
Optimal Sketching for Kronecker Product Regression
and Low Rank Approximation

Huaian Diao∗ Rajesh Jayaram† Zhao Song‡ Wen Sun§ David P. Woodruff¶

Abstract

We study the Kronecker product regression problem, in which the design matrix
is a Kronecker product of two or more matrices. Formally, given Ai ∈ Rni×di

for i = 1, 2, . . . , q where ni � di for each i, and b ∈ Rn1n2···nq , let A =
A1 ⊗ A2 ⊗ · · · ⊗ Aq . Then for p ∈ [1, 2], the goal is to find x ∈ Rd1···dq that
approximately minimizes ‖Ax − b‖p. Recently, Diao, Song, Sun, and Woodruff
(AISTATS, 2018) gave an algorithm which is faster than forming the Kronecker
product A ∈ Rn1···nq×d1···dq . Specifically, for p = 2 they achieve a running time
of O(

∑q
i=1 nnz(Ai) + nnz(b)), where nnz(Ai) is the number of non-zero entries

in Ai. Note that nnz(b) can be as large as Θ(n1 · · ·nq). For p = 1, q = 2 and
n1 = n2, they achieve a worse bound of O(n

3/2
1 poly(d1d2) + nnz(b)).

In this work, we provide significantly faster algorithms. For p = 2, our running
time is O(

∑q
i=1 nnz(Ai)), which has no dependence on nnz(b). For p < 2,

our running time is O(
∑q
i=1 nnz(Ai) + nnz(b)), which matches the prior best

running time for p = 2. We also consider the related all-pairs regression problem,
where given A ∈ Rn×d, b ∈ Rn, we want to solve minx∈Rd ‖Āx − b̄‖p, where
Ā ∈ Rn2×d, b̄ ∈ Rn2

consist of all pairwise differences of the rows of A, b.
We give an O(nnz(A)) time algorithm for p ∈ [1, 2], improving the Ω(n2) time
required to form Ā. Finally, we initiate the study of Kronecker product low rank
and low t-rank approximation. For input A as above, we give O(

∑q
i=1 nnz(Ai))

time algorithms, which is much faster than computing A.

1 Introduction

In the q-th order Kronecker product regression problem, one is given matrices A1, A2, . . . , Aq ,
where Ai ∈ Rni×di , as well as a vector b ∈ Rn1n2···nq , and the goal is to obtain a solution to
the optimization problem:

min
x∈Rd1d2···dq

‖(A1 ⊗A2 · · · ⊗Aq)x− b‖p,

where p ∈ [1, 2], and for a vector x ∈ Rn the `p norm is defined by ‖x‖p = (
∑n
i=1 |xi|p)1/p. For

p = 2, this is known as least squares regression, and for p = 1 this is known as least absolute
deviation regression.
∗hadiao@nenu.edu.cn. Northeast Normal University.
†rkjayara@cs.cmu.edu. Carnegie Mellon University. Rajesh Jayaram would like to thank support from

the Office of Naval Research (ONR) grant N00014-18-1-2562. This work was partly done while Rajesh Ja-
yaram was visiting the Simons Institute for the Theory of Computing.
‡zhaosong@uw.edu. University of Washington. This work was partly done while Zhao Song was visiting

the Simons Institute for the Theory of Computing.
§sun.wen@microsoft.com. Microsoft Research New York.
¶dwoodruf@cs.cmu.edu. Carnegie Mellon University. David Woodruff would like to thank support from

the Office of Naval Research (ONR) grant N00014-18-1-2562. This work was also partly done while David
Woodruff was visiting the Simons Institute for the Theory of Computing.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Kronecker product regression is a special case of ordinary regression in which the design matrix
is highly structured. Namely, the design matrix is the Kronecker product of two or more smaller
matrices. Such Kronecker product matrices naturally arise in applications such as spline regression,
signal processing, and multivariate data fitting. We refer the reader to [VL92, VLP93, GVL13] for
further background and applications of Kronecker product regression. As discussed in [DSSW18],
Kronecker product regression also arises in structured blind deconvolution problems [OY05], and
the bivariate problem of surface fitting and multidimensional density smoothing [EM06].

A recent work of Diao, Song, Sun, and Woodruff [DSSW18] utilizes sketching techniques to output
an x ∈ Rd1d2···dq with objective function at most (1 + ε)-times larger than optimal, for both least
squares and least absolute deviation Kronecker product regression. Importantly, their time complex-
ity is faster than the time needed to explicitly compute the productA1⊗· · ·⊗Aq . We note that sketch-
ing itself is a powerful tool for compressing extremely high dimensional data, and has been used in
a number of tensor related problems, e.g., [SWZ16, LHW17, DSSW18, SWZ19b, AKK+20].

