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Abstract

With the introduction of the variational autoencoder (VAE), probabilistic latent
variable models have received renewed attention as powerful generative models.
However, their performance in terms of test likelihood and quality of generated
samples has been surpassed by autoregressive models without stochastic units.
Furthermore, flow-based models have recently been shown to be an attractive
alternative that scales well to high-dimensional data. In this paper we close the
performance gap by constructing VAE models that can effectively utilize a deep
hierarchy of stochastic variables and model complex covariance structures. We in-
troduce the Bidirectional-Inference Variational Autoencoder (BIVA), characterized
by a skip-connected generative model and an inference network formed by a bidi-
rectional stochastic inference path. We show that BIVA reaches state-of-the-art test
likelihoods, generates sharp and coherent natural images, and uses the hierarchy of
latent variables to capture different aspects of the data distribution. We observe that
BIVA, in contrast to recent results, can be used for anomaly detection. We attribute
this to the hierarchy of latent variables which is able to extract high-level semantic
features. Finally, we extend BIVA to semi-supervised classification tasks and show
that it performs comparably to state-of-the-art results by generative adversarial
networks.

1 Introduction

One of the key aspirations in recent machine learning research is to build models that understand
the world (24, 40, (11} I57]]. Generative models are providing the means to learn from a plethora of
unlabeled data in order to model a complex data distribution, e.g. natural images, text, and audio.
These models are evaluated by their ability to generate data that is similar to the input data distribution
from which they were trained on. The range of applications that come with generative models are
vast, where audio synthesis [55] and semi-supervised classification [38,[31} 44]] are examples hereof.
Generative models can be broadly divided into explicit and implicit density models. The generative
adversarial network (GAN) [11]] is an example of an implicit model, since it is not possible to procure
a likelihood estimation from this model framework. The focus of this research is instead within
explicit density models, for which a tractable or approximate likelihood estimation can be performed.

The three main classes of powerful explicit density models are autoregressive models [26}57]], flow-
based models [8, 9, 21} [16], and probabilistic latent variable models [24} 140, |33]. In recent years
autoregressive models, such as the PixelRNN and the PixelCNN [57, 45], have achieved superior
likelihood performance and flow-based models have proven efficacy on large-scale natural image
generation tasks [21]. However, in the autoregressive models, the runtime performance of generation
is scaling poorly with the complexity of the input distribution. The flow-based models do not possess
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this restriction and do indeed generate visually compelling natural images when sampling close to
the mode of the distribution. However, generation from the actual learned distribution is still not
outperforming autoregressive models [21}116].

Probabilistic latent variable models such as the variational auto-encoder (VAE) [24! [40]] possess
intriguing properties that are different from the other classes of explicit density models. They
are characterized by a posterior distribution over the latent variables of the model, derived from
Bayes’ theorem, which is typically intractable and needs to be approximated. This distribution
most commonly lies on a low-dimensional manifold that can provide insights into the internal
representation of the data [[1]]. However, the latent variable models have largely been disregarded as
powerful generative models due to blurry generations and poor likelihood performances on natural
image tasks. [27, [10], amongst others, attribute this tendency to the usage of a similarity metric in
pixel space. Contrarily, we attribute it to the lack of overall model expressiveness for accurately
modeling complex input distributions, as discussed in [S9, 41]].

There has been much research into explicitly defining and learning more expressive latent variable
models. Here, the complementary research into learning a covariance structure through a framework
of normalizing flows [39,152} 23] and the stacking of a hierarchy of latent variables [4} 37,31} 50]]
have shown promising results. However, despite significant improvements, the reported performance
of these models has still been inferior to their autoregressive counterparts. This has spawned a new
class of explicit density models that adds an autoregressive component to the generative process of a
latent variable model [[14,15]. In this combination of model paradigms, the latent variables can be
viewed as merely a lossy representation of the input data and the model still suffers from the same
issues as autoregressive models.

