
Feature-directed Active Learning for Learning User Preferences

Sriram Gopalakrishnan, Utkarsh Soni, Subbarao Kambhampati
Arizona State University

Abstract

Learning preferences of users over plan traces can be a chal-
lenging task given a large number of features and limited
queries that we can ask a single user. Additionally, the pref-
erence function itself can be quite convoluted and non-linear.
Our approach uses feature-directed active learning to gather
the necessary information about plan trace preferences. This
data is used to train a simple feedforward neural network to
learn preferences over the sequential data. We evaluate the
impact of active learning on the number of traces that are
needed to train a model that is accurate and interpretable. This
evaluation is done by comparing the aforementioned feedfor-
ward network to a more complex neural network model that
uses LSTMs and is trained with a larger dataset without active
learning.

Introduction
When we have a human-in-the-loop during planning, learn-
ing that person’s preferences over plan traces becomes an
important problem. These preferences can be used to choose
a plan from amongst a set of plans that are comparable by the
planner’s cost metrics. Such a plan would naturally be more
desired by the human. The user may not like to constantly
dictate their preferences, and may not always be in the loop
during execution. Thus, it is important for the user’s prefer-
ence function to be learned well, and for the user to be able
to verify them. For verification, there ought to be a way to
interpret how the model’s decisions were made, and verify
how faithful the learned model is to the user’s preferences.

A user’s preferences function may be quite complex with
dependencies over different subsets of features. The utility
of some features maybe non-linear as well. Such a prefer-
ence function may require a fair amount of information to
approximate. We cannot expect a single user to give feed-
back over a large set of traces to get the relevant informa-
tion. So Active learning, with a sufficiently expressive user
interface for feedback, is essential to minimize queries and
redundant information.

In this work, our objective was to model the user’s pref-
erences over plan traces. There do exist techniques that

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

efficiently represent and reason about preference relation-
ships. CP-nets (Boutilier et al. 2004) and Generalized ad-
ditive independence(Braziunas and Boutilier 2006) models
are typically used to represent preferences over sets of vari-
ables without consideration to the order in which they ap-
pear. While these models can be adapted to handle sequen-
tial data, they are not intended for it. LTL rules, however,
can capture trajectory preferences very well and are used in
PDDL 3.0 (Gerevini and Long 2005), and LPP (Bienvenu,
Fritz, and McIlraith 2006). However, it can be very hard for
a user to express their preferences in this form. We discuss
existing approaches in more detail and the differences with
respect to our work under the related work section.

In our approach to learning preferences, we want to effi-
ciently identify the relevant features and the degree to which
they affect the preference score of a plan. We thus employ
a feature-directed active learning approach that specifically
picks plan traces that are most informative about the fea-
ture’s effects on preference. After active learning, we encode
a plan trace in terms of the relevant features it contains. We
gather a set of training data from active learning, along with
the user’s preference score to help train a simple Neural Net-
work (NN) that we call the FeatureNN model. We use a Neu-
ral Network as they can approximate complex functions to a
good degree. Our approach is in one way, related to Gener-
alized Additive Independence in that we try to learn a utility
function over pertinent features, but we do not explicitly de-
fine or restrict the form of any utility functions. Rather a
simple one hidden-layer feed-forward neural network learns
the functions, dependencies, and relative weights over the
relevant features. The FeatureNN then predicts a preference
score for each plan reflecting the user’s preferences. We also
compare the performance of the FeatureNN to another Se-
quenceNN model that processes sequential data using an
LSTM(Schmidhuber and Hochreiter 1997) module. The Se-
quenceNN is not trained with data from active learning, but
with a larger dataset of traces with ratings. This is to evaluate
how efficient our active learning approach is with respect to
the number of traces. Specifically, we compare the number
of traces required by SequenceNN and FeatureNN for the
same accuracy and interpretability.

