMD2

u −MMD2)
D−→ N (0, σ2

u)

where σ2
u = 4(Eu[(Eu′ [h(u,u′)]] − Eu,u′ [h(u,u′)])2). Based on Theorem 2, under the given

assumption, we can obtain the distribution of MMD2
inc since T and V are independent. �

Corollary 4 Assume limn,`→∞ n−1` = 0. For sampling with replacement, the incomplete U-
statistics estimator of MMD is asymptotically normally distributed as

`
1
2 (MMD2

inc −MMD2)
D−→ N (0, σ2).

Proof: Since limn,`→∞ n−1` = 0 and limn,`→∞ n−2` = 0, the limit distribution of

`1/2(MMD2
inc −MMD2) is N (0, σ2) based on Theorem 2. �

13
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Thus, in practice, by setting `� n2, the incomplete estimator is asymptotically normal and therefore
can be applied in PSI. More specifically, we can set ` = rn � n2, where r is a small constant. In
practice, we found that r = 10 works well in general.

Theorem 5 Suppose 0 ≤ γ <∞. Then,

`1/2
{[

MMD2,(1)
inc , . . . ,MMD2,(d)

inc

]
−
[
MMD2,(1), . . . ,MMD2,(d)

]}
converges to multivariate normal distribution.

Proof: We use the fact that convergence in distribution of multivariate random variables results
in convergence in distribution of univariate random variables. From Theorem29.4 in Billings-
ley (2008)(Cramér-Wold device), it is sufficient to prove that for any η = [η1, . . . , ηd]

> ∈ Rd,∑d
s=1 ηsMMD2

inc[F ,X(s),Y (s)]
D−→
∑d
s=1 ηsZs, where Zs, s = 1, 2, . . . , d are normal distri-

butions. Since each incomplete U-statistic MMD2
inc[F ,X(s),Y (s)] converges to normal distribu-

tion derived in Corollary 3 when 0 ≤ γ < ∞, and from the continuous mapping theorem for
g(x) = η>x, we obtain the desired result.

ILLUSTRATIVE EXPERIMENTS

Figure 5 shows the empirical distribution under p = q and p 6= q for the complete estimator, the
block estimator and the incomplete estimator. As can be observed, the empirical distribution of the
incomplete estimator is normal for small sampling parameter r, and becomes similar to its complete
counterpart if r is large; this is supported by Theorem 2 (γ =∞). Moreover, compared to the block
estimator, the incomplete estimator tends to have a better trade-off between variance and normality.

Figure 6 shows the MSEs between the true and the estimated covariance matrices of the incomplete
estimate and the block estimate, respectively. As can be seen, the error of the incomplete estimate
is smaller than that of the block estimate, which is an advantage of the incomplete MMD over the
block MMD in PSI. Moreover, for the incomplete U-statistics estimator, we have ` = rn samples
to estimate the covariance matrix, while we have only n/B samples for the block estimate. That
is, the number of samples that can be used for covariance estimation of the incomplete U-statistics
estimator is rB times larger than that of the block estimator. For example, for n = 1000, we can use
5000 samples for the incomplete U-statistics, while we have only 50 samples for the block estimate.
This is problematic for high-dimensional case (e.g., d = 100), and the estimated covariance matrix
is not full rank. To alleviate this issue, we employ the POET algorithm for the block estimator.

Figure 7(a) shows the Type II error comparison for two-sample test with one dimensional Gaussian
mean shift data. The Type II error is computed when the Type I error is fixed at 0.05, and the
incomplete MMD outperforms other estimators. Figure 7 (b) compares the computational time of
the empirical estimates, and for small r the computational time of incomplete MMD is much less
than that of the block MMD. Overall, the incomplete MMD has favorable properties in practice.

Figure 8 show the true positive rate (TPR) and the false positive rate (FPR) of the wine (white)
dataset experiment. Here, we change the number of samples as 200, 400, . . . , 4000. As can be seen,
both PSI algorithms can control the FPR with 2000 samples. Moreover, it is clear that the incomplete
estimator can get better performance than the block estimator in both TPR and FPR with smaller
number of samples.

EFFECTIVENESS OF PSI

Here, we compared the PSI and non-PSI counterpart on benchmark data. As clearly seen, if we do
not use the PSI, we cannot control FPR, while the proposed algorithm can successfully control FPR
values.

Linear-Time Incomplete (without PSI) Incomplete (with PSI)
Datasets d n r = 0.5 r = 5 r = 10 r = 0.5 r = 5 r = 10

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR
Diabetis 8 768 0.05 0.05 0.41 0.21 0.74 0.27 0.83 0.31 0.13 0.06 0.52 0.07 0.65 0.10
Wine (White) 11 4898 0.13 0.06 0.58 0.23 0.81 0.25 0.86 0.26 0.32 0.06 0.71 0.06 0.79 0.06
Wine (Red) 11 1599 0.08 0.06 0.39 0.24 0.65 0.26 0.71 0.29 0.15 0.06 0.51 0.07 0.61 0.07
Australia 7 690 0.08 0.06 0.52 0.21 0.85 0.25 0.91 0.30 0.16 0.05 0.66 0.07 0.79 0.09
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(a) MMDu. (b) MMDb, B = 100. (c) MMDb, B = 20. (d) MMDb, B = 5.

(e) MMDinc, r = 100. (f) MMDinc, r = 50. (g) MMDinc, r = 10. (h) MMDinc, r = 1.

Figure 5: Empirical distribution under p = q and p 6= q. (a) Complete U-statistics. (b)-(d): The
block MMD estimator with different block parameter B. (e)-(h): The incomplete MMD estimator
with different sampling parameter r. For all plots, we fixed the number of samples as n = 200 and
the dimensionality d = 1.
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Figure 6: Covariance estimation error with respect to the number of samples. We fixed B = 20 and
` = 5n.
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Figure 7: (a): Type II error comparison. We change the sample size n = [100, 200 . . . , 1500]
and compute the type II error of the four empirical estimates of MMD when the type I error is
controlled at 0.05. For incomplete MMD, we use r = 10. For the block MMD, we use B =

√
n.

(b): Computational time comparison. We change the sample size n = [2000, 4000, . . . , 20000] and
compute the incomplete MMD and the block MMD, respectively. For incomplete MMD, we use
r = [0.5, 1, 5, 10, 20]. For the block MMD, we use B =

√
n. Incomplete MMD with r = 0.5 (i.e.,

` = n/2) can be regarded as the linear-time MMD estimator (Gretton et al., 2012).
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(a) True Positive Rate (TPR).
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Figure 8: Wine (White) dataset experiment with varying number of samples. (a): True Positive Rate
(TPR). (b): False Positive Rate (FPR). In this experiment, we set ` = 5n and B = 20, respectively.
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