Contributions.  In this research we argue that latent variable models that are defined in a suf-
ficiently expressive way can compete with autoregressive and flow-based models in terms of test
log-likelihood and quality of the generated samples. We introduce the Bidirectional-Inference Varia-
tional Autoencoder (BIVA), a model formed by a deep hierarchy of stochastic variables that uses
skip-connections to enhance the flow of information and avoid inactive units. To define a flexible
posterior approximation, we construct a bidirectional inference network using stochastic variables
in a bottom-up and a top-down inference path. The inference model is reminiscent to the stochastic
top-down path introduced in the Ladder VAE [50] and IAF VAE [50] with the addition that the
bottom-up pass is now also stochastic and there are no autoregressive components. We perform
an in-depth analysis of BIVA and show (i) an ablation study that analyses the contributions of the
individual novel components, (ii) that the model is able to improve on state-of-the-art results on
benchmark image datasets, (iii) that a small extension of the model can be used for semi-supervised
classification and performs comparably to current state-of-the-art models, and (iv) that the model,
contrarily to other state-of-the-art explicit density models [34], can be utilized for anomaly detection
on complex data distributions.

2 Variational Autoencoders

The VAE is a generative model parameterized by a neural network 6 and is defined by an observed
variable z that depends on a hierarchy of stochastic latent variables z = 21, ..., 2z, so that: py(z,z) =
po(x|z1)po(2zL) HiL:_ll po(zi|zi+1). The posterior distribution over the latent variables of a VAE
is commonly analytically intractable, and is approximated with a variational distribution which is
factorized with a bottom-up structure, ¢4(z|z) = gy (21|2) Hf;ll gs(zit1|2i), so that each latent
variable is conditioned on the variable below in the hierarchy. The parameters 6 and ¢ can be
optimized by maximizing the evidence lower bound (ELBO)

po(, Z)] _
lo x) > Ey (g2 |lO =L(0,0). 1
gpo(z) > By, (a)2) { qu)(zm (0, 9) (1)
A detailed introduction on VAEs can be found in appendix [A in the supplementary material. While a
deep hierarchy of latent stochastic variables will result in a more expressive model, in practice the top
stochastic latent variables of standard VAEs have a tendency to collapse into the prior. The Ladder
VAE (LVAE) [50] is amongst the first attempts towards VAEs that can effectively leverage multiple
layers of stochastic variables. This is achieved by parameterizing the variational approximation with
a bottom-up deterministic path followed by a top-down inference path that shares parameters with



(a) Generative model (b) Inference model

Figure 1: A L = 3 layered BIVA with (a) the generative model and (b) inference model. Blue arrows
indicate that the deterministic parameters are shared between the inference and generative models.
See Appendix |B|for a detailed explanation and a graphical model that includes the deterministic
variables.

the top-down structure of the generative model: ¢4 ¢(z|z) = ¢¢(2L|x) Hf;ll 46,0(%i|zit1, x). See
Appendix |A|for a graphical representation of the LVAE inference network. Thanks to the bottom-
up path, all the latent variables in the hierarchy have a deterministic dependency on the observed
variable z, which allows data-dependent information to skip all the stochastic variables lower in the
hierarchy (Figure[5d|in Appendix [A). The stochastic latent variables that are higher in the hierarchy
will therefore receive less noisy inputs, and will be empirically less likely to collapse. Despite the
improvements obtained thanks to the more flexible inference network, in practice LVAEs with a very
deep hierarchy of stochastic latent variables will still experience variable collapse. In the next section
we will introduce the Bidirectional-Inference Variational Autoencoder, that manages to avoid these
issues by extending the LVAE in 2 ways: (i) adding a deterministic top-down path in the generative
model and (ii) defining a factorization of the latent variables z; at each level of the hierarchy that
allows to construct a bottom-up stochastic inference path.

3 Bidirectional-Inference Variational Autoencoder

In this section, we will first describe the architecture of the Bidirectional-Inference Variational
Autoencoder (Figure[I), and then provide the motivation behind the main ideas of the model as well
as some intuitions on the role of each of its novel components. Finally, we will show how this model
can be used for a novel approach to detecting anomalous data.