For least squares regression, the algorithm of [DSSW18] achieves O(
∑q
i=1 nnz(Ai) + nnz(b) +

poly(d/ε)) time, where nnz(C) for a matrix C denotes the number of non-zero entries of C. Note
that the focus is on the over-constrained regression setting, when ni � di for each i, and so the goal
is to have a small running time dependence on the ni’s. We remark that over-constrained regression
has been the focus of a large body of work over the past decade, which primarily attempts to design
fast regression algorithms in the big data (large sample size) regime, see, e.g., [Mah11, Woo14] for
surveys.

Observe that explicitly forming the matrix A1 ⊗ · · · ⊗ Aq would take
∏q
i=1 nnz(Ai) time, which

can be as large as
∏q
i=1 nidi, and so the results of [DSSW18] offer a large computational advantage.

Unfortunately, since b ∈ Rn1n2···nq , we can have nnz(b) =
∏q
i=1 ni, and therefore nnz(b) is likely

to be the dominant term in the running time. This leaves open the question of whether it is possible
to solve this problem in time sub-linear in nnz(b), with a dominant term of O(

∑q
i=1 nnz(Ai)).

For least absolute deviation regression, the bounds of [DSSW18] achieved are still an improvement
over computing A1 ⊗ · · · ⊗ Aq , though worse than the bounds for least squares regression. The
authors focus on q = 2 and the special case n = n1 = n2. Here, they obtain a running time
of O(n3/2 poly(d1d2/ε) + nnz(b))6. This leaves open the question of whether an input-sparsity
O(nnz(A1) + nnz(A2) + nnz(b) + poly(d1d2/ε)) time algorithm exists.

All-Pairs Regression In this work, we also study the related all-pairs regression problem. Given
A ∈ Rn×d, b ∈ Rn, the goal is to approximately solve the `p regression problem minx ‖Āx− b̄‖p,
where Ā ∈ Rn2×d is the matrix formed by taking all pairwise differences of the rows of A (and b̄
is defined similarly). For p = 1, this is known as the rank regression estimator, which has a long
history in statistics. It is closely related to the renowned Wilconxon rank test [WL09], and enjoys
the desirable property of being robust with substantial efficiency gain with respect to heavy-tailed
random errors, while maintaining high efficiency for Gaussian errors [WKL09, WL09, WPB+18,
Wan19a]. In many ways, it has properties more desirable in practice than that of the Huber M-
estimator [WPB+18, Wan19b]. Recently, the all-pairs loss function was also used by [WPB+18]
as an alternative approach to overcoming the challenges of tuning parameter selection for the Lasso
algorithm. However, the rank regression estimator is computationally intensive to compute, even
for moderately sized data, since the standard procedure (for p = 1) is to solve a linear program
with O(n2) constraints. In this work, we demonstrate the first highly efficient algorithm for this
estimator.

Low-Rank Approximation Finally, in addition to regression, we extend our techniques to the
Low Rank Approximation (LRA) problem. Here, given a large data matrix A, the goal is to
find a low rank matrix B which well-approximates A. LRA is useful in numerous applica-
tions, such as compressing massive datasets to their primary components for storage, denois-
ing, and fast matrix-vector products. Thus, designing fast algorithms for approximate LRA has

6We remark that while the nnz(b) term is not written in the Theorem of [DSSW18], their approach of
leverage score sampling from a well-conditioned basis requires one to sample from a well conditioned basis of
[A1 ⊗ A2, b] for a subspace embedding. As stated, their algorithm only sampled from [A1 ⊗ A2]. To fix this
omission, their algorithm would require an additional nnz(b) time to leverage score sample from the augmented
matrix.

2

become a large and highly active area of research; see [Woo14] for a survey. For an incom-
plete list of recent work using sketching techniques for LRA, see [CW13, MM13, NN13, BW14,
CW15b, CW15a, RSW16, BWZ16, SWZ17, MW17, CGK+17, LHW17, SWZ18, BW18, SWZ19a,
SWZ19b, SWZ19c, BBB+19, IVWW19] and the references therein.

Motivated by the importance of LRA, we initiate the study of low-rank approximation of Kronecker
product matrices. Given q matrices A1, · · · , Aq where Ai ∈ Rni×di , ni � di, A = ⊗qi=1Ai,
the goal is to output a rank-k matrix B ∈ Rn×d such that ‖B − A‖2F ≤ (1 + ε) OPTk,
where OPTk is the cost of the best rank-k approximation, n = n1 · · ·nq , and d = d1 · · · dq .
Here ‖A‖2F =

∑
i,j A

2
i,j . The fastest general purpose algorithms for this problem run in time

O(nnz(A) + poly(dk/ε)) [CW13]. However, as in regression, if A = ⊗qi=1Ai, we have nnz(A) =∏q
i=1 nnz(Ai), which grows very quickly. Instead, one might also hope to obtain a running time of

O(
∑q
i=1 nnz(Ai) + poly(dk/ε)).