Neural networks, unlike linear functions, are not as easy

to interpret. Even simple NN with a single hidden layer can
be a challenge. We help the user interpret the decisions of
the neural network by showing how the preference score is
affected by removing different features of a plan trace. This
is similar to using Saliency Maps (Simonyan, Vedaldi, and
Zisserman 2013) in images to explain what parts of the im-
age contributed to the classification. In this way, we can ex-
plain to the user what plan features contributed to the pref-
erence value and by how much. The difference in prefer-
ence score should correspond to the user’s expectations as
per their preference model. The more similar the effect of
changes are to the user’s preferences, the more interpretable
the NN model is to the user as it approximates well their
own preference function. Such a method of explaining a de-
cision(score) is also related to explaining using counterfac-
tuals (Miller 2018). Here the counterfactual is the plan trace
without a specific feature. Additionally, when the specific
features used to compute preferences comes from the user’s
feedback (during active learning), this interpretability is ob-
viously improved.

We present our work by first defining the problem be-
fore delving into the methodology of our approach. In the
Methodology section, we discuss the domain used, the user
preference model, and the feature-directed active learning
process. We also discuss the two neural network models
used to learn the preference model, viz. the FeatureNN and
the SequenceNN models. Then we present our experimental
results in which we compare the two models with respect to
their accuracy in predicting the preference score, as well as
interpretability. Lastly, we discuss the results and possible
extensions to the work.

Problem Definition
Given a Domain D, with a set of features F , and a planner
P , the problem is to learn the preference function Fp() that
captures the user’s preference model Up() and scores traces
accordingly. The types of preferences we learn in this work
are a function of the feature set F of the domain and not
hidden variables or action costs. The user U is available to
rate a plan trace on its preference, and annotate what features
contributed positively or negatively to the rating. Features
can be categorical or cardinal(count), and involve sequences.

Plans are rated between [0, 1] with higher values indicat-
ing a greater preference. If there are no features in the plan
that either contributed positively or negatively to the prefer-
ence, then the preference score is 0.5.

An equivalent problem formulation assumes that instead
of a domain D and planner P, we are given as input a large
enough set of plan traces B (backlog of traces) over a rele-
vant set of initial and goal states. We assume that this set of
plans covers the space of possible preferences that the user
might have.

Methodology
For our experiments, we chose to use gridworld with fea-
tures that any human can relate to. We chose gridworld as it
is easy to quickly generate many diverse plans that cover the
range of features.

Given the domain and a task, we go through r rounds of
active learning. Each round comprises of rt traces. Both r
and rt are hyperparameters. For our experiments, we set the
number of rounds at r = 3. After acquiring the data, we train
the NN model and test it on a hidden set of traces. We now
go over different parts of our methodology in detail.

Domain
The objective in our gridworld domain, which we call
Journey −World, is to travel from home to the campsite
which is shown in the grid in Figure 1(a). Each step of a plan
corresponds to a cell of the grid. While some cells are empty,
there a lot of cells that have features. These features can
be eateries(like a coffee shop, restaurant), landmarks(natural
history museum) or activities(visiting the library, watching a
movie). The user can move through any of these states be-
fore reaching the campsite. A majority of the cells also con-
tain landscapes like mountains, lake, sea or industries. The
user is not allowed to move through Landscape cells. Mov-
ing through cells adjacent to Landscape cells corresponds
to seeing the landscape along the journey. For example, if
a step in the plan goes through a cell which is adjacent to a
lake, this corresponds to the plan going through a state where
the user passed by a lake.

All non-landscape features (like coffee, donut) are binary
features in a plan trace i.e. the user has either visited one or
not. On the other hand, the landscape features are cardinal,
i.e. we count the number of such landscape features in the
plan trace. We assume that the count of cardinal features can
make a difference in the preference score. In total, there are
13 features in Journey −World.

We had designed Journey − World with simple and
commonly understood features to make it easier for subse-
quent human-studies. We assume people will have prefer-
ences over these features.

User Preference Model
For our current experiments, we chose to use a completely
defined user preference model to represent the user. This
made it easier for us to test and debug our methodology. In
future extensions of this work, we will include evaluations
with human trials. The user’s preference model is defined as
follows

P (trace) =


0.5 + 0.1 ∗ (C)− 0.3 ∗ (D) + 0.1 ∗ n(L)
+0.1 ∗ n(I) if not(C and D)
0.5 + 0.3 ∗ CD + 0.1 ∗ n(L) + 0.1 ∗ n(I)

if (C and D)

where n(x) = min(x, 2) , C ∈ {0, 1}, D ∈ {0, 1}
and L, I ∈ N

C is a binary variable that is 1 when the plan trace has a cof-
fee. D is also a binary variable and represents a Donut. CD
represents a binary variable set to true when the plan trace
a coffee and a donut. When CD is true, C and D are false
and this dependency affects the preference score computa-
tion as shown in the preceding equation. L and I represent