3.1 Model architecture

Generative model. In BIVA, at each layer 1, ..., L — 1 of the hierarchy we split the latent variable
in two components, z; = (z£Y, 2I°), which belong to a bottom-up (BU) and top-down (TD) inference
path, respectively. More details on this will be given when introducing the inference network. The
generative model of BIVA is illustrated in Figure [Tal We introduce a deterministic top-down path
dr_1,-..,d that is parameterized with neural networks and receives as input at each layer ¢ of the
hierarchy the latent variable z;, ;. In the case of a convolutional model, this is done by concatenating
(221, z{21) and d;; along the features’ dimension. d; can therefore be seen as a deterministic
variable that summarizes all the relevant information coming from the stochastic variables higher
in the hierarchy, z~ ;. The latent variables zPY and 2" are conditioned on all the information in the
higher layers, and are conditionally independent given 2 ;. The joint distribution of the model is then
given by:

L-1

po(z,2) = po(x|z)po(zr) [ [ po(2"1zi)pa(2"|254) ,
=1

where 6 are the parameters of the generative model. The likelihood of the model py(z|z) directly
depends on z1, and depends on 21 through the deterministic top-down path. Each stochastic latent



variable 1, ..., L is parameterized by a Gaussian distribution with diagonal covariance, with one neural
network £(-) for the mean and another neural network o (-) for the variance. Since the 2, and ]},
variables are on the same level in the generative model and of the same dimensionality, we share all
the deterministic parameters going to the layer below. See Appendix [B]for details.

Bidirectional inference network. Due to the non-linearities in the neural networks that param-
eterize the generative model, the exact posterior distribution pg(z|x) is intractable and needs to
be approximated. As for VAEs, we therefore define a variational distribution, q¢(z|x), that needs
to be flexible enough to approximate the true posterior distribution, as closely as possible. We
define a bottom-up (BU) and a top-down (TD) inference path, which are computed sequentially
when constructing the posterior approximation for each data point x, see Figure[Ib] The variational
distribution over the BU latent variables depends on the data x and on all BU variables lower in the
hierarchy, i.e. g¢(2;"|x, 227), where ¢ denotes all the parameters of the BU path. 2}V has a direct

dependency only on the BU variable below, 2}V, . The dependency on 22 _; is achieved, similarly to

the generative model, through a deterministic bottom-up path &vl, vy dp—q.

The TD variables depend on the data and the BU variables lower in the hierarchy through the BU
inference path, but also on all variables above in the hierarchy through the TD inference path, see
Figure|Ib| The variational approximation over the TD variables is thereby gy ¢(2]"|x, 255, 257, 217).
Importantly, all the parameters of the TD path are shared with the generative model, and are therefore
denoted as 6. The overall inference network can be factorized as follows:

L-1
ap(2l2) = ap(zrle, 227) [ a0 (P12, 22 as,0 (=P l2, 225, 225, 210)
i=1

where the variational distributions over the BU and TD latent variables are Gaussians whose mean
and diagonal covariance are parameterized with neural networks that take as input the concatenation
over the feature dimension of the conditioning variables. Training of BIVA is performed, as for VAEs,
by maximizing the ELBO in eq. with stochastic backpropagation and the reparameterization trick.

3.2 Motivation

BIVA can be seen as an extension of the LVAE in which we (i) add a deterministic top-down path and
(ii) apply a bidirectional inference network. We will now provide the motivation and some intuitions
on the role of these two novel components, that will then be empirically validated with the ablation

study of Section 4.1}

Deterministic top-down path. Skip-connections represent one of the simplest yet most powerful
advancements of deep learning in recent years. They allow constructing very deep neural networks,
by better propagating the information throughout the model and reducing the issue of vanishing
gradients. Skip connections form for example the backbone of deep neural networks such as ResNets
[15], which have shown impressive performances on a wide range of classification tasks. Our goal
in this paper is to build very deep latent variable models that are able to learn an expressive latent
hierarchical representation of the data. In our experiments, we however found that the LVAE still had
difficulties in activating the top latent variables for deeper hierarchies. To limit this issue, we add skip
connections among the latent variables in the generative model by adding the deterministic top-down
path, that makes each variable depend on all the variables above in the hierarchy (see Figure [Ia/for a
graphical representation). This allows a better flow of information in the model and thereby avoids
the collapse of latent variables. A related idea was recently proposed by [7], that add skip connections
among the neural network layers parameterizing a shallow VAE with a single latent variable.