1.1 Our Contributions

Our main contribution is an input sparsity time (1 + ε)-approximation algorithm to Kronecker
product regression for every p ∈ [1, 2], and q ≥ 2. Given Ai ∈ Rni×di , i = 1, . . . , q,
and b ∈ Rn where n =

∏q
i=1 ni, together with accuracy parameter ε ∈ (0, 1/2) and fail-

ure probability δ > 0, the goal is to output a vector x′ ∈ Rd where d =
∏q
i=1 di such that

|(A1 ⊗ · · · ⊗ Aq)x
′ − b‖p ≤ (1 + ε) minx ‖(A1 ⊗ · · · ⊗ Aq)x − b‖p holds with probability at

least 1 − δ. For p = 2, our algorithm runs in Õ
(∑q

i=1 nnz(Ai)) + poly(dδ−1/ε)
)

time.7 Notice
that this is sub-linear in the input size, since it does not depend on nnz(b). For p < 2, the running
time is Õ ((

∑q
i=1 nnz(Ai) + nnz(b) + poly(d/ε)) log(1/δ)).

Observe that in both cases, this running time is significantly faster than the time to write down
A1 ⊗ · · · ⊗ Aq . For p = 2, up to logarithmic factors, the running time is the same as the time
required to simply read each of the Ai. Moreover, in the setting p < 2, q = 2 and n1 = n2
considered in [DSSW18], our algorithm offers a substantial improvement over their running time
of O(n3/2 poly(d1d2/ε)). We empirically evaluate our Kronecker product regression algorithm on
exactly the same datasets as those used in [DSSW18]. For p ∈ {1, 2}, the accuracy of our algorithm
is nearly the same as that of [DSSW18], while the running time is significantly faster.

For the all-pairs (or rank) regression problem, we first note that for A ∈ Rn×d, one can rewrite
Ā ∈ Rn2×d as the difference of Kronecker products Ā = A ⊗ 1n − 1n ⊗ A where 1n ∈ Rn is
the all ones vector. Since Ā is not a Kronecker product itself, our earlier techniques for Kronecker
product regression are not directly applicable. Therefore, we utilize new ideas, in addition to careful
sketching techniques, to obtain an Õ(nnz(A) + poly(d/ε)) time algorithm for p ∈ [1, 2], which
improves substantially on the O(n2d) time required to even compute Ā, by a factor of at least n.

Our main technical contribution for both our `p regression algorithm and the rank regression problem
is a novel and highly efficient `p sampling algorithm. Specifically, for the rank-regression problem
we demonstrate, for a given x ∈ Rd, how to independently sample s entries of a vector Āx = y ∈
Rn2

from the `p distribution (|y1|p/‖y‖pp, . . . , |yn2 |p/‖y‖pp) in Õ(nd + poly(ds)) time. For the `p
regression problem, we demonstrate the same result when y = (A1 ⊗ · · · ⊗ Aq)x − b ∈ Rn1···nq ,
and in time Õ(

∑q
i=1 nnz(Ai)+nnz(b)+poly(ds)). This result allows us to sample a small number

of rows of the input to use in our sketch. Our algorithm draws from a large number of disparate
sketching techniques, such as the dyadic trick for quickly finding heavy hitters [CM05, KNPW11,
LNNT16, NS19], and the precision sampling framework from the streaming literature [AKO11].

For the Kronecker Product Low-Rank Approximation (LRA) problem, we give an input sparsity
O(
∑q
i=1 nnz(Ai) + poly(dk/ε))-time algorithm which computes a rank-k matrix B such that

‖B − ⊗qi=1Ai‖2F ≤ (1 + ε) minrank−k B′ ‖B′ − ⊗qi=1Ai‖2F . Note again that the dominant term∑q
i=1 nnz(Ai) is substantially smaller than the nnz(A) =

∏q
i=1 nnz(Ai) time required to write

down the Kronecker Product A, which is also the running time of state-of-the-art general purpose
LRA algorithms [CW13, MM13, NN13]. Thus, our results demonstrate that substantially faster
algorithms for approximate LRA are possible for inputs with a Kronecker product structure.

7For a function f(n, d, ε, δ), Õ(f) = O(f · poly(logn))

3

Finally, motivated by [VL00], we use our techniques to solve the low-trank approximation problem,
where we are given an arbitrary matrix A ∈ Rnq×nq

, and the goal is to output a trank-k matrix
B ∈ Rnq×nq

such that ‖B−A‖F is minimized. Here, the trank of a matrixB is the smallest integer
k such that B can be written as a summation of k matrices, where each matrix is the Kronecker
product of q matrices with dimensions n×n. Compressing a matrixA to a low-trank approximation
yields many of the same benefits as LRA, such as compact representation, fast matrix-vector product,
and fast matrix multiplication, and thus is applicable in many of the settings where LRA is used.
Using similar sketching ideas, we provide anO(

∑q
i=1 nnz(Ai)+poly(d1 · · · dq/ε)) time algorithm

for this problem under various loss functions. Our results for low-trank approximation can be found
in the full version of this work.