(a) Problem domain (b) Rated and annotated plan trace

Figure 1: (a) Problem domain. The task is to go from home(lower left corner) to the camp site(upper right corner) (b) A plan
trace that has been rated 0.8 by the user. The user has also provided annotations: green for liked features, and red for disliked
features.

the number of lake and industry regions respectively. These
are cardinal features, and the preference of the plan increases
based on their count, up to 2, and then stops increasing. The
function itself, while simple to understand, is non-linear and
hidden underneath a large hypothesis space of functions that
could be learned in the domain, over a larger set of features
(13 in total for the Journey −World domain). In our ex-
periments, we programmed a separate module to rate and
annotate plan traces based on an input preference function
like the one described previously. This synthetic human is
what rates and annotates in the active learning process that
we will describe shortly. Using a synthetic human helped
speed up the testing and debugging process, and gives us a
baseline noiseless scenario to test against.

User Interface

The current user interface(Figure 1(a)) for Journey −
World displays the entire grid. Icons are used to show the
features present in cells. The plans for each round of active
learning are then shown one at a time. The plan steps are
visualized as a line going from the home to the campsite.
The user has to input a rating to indicate their preference
for the plan based on the features that are visited. They can
also annotate features of the plan that they like(green) or dis-
like(red) as shown in Figure 1(b). The user can click on the
Next P lan button to then move on to the next plan. The
interface automatically switches to the next round of Active
Learning when the current round’s plans have all been rated.

Feature-Directed Active Learning
In our active learning process, we go through multiple
(r) rounds of feedback. Each successive round utilizes the
knowledge from previous rounds to select the most informa-
tive queries. In the first round, the user is shown the most
diverse set of plan trajectories that were generated for the
domain. We choose diverse plans because in the first round
we do not have any knowledge of what features might affect
the user’s preference and hence, we want to cover the fea-
ture space as much as possible in rt = 30 traces. In order
to get the required diverse plan set, we first generate a large
number of plan traces(10000 plans) over a user specified set
of initial and goal states that we refer to as the backlog of
plans, B. In our current experiments we only have one ini-
tial and one goal state. We are easily able to generate such
a large backlog of plans because it is a type of gridworld
domain. We did not want the computational cost of diverse
plan generation to hamper the work. This is a computational
cost that needs to be considered when working with other
domains. The plans generated cover the entire feature space
of the Journey − World domain. We then select the 30
most diverse plans within the set of backlog plans for the
first round. We will now discuss how this is determined.

The diversity score between any two plans pa and pb is
denoted by d(pa, pb). The diversity is based on the sum of
feature count differences for features f ∈ F that are present
pa and pb. For a particular feature f , we compute the feature
count difference f∆. Rather than use the difference in count
per feature, we use a geometric series sum as computed in
Equation 1. The first count in the difference contributes 1,

the second count contributes a 0.5, the third contributes 0.25
and so forth. So the count difference for a single feature con-
tributes to at most 2 to the diversity computation. This avoids
any single feature from dominating the diversity computa-
tion.

The diversity between two traces is computed as the av-
erage fE∆(Equation 2) over all the features in the domain.
Finally, we calculate the backlog-diversity dB for a plan p
using equation 3. The backlog-diversity is the average pair-
wise diversity over every other plan in the backlog. Using
this diversity score, we select the top rt plans (rt = 30 in
our experiments) for the user feedback.

fE∆ =
(1− rf∆)

1− r
(1)

d(pa, pb) =
∑
f∈F

fE∆/|F | (2)

dB(p) =

∑
p′∈B d(p, p′)

|B|
(3)

After the first round of diverse plans, we then make use of
the ratings and annotations provided by the user in the first
round to generate the most informative plan traces for the
subsequent rounds. Given our acquired knowledge of rel-
evant features from the previous round, our objective now
is to figure out the effects and dependencies between these
features. We also want to select traces for the next round
that are more likely to be rated either significantly higher or
lower. This region of data is typically harder to get as we
expect most data to be closer to the average. In order to es-
timate which plan traces would be either most preferred or
least preferred, we use a fast weak predictor that predicts
the rating of any arbitrary plan p given prior knowledge. We
need the predictor to be fast as we have to give traces or
queries for the next round in a short amount of time.