Bidirectional inference. The inspiration for the bidirectional inference network of BIVA comes
from the work on Auxiliary VAEs (AVAE) by [37,131]]. An AVAE can be viewed as a shallow VAE
with a single latent variable z and an auxiliary variable a that increases the expressiveness of the
variational approximation g4(z|z) = [ ¢4(2|a, z)qs(alz)da. By making the inference network
q¢(#|a, x) depend on the stochastic variable a, the AVAE adds covariance structure to the posterior
approximation over the stochastic unit z, since it no longer factorizes over its components z(*), i.e.

qs(2|2) # [1, g6 (2®)|x). As discussed in the following, by factorizing the latent variables at each
level of the hierarchy of BIVA we are able to achieve similar results without introducing additional



auxiliary variables in the model. To see this, we can focus for example on the highest latent variable
zr. In BIVA, the presence of the 2PV variables makes the bottom-up inference path stochastic, as
opposed to the deterministic BU path of the LVAE. While the conditional distribution g4 (27 |z, 227)
still factorizes over the components of z,, due to the stochastic BU variables the marginal distribution
over zz, no longer factorizes, i.e. ¢y (21]2) = [ qo(zr|2, 227 )qe (227 |2)d2EY, # ngl q(z(Lk)\x) .
Therefore, the BU inference path enables the learning of a complex covariance structure in the higher
TD stochastic latent variables, which is fundamental in the model to extract good high-level semantic
features from the data distribution. Notice that, in BIVA, only 25V will have a marginally factorizing
inference network.

3.3 Anomaly detection with BIVA

Anomaly detection is considered to be one of the most important applications of explicit density
models. However, recent empirical results suggest that these models are not able to distinguish
between two clearly distinctive data distributions [34], as they can assign a higher likelihood to data
points from a data distribution that is very different from the one the model was trained on. Based on
a thorough study, [34] states that the main issue is the fact that explicit density models tend to capture
low-level statistics, as opposed to the high-level semantics that are preferable when doing anomaly
detection. We hypothesize that the latent representations in the higher layers of BIVA can capture the
high-level semantics of the data and that these can be used for improved anomaly detection.

In the standard ELBO from eq. (1), the main contribution to the expected log-likelihood term is
coming from averaging over the variational distribution of the lower level latent variables. This will
thus emphasize low-level statistics. So in order to perform anomaly detection with BIVA we instead
need to emphasize the contribution from the higher layers. We can achieve this with an alternative log-
likelihood lower bound that partly replaces the inference network with the generative model. It will be
a weaker bound than the ELBO, but it has the advantage that it explicitly uses the generative hierarchy
of the stochastic variables. In the following we define the hierarchy of stochastic latent variables as
Z = 21, 22,23, ..., 21, With z; = (2PY, 2/P). Instead of using the variational approximation g4 (z|x)
over all stochastic variables in the model, we use the prior distribution for the first k£ layers and the
variational approximation for the others, i.e. pg(2<k|2>)qe(2>k|z). The new ELBO becomes:

po(x]z)po(2>k) )
(2> k|x)

L£>9% = L is the ELBO in eq. (I). As for the ELBO, we approximate the computation of £>*

with Monte Carlo integration. Sampling from pg(z<x|2>x)¢e(2>k|2) can be easily performed by

obtaining samples Zz- ) from the inference network, that are then used to sample zZ<j, from the
conditional prior pg(z<g|Z>k)-

L7k =E log

Po(2<k|2>k)q0 (2> k|7)

Due to the sampling from the prior, eq. will generally return a worse likelihood approximation
than the ELBO. Despite this, £>* with higher values of k represents a useful metric for anomaly
detection. By only sampling the top L — k variables from the variational approximation, in fact, we
are forcing the model to only rely on the high-level semantics encoded in the highest variables of
the hierarchy when evaluating this metric, and not on the low-level statistics encoded in the lower
variables.