2 Preliminaries

Notation For a tensor A ∈ Rn1×n2×n3 , we use ‖A‖p to denote the entry-wise `p norm of A, i.e.,
‖A‖p = (

∑
i1

∑
i2

∑
i3
|Ai1,i2,i3 |p)1/p. For n ∈ N, let [n] = {1, 2, . . . , n}. For a matrix A, let

Ai,∗ denote the i-th row of A, and A∗,j the j-th column. For a, b ∈ R and ε ∈ (0, 1), we write
a = (1± ε)b to denote (1− ε)b ≤ a ≤ (1 + ε)b. We now define various sketching matrices used by
our algorithms.

Stable Transformations We will utilize the well-known p-stable distribution, Dp (see [Nol07,
Ind06] for further discussion), which exist for p ∈ (0, 2]. For p ∈ (0, 2), X ∼ Dp is defined by
its characteristic function EX [exp(

√
−1tX)] = exp(−|t|p), and can be efficiently generated to a

fixed precision [Nol07, KNW10]. For p = 2, D2 is just the standard Gaussian distribution, and for
p = 1, D1 is the Cauchy distribution. The distribution Dp has the property that if z1, . . . , zn ∼ Dp

are i.i.d., and a ∈ Rn, then
∑n
i=1 ziai ∼ z‖a‖p where ‖a‖p = (

∑n
i=1 |ai|p)1/p, and z ∼ Dp. This

property will allow us to utilize sketches with entries independently drawn from Dp to preserve the
`p norm.

Definition 2.1 (Dense p-stable Transform, [CDMI+13, SW11]). Let p ∈ [1, 2]. Let S = σ · C ∈
Rm×n, where σ is a scalar, and each entry of C ∈ Rm×n is chosen independently from Dp.

We will also need a sparse version of the above.

Definition 2.2 (Sparse p-Stable Transform, [MM13, CDMI+13]). Let p ∈ [1, 2]. Let Π = σ ·SC ∈
Rm×n, where σ is a scalar, S ∈ Rm×n has each column chosen independently and uniformly from
the m standard basis vectors of Rm, and C ∈ Rn×n is a diagonal matrix with diagonals chosen
independently from the standard p-stable distribution. For any matrix A ∈ Rn×d, ΠA can be
computed in O(nnz(A)) time.

One nice property of p-stable transformations is that they provide low-distortion `p embeddings.

Lemma 2.3 (Theorem 1.4 of [WW19]; see also Theorem 2 and 4 of [MM13] for earlier work 8).
Fix A ∈ Rn×d, and let S ∈ Rk×n be a sparse or dense p-stable transform for p ∈ [1, 2), with
k = Θ(d2/δ). Then with probability 1− δ, for all x ∈ Rd:

‖Ax‖p ≤ ‖SAx‖p ≤ O(d log d)‖Ax‖p

We simply call a matrix S ∈ Rk×n a low distortion `p embedding for A ∈ Rn×d if it satisfies the
above inequality for all x ∈ Rd.

Leverage Scores & Well Condition Bases. We now introduce the notions of `2 leverage scores
and well-conditioned bases for a matrix A ∈ Rn×d.

Definition 2.4 (`2-Leverage Scores, [Woo14, BSS12]). Given a matrix A ∈ Rn×d, let A = Q · R
denote the QR factorization of matrix A. For each i ∈ [n], we define σi =

‖(AR−1)i‖22
‖AR−1‖2F

, where

(AR−1)i ∈ Rd is the i-th row of matrix (AR−1) ∈ Rn×d. We say that σ ∈ Rn is the `2 leverage
score vector of A.

8In discussion with the authors of these works, the originalO((d log d)1/p) distortion factors stated in these
papers should be replaced with O(d log d); as we do not optimize the poly(d) factors in our analysis, this does
not affect our bounds.

4

Definition 2.5 ((`p, α, β) Well-Conditioned Basis, [Cla05]). Given a matrix A ∈ Rn×d, we say
U ∈ Rn×d is an (`p, α, β) well-conditioned basis for the column span of A if the columns of U span
the columns of A, and if for any x ∈ Rd, we have α‖x‖p ≤ ‖Ux‖p ≤ β‖x‖p, where α ≤ 1 ≤ β. If
β/α = dO(1), then we simply say that U is an `p well conditioned basis for A.

Fact 2.6 ([WW19, MM13]). Let A ∈ Rn×d, and let SA ∈ Rk×d be a low distortion `p embedding
for A (see Lemma 2.3), where k = O(d2/δ). Let SA = QR be the QR decomposition of SA. Then
AR−1 is an `p well-conditioned basis with probability 1− δ.

Algorithm 1 Our `2 Kronecker Product Regression Algorithm

1: procedure `2 KRONECKER REGRESSION(({Ai, ni, di}i∈[q], b)) . Theorem 3.1
2: d←

∏q
i=1 di, n←

∏q
i=1 ni, m← Θ(d/(δε2)).