The weak predictor estimates a value for each feature
based on the prior annotated data. It can then estimate the
score of an unrated plan as just the sum of the features
present in it. The value of each feature is scored using a
quick and simple method. First, for each scored plan trace
p with rating rp, the feature f is given a score fp

score for that
plan by equation 4. Then the feature’s score, fscore, is com-
puted as the average fp

score over all plans that the feature
appears in. Then to predict the score for an unrated plan,
the weak predictor assigns a score predict(p) which is the
sum of fscore for all features present in the plan.

fp
score =

{
rp if f annotated as ”liked”
−(1− rp) if f annotated as ”disliked”

(4)
In addition wanting plans that are likely to be rated much

higher or much lower, we also want the next round traces
to have two more properties. We still want to include some
diversity in the plan traces with respect to the overall back-
log of traces to uncover features that we might have missed
in the first round. Additionally, we want to maintain some
similarity in traces between the rounds. We think that the

similarity between plans reduces the cognitive load on the
user as they need not parse wholly different traces. Given a
plan p, we denote its similarity to the already scored traces
as S(p).

Finally, we assign a combined weighted score of pc to all
the plans in the backlog given by equation 5. The top rt = 30
plans are then picked for the next round, and in this way the
active learning proceeds for r rounds. For our experiments r
is 3 rounds.

pc = w1 ∗ predict(p) + w2 ∗ dB(p) + w3 ∗ S(p) (5)

Preference Learning using Neural Networks
For learning the preference function we used two models,
SequenceNN model and FeatureNN model.

The SequenceNN model uses an LSTM module in it. We
considered an LSTM based model as they are well suited to
learning patterns overs sequential data. The input plan trace
was encoded such that each step was an encoding over the
features of the cell visited at that step. There are 13 features
in total, and so each step is a 13-dimensional vector. We do
not provide or restrict the input to only the features that the
user annotated during active learning for the SequenceNN
model. We wanted to test how easily the model could still
figure out the relevant features and learn the preference func-
tion well.

The training data for the SequenceNN model was a set of
rated plan traces. We varied the number of traces given from
as small as 30 to 12,000 in increasingly larger step sizes. A
plan trace would be a N × 13 array where N is the plan
length. We trained the model for 10 epochs with a batch
size of 8, a learning rate of 0.01 and using stochastic gra-
dient descent. The SequenceNN module in our model has
16 memory cells. After processing the plan trace through
the LSTM module, we concatenate the output vector and
memory nodes of the LSTM module and pass it through a
single fully connected hidden layer, followed by the output
layer which outputs the preference score between [0,1]. The
model summary is in Figure 2. The idea is that the LSTM
module output and memory, at the end of processing the se-
quence, will have the necessary information related to the
sequence for predicting the score.

Figure 2: LSTM Model for Preferences

To test if any variant of the SequenceNN model could
learn the relevant information better, we also tried varying
the size of the model (number of parameters) to make it more
powerful. We varied the model from 16 to 64 weights in the

memory layer. Results are in the Evaluation and Analysis
section.

For the FeatureNN model, the input was an encoding of
the plan trace that only comprised of the features the user
annotated as relevant during active learning. The entire plan
trace was summarized into one encoded vector. For exam-
ple, in the user preference model in our experiments, only 5
features matter to the user. We determine what these features
are through active learning, and then defined our FeatureNN
model accordingly to take a 5-dimensional vector as input.
For example, if a plan trace had a step with coffee and steps
that passed by 3 lakes, then the values at the corresponding
indices are set to 1, and 3 respectively. Note that since cof-
fee is a binary feature, even if two coffee steps were in the
plan, it’s value in the encoding is only either 1 or 0. As for
the model description of FeatureNN, it was a simple fully
connected neural net with one hidden layer of 4 dimensions
and one output layer. The model summary is in Figure 3.
Note that 4 dimensions or nodes for the hidden layer is not
a magic number, and would need to be larger if there were
more features. We reduced the number of dimensions for
the hidden layer until the results were measurably worse. To
train the FeatureNN model we vary the number of traces per
round rt from 5 to 50 traces for r = 3 rounds. Since the
dataset size is very small (smallest is 15 traces), we create
200 duplicates of the data points uniformly and train for 10
epochs. We also shuffle the data and train with a batch size
of 8, a learning rate of 0.01, and using stochastic gradient
descent.