4 Experiments

BIVA is empirically evaluated by (i) an ablation study analyzing each novel component, (ii) likelihood
and semi-supervised classification results on binary images, (iii) likelihood results on natural images,
and (iv) an analysis of anomaly detection in complex data distributions. We employ a free bits strategy
with A = 2 [23] for all experiments to avoid latent variable collapse during the initial training epochs.
Trained models are reported with 1 importance weighted sample, £, and 1000 importance weighted
samples, L1.3 [3]. We evaluate the natural image experiments by bits per dimension (bits/dim),
L/(hwclog(2)), where h, w, ¢ denote the height, width, and channels respectively. For a detailed
description of the experimental setup see Appendix and the source cod In Appendix [D we test
BIVA on complex 2d densities, while Appendix [E presents initial results for the model on text.

!Source code (Tensorflow): https://github.com/larsmaaloee/BIVA.
2Source code (PyTorch): https://github.com/vlievin/biva-pytorch.
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generations of BIVA with L. = 20 layers that achieves a £, = 2.48 bits/dim on the test set.

4.1 Ablation Study

BIVA can be viewed as an extension of the LVAE from where we add (i) extra dependencies in the
generative model (pg(z|z1) — po(x|z) and pg(2;|2i+1) — po(zi|z>:)) through the skip connections
obtained with the deterministic top-down path and (ii) a bottom-up (BU) path of stochastic latent
variables to the inference model. In order to evaluate the effects of each added component we define
an LVAE with the exact same architecture as BIVA, but without the BU variables and the deterministic
top-down path. Next, we define the LVAE+, where we add to the LVAE’s generative model the
deterministic top-down path. It is therefore the same model as in Figure[T|but without the BU variables.
Finally, we investigate a LVAE+ model with 2L — 1 stochastic layers. This corresponds to the depth
of the hierarchy of the BIVA inference model © — 2{* — --- = 2%_| = 2 = 2f_; — -+ — 2.
If this model is competitive with BIVA then it is an indication that it is the depth that determines the
performance. The ablation study is conducted on the CIFAR-10 dataset against the best reported
BIVA with L = 15 layers (Section [4.3), which means 2L — 1 = 29 stochastic latent layers in the
deep LVAE+.

Table[T] presents a comparison of the different model
architectures. The positive effect of adding the skip
connections in the generative models can be evalu-
ated from the difference between the LVAE L = 15
and LVAE+ L = 15 results, for which there is close
to a 0.2 bits/dim difference in the ELBO. Thanks to
the more expressive posterior approximation obtained PARAM. _ BITS/DIM
L. . . . . LVAE L=15, £, 10.85M <3.60
using its bidirectional inference network, BIVA im- LVAE+L=15.£; 11.36M <341
proves the ELBO significantly w.r.t the LVAE+, by | vAE+1L=29. 2, 21.99M <345
more than 0.3 bits/dim. Notice that a deeper hierar-  BIvA L=15, £, 18.48M <3.12
chy of stochastic latent variables in the LVAE+ will
not necessarily provide a better likelihood performance, since the LVAE+ L = 29 performs worse
than the LVAE+ L = 15 despite having significantly more parameters. In Figure 2] we plot for LVAE,
LVAE+ and BIVA the KL divergence between the variational approximation over each latent variable
and its prior distribution, K L(q||p). This KL divergence is O when the two distributions match, in
which case we say that the variable has collapsed, since its posterior approximation is not using
any data-dependent information. We can see that while the LVAE is only able to utilize its lowest 7
stochastic variables, all variables in both LVAE+ and BIVA are active. We attribute this tendency
to the deterministic top-down path that is present in both models, which creates skip-connections
between all latent variables that allow to better propagate the information throughout the model.