3: Compute approximate leverage scores σ̃i(Aj) for all j ∈ [q], i ∈ [nj].
4: Construct diagonal leverage score sampling matrix D ∈ Rn×n, with m non-zero entries
5: Compute (via the psuedo-inverse)
6: x̂ = arg minx∈Rd ‖D(A1 ⊗A2 ⊗ · · · ⊗Aq)x−Db‖2
7: return x̂
8: end procedure

Algorithm 2 Our `p Kronecker Product Regression Algorithm, 1 ≤ p < 2

1: procedure O(1)-APPROXIMATE `p REGRESSION({Ai, ni, di}i∈[q]) . Theorem 3.2
2: d←

∏q
i=1 di, n←

∏q
i=1 ni.

3: for i = 1, . . . , q do
4: si ← O(qd2i)
5: Generate sparse p-stable transform Si ∈ Rsi×n (def 2.2) . Lemma 2.3
6: Take the QR factorization of SiAi = QiRi to obtain Ri ∈ Rdi×di . Fact 2.6
7: Let Z ∈ Rd×τ be a dense p-stable transform for τ = Θ(log(n)) . Definition 2.1
8: for j = 1, . . . , ni do
9: ai,j ← medianη∈[τ]{(|(AiR−1i Z)j,η|/θp)p}, where θp is the median of Dp.

10: end for
11: end for
12: Define a distribution D = {q′1, q′1, . . . , q′n} by q′∑q

i=1 ji
∏j−1

l=1 nl
=
∏q
i=1 ai,ji .

13: Let Π ∈ Rn×n denote a diagonal sampling matrix, where Πi,i = 1/q
1/p
i with probability

qi = min{1, r1q′i} and 0 otherwise, where r1 = Θ(d3/ε2). . [DDH+09]
14: Let x′ ∈ Rd denote the solution of
15: minx∈Rd ‖Π(A1 ⊗A2 ⊗ · · · ⊗Aq)x−Πb‖p
16: return x′
17: end procedure
18: procedure (1 + ε)-APPROXIMATE `p REGRESSION(x′ ∈ Rd)
19: Implicitly define ρ = (A1 ⊗A2 ⊗ · · · ⊗Aq)x′ − b ∈ Rn

20: Compute a diagonal sampling matrix Σ ∈ Rn×n such that Σi,i = 1/α
1/p
i with probability

αi = min{1,max{qi, r2|ρi|p/‖ρ‖pp}} where r2 = Θ(d3/ε3).
21: Compute x̂ = arg minx∈Rd ‖Σ(A1 ⊗ A2 ⊗ · · · ⊗ Aq) − Σb‖p (via convex optimization

methods, e.g., [BCLL18, AKPS19, LSZ19])
22: return x̂
23: end procedure

3 Kronecker Product Regression

We first introduce our algorithm for p = 2. Our algorithm for 1 ≤ p < 2 is given in Section
3.1. Our regression algorithm for p = 2 is formally stated in Algorithm 1. Recall that our input
design matrix is A = ⊗qi=1Ai, where Ai ∈ Rni×di , and we are also given b ∈ Rn1···nq . Let
n =

∏q
i=1 ni and d =

∏q
i=1 di. The crucial insight of the algorithm is that one can approximately

5

compute the leverage scores of A given only good approximations to the leverage scores of each Ai.
Applying this fact gives a efficient algorithm for sampling rows of A with probability proportional
to the leverage scores. Following standard arguments, we will show that by restricting the regression
problem to the sampled rows, we can obtain our desired (1 ± ε)-approximate solution efficiently.
Our main theorem for this section is stated below.

Theorem 3.1 (Kronecker product `2 regression). Let D ∈ Rn×n be the diagonal row sampling
matrix generated in Algorithm 1, with m = Θ(d/(δε2)) non-zero entries, and let A = ⊗qi=1Ai,
where Ai ∈ Rni×di , and b ∈ Rn, where n =

∏q
i=1 ni and d =

∏q
i=1 di. Then let x̂ =

arg minx∈Rd ‖DAx −Db‖2, and let x∗ = arg minx′∈Rd ‖Ax − b‖2. Then with probability 1 − δ,
we have ‖Ax̂− b‖2 ≤ (1 + ε)‖Ax∗ − b‖2. Moreover, the total running time required to compute x̂
is Õ(

∑q
i=1 nnz(Ai) + (dq/(δε))O(1)). 9

3.1 Kronecker Product `p Regression

We now consider `p regression for 1 ≤ p < 2. Our algorithm is stated formally in Algorithm 2.
Our main theorem is as follows.

Theorem 3.2 (Main result, `p (1+ε)-approximate regression). Fix 1 ≤ p < 2. Then for any constant
q = O(1), given matrices A1, A2, · · · , Aq , where Ai ∈ Rni×di , let n =

∏q
i=1 ni, d =

∏q
i=1 di. Let

x̂ ∈ Rd be the output of Algorithm 2. Then

‖(A1 ⊗A2 ⊗ · · · ⊗Aq)x̂− b‖p ≤ (1 + ε) min
x∈Rn

‖(A1 ⊗A2 ⊗ · · · ⊗Aq)x− b‖p

holds with probability at least 1 − δ. In addition, our algorithm takes
Õ ((

∑q
i=1 nnz(Ai) + nnz(b) + poly(d log(1/δ)/ε)) log(1/δ)) time to output x̂ ∈ Rd.