Figure 3: Simple NN Model for Preferences

Both models were tested on an unused test set of 1000
traces for accuracy and interpretability.

Interpretability of the Preference Model
A user can interpret a Neural Network’s behavior through
analyzing what features are salient to its decision, and by
how much. This can be analyzed by adding or removing fea-
tures and seeing the resultant effect on the predicted score.
When done over a set of different traces, the user can intuit
what mattered and how much. With this in mind, we com-
pute a measure of interpretability we call the Attribution Er-
ror AE. The AE for a feature f of a Plan p is computed as
follows:

AE(p, f) = |(Up(Plan)− Up(Plan− f))−
(Fp(Plan)− Fp(Plan− f))| (6)

where Up() is the preference function of the user (true model
of preferences) and Fp() is the learned preference function.
AE is simply the difference in the effect of the feature on
the preference scores. The overall AE for each test plan p ,
AE(p), is the average of AE(p, f) for all f present in p. We
compute the AE score for the test set as the average over
only the top 10% of AE(p) errors. We do this because neu-
ral networks can sometimes have enough capacity to mem-
orize many cases and increase accuracy. So it can predict
the correct preference score of both of the original trace and
modified trace (with dropped feature) by the memory of very
similar traces. It would then seem like it’s preference func-
tion predicts the same way as the ground-truth preference
function, but it maybe using unrelated features. Therefore, it
is in the failure cases that we get a true measure of its gen-
eralization and how faithful it is to the true model of pref-
erences. That is why we use the average over the top 10%
of AE(p) errors. These failure cases could correspond to the
cases when a rare or unseen pattern of features are input, and
thus not memorized.

Evaluation and Analysis
Evaluation of LSTM model
When varying the number of training input traces given to
the SequenceNN model, we observed that the accuracy im-
proved (error decreased) as expected(Figure 4(a)). Surpris-
ingly, even with 30 traces, it was able to predict with an error
of 2.5% over the test set of unseen 1000 traces. We attribute
this to the fact that there are enough simple correlations with
other features that can predict the score well for the prefer-
ence function that we tested with. This is evidenced by the
fact that the interpretability measure (Attribution Error) is
very low for 30 traces(Figure 5 (a)); The attribution error
was greater than 0.3 and the value range of AE is [0,1]. Ad-
ditionally, we give the most diverse N traces for each train-
ing set size to the SequenceNN model. Diverse traces are
more likely to contain relevant information.

The interpretability of the LSTM model was not impres-
sive. The attribution error did decrease over the range of
training set sizes, but only as low as 0.09 as shown in Fig-
ure 5(a). Given that the preference scores are between [0, 1],
this would correspond to a 9 percent error after 7500 rated
traces. Needless to say, it is unreasonable to expect a single
human to rate 7500 traces.

We also tried varying the size of the SequenceNN model
from 16 to 64 dimensions. This improved accuracy by a mi-
nuscule amount (order of 1e−4), and interpretability did not
improve.

Evaluation of Feature-NN model
The performance of the FeatureNN model was significantly
better both in accuracy(lower error) and interpretability than
the SequenceNN model as seen in Figure 5. This should
come as no surprise since we restrict the input space based
on user feedback (knowledge) on relevant features. This also
restricts the hypothesis space of functions that the simple
feed-forward network could search over. We think this will
make it more likely that the NN will find a good and faithful

(a) Error using rated traces and a LSTM based learner (b) Error with feature-directed active learning and a simple neu-
ral network

Figure 4: Comparison of accuracy

(a) Attribution error using rated traces and a LSTM based learner (b) Attribution error with feature-directed active learning and a
simple neural network

Figure 5: Comparison of attribution error

approximation function to the true preference function. This
is as opposed to discovering predictive but incorrect correla-
tions.

What is interesting to note is that the interpretability, as
measured by the AE error drops to as little as 2.5 % in as
little as 60 traces (20 traces per round over 3 rounds) for
FeatureNN model as shown in Figure 5b. It drops below 2
% with 150 traces.