Table 1: A comparison of the LVAE with
no skip-connections and no bottom-up infer-
ence, the LVAE+ with skip-connections and
no bottom-up inference, and BIVA. All mod-
els are trained on the CIFAR-10 dataset.




Table 2: Test log-likelihood on statically bina-  Table 3: Semi-supervised test error for BIVA on

rized MNIST for different number of importance  MNIST for 100 randomly chosen and evenly dis-
weighted samples. The finetuned models are  tributed labelled samples.

trained for an additional number of epochs with ERROR %
no free bits, A = 0. For testing resiliency we M1+M2 23] 3.33% (40.14)
trained 4 models and evaluated the standard de- VAT [32] 212%
viations to be +0.031 for £;. CATGAN [51] 1.91% (£0.10)
—log p(z) SDGM [31] 1.32% (£0.07)
With autoregressive components LADDERNET [38] 1.06% (£0.37)
PIXELCNN [57] = 81.30 ADGM [31] 0.96% (£0.02)
DRAW (i3] < 80.97 IMPGAN (44 0.93% (40.07)
TAFVAE [23] < 79.88 TRIPLEGAN [29]  0.91% (40.58)
PIXELVAE [14] < 79.66 SSLGAN (6l 0.80% (£0.10)
PIXELRNN [57] =179.20
VLAE [3] < 79.03 BIVA 0.83% (£0.02)
Without autoregressive components
DISCRETE VAE [42] < 81.01 Table 4: Test log-likelihood on CIFAR-10 for dif-
ferent number of importance weighted samples.
gizﬁ 21 E %gg We evaluated two different BIVA with various
BIV A’FI;E?’TUNED’ o < 80.47 number of layers (L). For testing resiliency we
BIVA FINETUNED, L1 < 78.59 tr.alr.led 3 models and evaluated the standard de-
SyTE— viations to be +0.013 for £, and L §1T1§5/DIM
CIFAR-10 Test (k=13)
SVHN Test (k=11) With autoregressive components
g{f:ﬁjijfkﬁé)kz”’ CONVDRAW [12] < 3.58
178 CIFAR-10 Test (k=0) IAFVAE L, 23] <3.15
1.50 TAFVAE L3 23] <3.12
195 GATEDPIXELCNN ([56] =3.03
PIXELRNN [57] = 3.00
1.00 VLAE [3] < 2.95
0.75 PIXELCNN++ [43] = 2.92
0.50 Without autoregressive components
’ NICE (8] =4.48
0.25 DEEPGMMS (58] =4.00
0.00 — REALNVP [9] =3.49
o im0 ° DISCRETEVAE++ [54] < 3.38
g(bits/dim)
Figure 4: Histograms and kernel density estima- ~ SLOW 121] =3.35
tion of the £>* for k = 13,11,0 evaluated in ~ TLOW++ (18] =3.08
bits/dim by a model trained on the CIFAR-10 BIVA L=10, £, <317
train dataset and evaluated on the CIFAR-10 and BIVA L=15, £, <3.12
the SVHN test set. BIVA L=15, L1c3 < 3.08

4.2 Binary Images

We evaluate BIVA L = 6 in terms of test log-likelihood on statically binarized MNIST [43]],
dynamically binarized MNIST [28]] and dynamically binarized OMNIGLOT [25]. The model param-
eterization and optimization parameters have been kept identical for all binary image experiments
(see Appendix [C). For each experiment on binary image datasets, we finetune each model by setting
the free bits to A = 0 until convergence in order to test the tightness of the £; ELBO.

To the best of our knowledge, BIVA achieves state-of-the-art results on statically binarized MNIST,
outperforming other latent variable models, autoregressive models, and flow-based models (see Table
[2). Finetuning the model with A\ = 0 improves the £; ELBO significantly and achieves slightly
better performance for the 1000 importance weighted samples. For dynamically binarized MNIST
and OMNIGLOT, BIVA achieves similar improvements with £.3 = 78.41 (state-of-the-art) and
L3 = 91.34 respectively, see Tables[I0|and [T1]in Appendix [G.