Our high level approach follows that of [DDH+09]. Namely, we first obtain a vector x′ which is an
O(1)-approximate solution to the optimal solution. This is done by first constructing (implicitly) a
matrix U ∈ Rn×d that is a well-conditioned basis for the design matrix A1 ⊗ · · · ⊗ Aq . We then
efficiently sample rows of U with probability proportional to their `p norm (which must be done
without even explicitly computing most of U). We then use the results of [DDH+09] to demonstrate
that solving the regression problem constrained to these sampled rows gives a solution x′ ∈ Rd such
that ‖(A1 ⊗ · · · ⊗Aq)x′ − b‖p ≤ 8 minx∈Rd ‖(A1 ⊗ · · · ⊗Aq)x′ − b‖p.

We define the residual error ρ = (A1 ⊗ · · · ⊗ Aq)x
′ − b ∈ Rn of x′. Our goal is to sample

additional rows i ∈ [n] with probability proportional to their residual error |ρi|p/‖ρ‖pp, and solve
the regression problem restricted to the sampled rows. However, we cannot afford to compute even
a small fraction of the entries in ρ (even when b is dense, and certainly not when b is sparse). So to
carry out this sampling efficiently, we design an involved, multi-part sketching and sampling routine.
This sampling technique is the main technical contribution of this section, and relies on a number of
techniques, such as the Dyadic trick for quickly finding heavy hitters from the streaming literature,
and a careful pre-processing step to avoid a poly(d)-blow up in the runtime. Given these samples,
we can obtain the solution x̂ after solving the regression problem on the sampled rows, and the fact
that this gives a (1 + ε) approximate solution will follow from Theorem 6 of [DDH+09].

4 All-Pairs Regression

Given a matrix A ∈ Rn×d and b ∈ Rn, let Ā ∈ Rn2×d be the matrix such that Āi+(j−1)n,∗ =

Ai,∗ − Aj,∗, and let b̄ ∈ Rn2

be defined by b̄i+(j−1)n = bi − bj . Thus, Ā consists of all pairwise
differences of rows of A, and b̄ consists of all pairwise differences of rows of b,. The `p all pairs
regression problem on the inputs A, b is to solve minx∈Rd ‖Āx− b̄‖p.

9We remark that the exponent of d in the runtime can be bounded by 3. To see this, first note that the main
computation taking place is the leverage score computation. For a q input matrices, we need to generate the
leverage scores to precision Θ(1/q), and the complexity to achieve this is O(d3/q4) by the results of [CW13].
The remaining computation is to compute the pseudo-inverse of a d/ε2 × d matrix, which requires O(d3/ε2)
time, so the additive term in the Theorem can be replaced with O(d3/ε2 + d3/q4).

6

First note that this problem has a close connection to Kronecker product regression. Namely, the
matrix Ā can be written Ā = A ⊗ 1n − 1n ⊗ A, where 1n ∈ Rn is the all 1’s vector. Similarly,
b̄ = b⊗ 1n − 1n ⊗ b. For simplicity, we now drop the superscript and write 1 = 1n.

Our algorithm is given formally in Algorithm 3. The main technical step takes place on line 7,
where we sample rows of the matrix (F ⊗ 1− 1⊗ F)R−1 with probability proportional to their `p
norms. This is done by an involved sampling procedure described in the full version of this work.
We summarize the guarantee of our algorithm in the following theorem.

Theorem 4.1. Given A ∈ Rn×d and b ∈ Rn, for p ∈ [1, 2], let Ā = A ⊗ 1 − 1 ⊗ A ∈ Rn2×d

and b̄ = b ⊗ 1 − 1 ⊗ b ∈ Rn2

. Then there is an algorithm for that outputs x̂ ∈ Rd such that
with probability 1 − δ we have ‖Āx̂ − b̄‖p ≤ (1 + ε) minx∈Rd ‖Āx − b̄‖p. The running time is
Õ(nnz(A) + (d/(εδ))O(1)).

Algorithm 3 Our All-Pairs Regression Algorithm

1: procedure ALL-PAIRS REGRESSION(A, b)
2: F = [A, b] ∈ Rn×d+1. r ← poly(d/ε)
3: Generate S1, S2 ∈ Rk×n sparse p-stable transforms for k = poly(d/(εδ)).
4: Sketch (S1 ⊗ S2)(F ⊗ 1− 1⊗ F).
5: Compute QR decomposition: (S1 ⊗ S2)(F ⊗ 1− 1⊗ F) = QR.
6: Let M = (F ⊗ 1− 1⊗ F)R−1, and σi = ‖Mi,∗‖pp/‖M‖pp.
7: Obtain row sampling diagonal matrix Π ∈ Rn×n such that Πi,i = 1/q̃i

1/p independently
with probability qi ≥ min{1, rσi}, where q̃i = (1± ε2)qi.