The FeatureNN model with 90 traces is as accurate as the
SequenceNN with 7500 traces in our problem, with 8% less
Attribution Error (more interpretable). While we expected
FeatureNN to be better, we did not expect such a large dif-
ference in efficiency.

Analysis and Discussion
Even with as little as 13 features and a relatively uncompli-
cated preference function, a sufficiently powerful Sequen-
ceNN model did not find the underlying preference function.
Instead, it found correlations that predicted the preference
score to a very high level of accuracy. This, unfortunately,
makes the model suffer in interpretability.

As the number of features increases, the hypothesis space
of a NN will increase significantly. This makes it much more
likely for any NN to find spurious correlations, and suffer
in interpretability. So active learning and using a simpler
NN becomes very important for learning preferences in plan
traces.

As for prior feature knowledge, we assumed knowledge
about what features were categorical (binary in our experi-
ments) and what features were cardinal. Rather than assume
this knowledge, we can get this from the user as well, and
reduce the assumptions about the domain features. Alterna-
tively, we could have just encoded all features as cardinal
features, and let the neural network determine what features
were categorical. While this is certainly possible, we think
it better to get this knowledge from the user and encode the
plan trace based on this knowledge. This makes the job of
the neural network easier, and less likely to learn spurious
correlations.

In our current encoding of features in FeatureNN model
and our experiments, we have not included a preference de-
pendency that considers the number of steps between fea-

tures. For example, I would like to have a donut within 3
plan steps after having a coffee. This omission was not in-
tentional. One can easily encode such a sequential feature
as a variable as well. The number of steps between the two
(state) features becomes a cardinal variable to represents this
sequential feature.

Related Work
Two well known paradigms for learning, representing and
reasoning over preferences are CP-nets and Generalized ad-
ditive independence (and their variants). Both of them were
intended for preferences over outcomes. Each outcome can
be comprised of many parts(decisions). One can think of
each decision as choosing a value for a variable. The user
would have preferences over the possible outcomes, or there
maybe a utility (value) associated to each outcome. In CP-
nets (Boutilier et al. 2004), the decisions or variables are rep-
resented in a graph, and there exists dependencies over vari-
ables. The preferences of a variable’s values are affected by
the value of the parent variables. The CP in CP-nets stands
for Ceteris Paribus or ”all else being equal”. Here, the all
else refers to the parents of the node, and when they are
equal, then a particular set of preference orderings for the
child variable’s values hold. The knowledge of the depen-
dence graph is either known apriori, or can be queried from
the user. Once the hierarchy of dependence is known, the
user is then queried about preferences at each node. For CP-
nets to be used in plan trace preferences, we would have to
ask the user what the dependencies are. Then we would have
to ask the user for their relative preferences over features,
given fixed parent feature values. Note that the variables for
plan preferences may also have to incorporate information
about order. So there are significantly more variables (fea-
tures) to consider in sequential data versus unordered data.
We think querying for such knowledge is very demanding,
and not natural for preferences over plan traces.

We believe it is more natural for the user to specify the
relevant conditional dependencies over features while anno-
tating a plan trace. Additionally, we think it easier to give
a preference value for the plan trace rather than relative
preference orderings over the features in the domain. The
features could include sequential dependencies or position-
dependent features. We think it would be hard for the user to
be able to describe sequential features and the relative order-
ing over them. Lastly, CP-nets do not compute utility values
and some outcomes can be incomparable for a particular net-
work of dependencies. In our problem, we would like a total
order over the plans, to select the most preferred plan. So it
helps to have a utility/preference value for every plan trace.

On the other hand, GAI (Braziunas and Boutilier 2006)
models do provide a single utility value for a set of features.
As stated in their work, they provide an additive decomposi-
tion of a utility function (into sub-utility functions) in situa-
tions where single attributes are not additively independent,
but (possibly overlapping) subsets of attributes are. Since
the subsets of attributes for the different sub-utility functions
can overlap, one must query either with only global queries
or a combination of local queries (over the subsets of fea-
tures) with global queries to calibrate (as was done in the

GAI work) (Braziunas and Boutilier 2006)(p. 3). To learn a
GAI with active learning from a single user, there are one
of two methods. We could make assumptions about what
subsets of variables are part of each sub-utility function, and
what those functions are, or the user would need to know and
give us this information. We think this is a very difficult task
for the user. In our approach, we only do full trace queries
and ask for annotations and preference ratings. We think it is
more natural to ask the user for their overall rating of a plan,
rather than how much each subset of features affected the
rating. The neural network then handles the job of learning
the preference function over the user-specified features (and
any dependencies).