Semi-supervised learning. BIVA can be easily extended for semi-supervised classification by
adding a categorical variable y to represent the class, as done in [22]]. We add a classification
model gg4(y|z, 227 ) to the inference network, and a class-conditional distribution ps (|2, y) to the
generative model (see Appendix [F|for a detailed description). We train 5 different semi-supervised



[>L-2  peL-4 p>Lo6 >0 Table 5: The test £>*

Model trained on CIFAR-10: for dlffer<.3nt values of
CIFAR-10 7936 35.34 2093  3.12 k and train/test dataset
SVHN 121.04 58.82  26.76 2.28 combinations evaluated
Model trained on FashionMNIST: in bits/dim for natural
FASHIONMNIST 228.38 107.07 - 94.05 images and negative log-
MNIST 295.95 130.39 - 128.60  likelihood for binary im-

ages (lower is better).

models on MNIST, each using a different set of just 100 randomly chosen and evenly distributed
MNIST labels. Table [3|presents the classification results on the test set (mean and standard deviation
over the 5 runs), that shows that BIVA achieves comparable performance to recent state-of-the-art
results by generative adversarial networks.

4.3 Natural Images

We trained and evaluated BIVA L = 15 on 32x32 CIFAR-10, 32x32 ImageNet [S7], and another
BIVA L = 20 on 64x64 CelebA [27]. For the output decoding, we employ the discretized logistic
mixture likelihood from [43] (see Appendix [C| for more details). In Table # we see that for the
CIFAR-10 dataset BIVA outperforms other state-of-the-art non-autoregressive models and performs
slightly worse than state-of-the-art autoregressive models. Notice that BIVA has fewer parameters
(18.48M) than PixelCNN++ (28.57M parameters, [45]]). For the 32x32 ImageNet dataset BIVA
achieves better performance than flow-based models, but the performance gap to the autoregressive
models remains large (Table T3 in Appendix [G). This may be due to the added complexity (more
categories) of the 32x32 ImageNet dataset, requiring an even more flexible model. More research
should be invested in defining an improved architecture for BIVA that holds more parameters and
thereby achieves better performances.

Figure shows generated samples from the A (0, I) prior of a BIVA L = 20 trained on the CelebA
dataset. From a visual inspection, the samples are far superior to previous natural image generations
by latent variable models. We believe that previous claims stating that this type of model can only
generate blurry images should be disregarded [27]. Rather the limited expressiveness/flexibility of
previous models should be blamed. Additional samples from BIVA can be found in Appendix[G.

4.4 Does BIVA know what it doesn’t know?

We test the anomaly detection capabilities of BIVA replicating the most challenging experiments of
[34]. We train BIVA L = 15 on the CIFAR-10 dataset, and evaluate eq. for various values of k£ on
the CIFAR-10 test set, the SVHN dataset [35] and the CelebA dataset. The results can be found in
Table[5]and Figure[d] and are reported in terms of bits per dimension (lower is better). We see that for
k = 0, corresponding to the standard ELBO, BIVA wrongly assigns lower values to data points from
SVHN. This is in line with the results obtained with other explicit density models in [34], and shows
that by using the standard ELBO the low-level image statistics prevail and the model is not able to
correctly detect out-of-distribution samples. However, for higher values of &, the situation is reversed.
We take this as an indication that BIVA uses the high-level semantics inferred from the data to better
differentiate between the CIFAR-10 and the SVHN/CelebA distributions. We repeat the experiment
training BIVA L = 6 on the FashionMNIST dataset (Table[5), and testing on the FashionMNIST test
set and the MNIST dataset. Unlike the flow-based models used in [34], BIVA is able to learn a data
distribution that can be used to detect anomalies with the standard ELBO (but also k£ > 0).

5 Conclusion

In this paper, we have introduced BIVA, that significantly improves performances over previously
introduced probabilistic latent variable models and flow-based models. BIVA is able to generate natu-
ral images that are both sharp and coherent, to improve on semi-supervised classification benchmarks
and, contrarily to other models, allows for anomaly detection using the extracted high-level semantics
of the data.
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