8: return x̂ , where x̂ = arg minx∈Rd ‖Π(Āx− b̄)‖p.
9: end procedure

5 Low Rank Approximation of Kronecker Product Matrices

We now consider low rank approximation of Kronecker product matrices. Given q matrices
A1, A2, . . . , Aq , where Ai ∈ Rni×di , the goal is to output a rank-k matrix B ∈ Rn×d, where
n =

∏q
i=1 ni and d =

∏q
i=1 di, such that ‖B − A‖F ≤ (1 + ε) OPTk, where OPTk =

minrank−k A′ ‖A′ − A‖F , and A = ⊗qi=1Ai. Our approach employs the Count-Sketch distribu-
tion of matrices [CW13, Woo14]. A count-sketch matrix S is generated as follows. Each column of
S contains exactly one non-zero entry. The non-zero entry is placed in a uniformly random row, and
the value of the non-zero entry is either 1 or −1 chosen uniformly at random.

Our algorithm is as follows. We sample q independent Count-Sketch matrices S1, . . . Sq , with Si ∈
Rki×ni , where k1 = · · · = kq = Θ(qk2/ε2). We then computeM = (⊗qi=1Si)A, and letU ∈ Rk×d
be the top k right singular vectors of M . Finally, we output B = AU>U in factored form (as q + 1
separate matrices, A1, A2, . . . , Aq, U), as the desired rank-k approximation to A. The following
theorem demosntrates the correctness of this algorithm.
Theorem 5.1. For any constant q ≥ 2, there is an algorithm which runs in timeO((

∑q
i=1 nnz(Ai)+

dpoly(k/ε)) log(1/δ)) and outputs a rank k-matrix B in factored form such that ‖B − A‖F ≤
(1 + ε) OPTk with probability 1− δ. with probability 9/10.

6 Numerical Simulations

In our numerical simulations, we compare our algorithms to two baselines: (1) brute force, i.e.,
directly solving regression without sketching, and (2) the methods based sketching developed in
[DSSW18]. All methods were implemented in Matlab on a Linux machine. We remark that in our
implementation, we simplified some of the steps of our theoretical algorithm, such as the residual
sampling algorithm used in Alg. 2. We found that in practice, even with these simplifications, our
algorithms already demonstrated substantial improvements over prior work.

Following the experimental setup in [DSSW18], we generate matrices A1 ∈ R300×15, A2 ∈
R300×15, and b ∈ R3002 , such that all entries of A1, A2, b are sampled i.i.d. from a normal distribu-
tion. Note that A1 ⊗ A2 ∈ R90000×225. We define Tbf to be the time of the brute force algorithm,

7

Table 1: Results for `2 and `1-regression with respect to different sketch sizes m.

m m/n re r′e rt r′t

`2
8100 .09 2.48% 1.51% 0.05 0.22

12100 .13 1.55% 0.98% 0.06 0.24
16129 .18 1.20% 0.71% 0.07 0.08

`1
2000 .02 7.72% 9.10% 0.02 0.59
4000 .04 4.26% 4.00% 0.03 0.75
8000 .09 1.85% 1.6% 0.07 0.83

12000 .13 1.29% 0.99% 0.09 0.79
16000 .18 1.01% 0.70% 0.14 0.90

Told to be the time of the algorithms from [DSSW18], and Tours to be the time of our algorithms.
We are interested in the time ratio with respect to the brute force algorithm and the algorithms from
[DSSW18], defined as, rt = Tours/Tbf , and r′t = Tours/Told. The goal is to show that our methods
are significantly faster than both baselines, i.e., both rt and r′t are significantly less than 1.

We are also interested in the quality of the solutions computed from our algorithms, compared to the
brute force method and the method from [DSSW18]. Denote the solution from our method as xour,
the solution from the brute force method as xbf , and the solution from the method in [DSSW18] as
xold. We define the relative residual percentage reand r′e to be:

re = 100
|‖Axours − b‖ − ‖Axbf − b‖|

‖Axbf − b‖
, r′e = 100

|‖Axold − b‖ − ‖Axbf − b‖|
‖Axbf − b‖

Where A = A1 ⊗ A2. The goal is to show that re is close zero, i.e., our approximate solution is
comparable to the optimal solution in terms of minimizing the error ‖Ax− b‖.
Throughout the simulations, we use a moderate input matrix size so that we can accommodate the
brute force algorithm and to compare to the exact solution. We consider varying values of m, where
M denotes the size of the sketch (number of rows) used in either the algorithms of [DSSW18] or
the algorithms in this paper. We also include a column m/n in the table, which is the ratio between
the size of the sketch and the original matrix A1 ⊗A2. Note in this case that n = 90000.