The other formalism for specifying preferences are LTL
rules (Huth and Ryan 2004) (p.175), which allow the user
to specify sequential patterns. Expecting the user to be able
to specify LTL rules might be unreasonable. The user would
also have to give utilities or preference orderings over the
specified LTL rules. One can interpret our interface as ex-
tracting a subset of simple LTL rules (through annotations)
which are present in a plan trace. The user gives a rating to
the trace, as well as what features (LTL rules) were good
or bad. Extending the LTL analogy, our encoding of a plan
trace can be seen as a vector of the relevant LTL rules. The
index corresponding to an LTL rule is set to 1 if the rule is
satisfied in the plan trace. However, recall that we also al-
low cardinal features (counts) in our encoding, and not just
binary variables. Our interface and learning framework does
not handle the entire gamut of possible LTL rules. We are
working on extending the types of sequential preferences
supported, while keeping the interface intuitive and expres-
sive.

Conclusion and Future Work
In our approach, we use feature-directed Active Learning
complemented with an intuitive and expressive user inter-
face to learn the user’s preference function efficiently. The
traces obtained during active learning are rated and anno-
tated by the user. These traces are encoded as a vector over
the features that the user indicated as relevant to their pref-
erences. The feature vectors are used to train a simple feed-
forward Neural Network to learn the preference function.
We show that the SimpleNN neural network is more accurate
and interpretable with fewer, more informative plan traces
as compared to the LSTM based SequenceNN model. The
latter was trained with a larger dataset of rated plan traces
without active learning.

Our current experiments use a user preference function
over only a few variables. It is important to see how ef-
ficiently our framework learns a more complex preference
function. Moreover, the current preference function is com-
pletely deterministic as it provides consistent annotation and
rating to the plan trace. A human, however, might not behave
in a consistent manner. We will test with a noisy or proba-
bilistic preference model in future work.

The user interface itself can be extended to include more
complex annotations. For example, the user can also pro-
vide annotations for some features to be added/dropped from
the plan. This is especially useful for cardinal feature as the

modified feature count represents what is ideal to the user.
For example, if the user’s preference doesn’t increase after
visiting more than 2 lakes. Then this can be communicated
by removing extra lake features from a plan trace.

We have mentioned categorical and cardinal features, but
our framework is also intended to support real-valued fea-
tures. We would need to adapt our active learning process
to elicit feedback as to what the minimum, optimum and
maximum values of such features are. These would be the
minimum essential points to sample for approximating the
underlying utility function.

Lastly, we would like to simplify the function by which
we choose plan traces in successive rounds of active learn-
ing. We think that the similarity with traces from previous
rounds is unnecessary, and might not appreciably reduce the
cognitive load on the user. We think that just diversity and
selecting traces that are much more preferred(closer to 1.0)
or much less preferred(closer to 0.0) would be sufficient.

Acknowledgments
This research is supported in part by the ONR grants
N00014-16-1-2892, N00014-18-1-2442, N00014-18-1-
2840, the AFOSR grant FA9550-18-1-0067, NASA grant
NNX17AD06G and JP Morgan faculty research grant.

References
Bienvenu, M.; Fritz, C.; and McIlraith, S. A. 2006. Planning
with qualitative temporal preferences. KR 6:134–144.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. Cp-nets: A tool for representing and
reasoning withconditional ceteris paribus preference state-
ments. Journal of artificial intelligence research 21:135–
191.
Braziunas, D., and Boutilier, C. 2006. Preference elicitation
and generalized additive utility. In AAAI, volume 21.
Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences in pddl3. Technical report, Technical Report 2005-
08-07, Department of Electronics for Automation .
Huth, M., and Ryan, M. 2004. Logic in Computer Science:
Modelling and reasoning about systems. Cambridge univer-
sity press.
Miller, T. 2018. Explanation in artificial intelligence: In-
sights from the social sciences. Artificial Intelligence.
Schmidhuber, J., and Hochreiter, S. 1997. Long short-term
memory. Neural Comput 9(8):1735–1780.
Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2013.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint
arXiv:1312.6034.