Simulation Results for `2 We first compare our algorithm, Alg. 1, to baselines under the `2 norm.
In our implementation, minx ‖Ax−b‖2 is solved by Matlab backslashA\b. Table 1 summarizes the
comparison between our approach and the two baselines. The numbers are averaged over 5 random
trials. First of all, we notice that our method in general provides slightly less accurate solutions
than the method in [DSSW18], i.e., re > r′e in this case. However, comparing to the brute force
algorithm, our method still generates relatively accurate solutions, especially when m is large, e.g.,
the relative residual percentage w.r.t. the optimal solution is around 1% when m ≈ 16000. On
the other hand, as suggested by our theoretical improvements for `2, our method is significantly
faster than the method from [DSSW18], consistently across all sketch sizes m. Note that when
m ≈ 16000, our method is around 10 times faster than the method in [DSSW18]. For small m, our
approach is around 5 times faster than the method in [DSSW18].

Simulation Results for `1 We compare our algorithm, Alg. 2, to two baselines under the `1-
norm. The first is a brute-force solution, and the second is the algorithm for [DSSW18]. For
minx ‖Ax − b‖1, the brute for solution is obtained via a Linear Programming solver in Gurobi
[GO16]. Table 1 summarizes the comparison of our approach to the two baselines under the `1-
norm. The statistics are averaged over 5 random trials. Compared to the Brute Force algorithm, our
method is consistently around 10 times faster, while in general we have relative residual percentage
around 1%. Compared to the method from [DSSW18], our approach is consistently faster (around
1.3 times faster). Note our method has slightly higher accuracy than the one from [DSSW18] when
the sketch size is small, but slightly worse accuracy when the sketch size increases.

Acknowledgments

The authors would like to thank Lan Wang and Ruosong Wang for a helpful discussion. The authors
would like to thank Lan Wang for introducing the All-Pairs Regression problem to us.

8

References
[AKK+20] Thomas D. Ahle, Michael Kapralov, Jakob B. T. Knudsen, Rasmus Pagh, Ameya Vel-

ingker, David P. Woodruff, and Amir Zandieh. Oblivious sketching of high-degree
polynomial kernels. In SODA. Merger version of https://arxiv.org/pdf/1909.
01410.pdf and https://arxiv.org/pdf/1909.01821.pdf, 2020.

[AKO11] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms
via precision sampling. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd
Annual Symposium on, pages 363–372. IEEE, https://arxiv.org/pdf/1011.
1263, 2011.

[AKPS19] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative refine-
ment for `p-norm regression. In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 1405–1424. SIAM, 2019.

[BBB+19] Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Pavel Kolev, Euiwoong Lee, and
David P Woodruff. A ptas for `p-low rank approximation. In Proceedings of the Thir-
tieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 747–766. SIAM,
2019.

[BCLL18] Sébastien Bubeck, Michael B Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy
method for `p regression provably beyond self-concordance and in input-sparsity time.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pages 1130–1137. ACM, 2018.

[BSS12] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan spar-
sifiers. In SIAM Journal on Computing, volume 41(6), pages 1704–1721. https:
//arxiv.org/pdf/0808.0163, 2012.

[BW14] Christos Boutsidis and David P Woodruff. Optimal CUR matrix decompositions. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC),
pages 353–362. ACM, https://arxiv.org/pdf/1405.7910, 2014.

[BW18] Ainesh Bakshi and David Woodruff. Sublinear time low-rank approximation of dis-
tance matrices. In Advances in Neural Information Processing Systems, pages 3782–
3792, 2018.

[BWZ16] Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal compo-
nent analysis in distributed and streaming models. In Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 236–249. ACM,
https://arxiv.org/pdf/1504.06729, 2016.

[CDMI+13] Kenneth L Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney,
Xiangrui Meng, and David P Woodruff. The fast cauchy transform and faster robust
linear regression. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 466–477. Society for Industrial and Applied
Mathematics, https://arxiv.org/pdf/1207.4684, 2013.

[CGK+17] Flavio Chierichetti, Sreenivas Gollapudi, Ravi Kumar, Silvio Lattanzi, Rina Panigrahy,
and David P Woodruff. Algorithms for `p low rank approximation. In ICML. arXiv
preprint arXiv:1705.06730, 2017.

[Cla05] Kenneth L Clarkson. Subgradient and sampling algorithms for `1 regression. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms
(SODA), pages 257–266, 2005.

[CM05] Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In Symposium on Theory of Computing Conference (STOC),
pages 81–90. https://arxiv.org/pdf/1207.6365, 2013.

9

https://arxiv.org/pdf/1909.01410.pdf
https://arxiv.org/pdf/1909.01410.pdf
https://arxiv.org/pdf/1909.01821.pdf
https://arxiv.org/pdf/1011.1263
https://arxiv.org/pdf/1011.1263
https://arxiv.org/pdf/0808.0163
https://arxiv.org/pdf/0808.0163
https://arxiv.org/pdf/1405.7910
https://arxiv.org/pdf/1504.06729
https://arxiv.org/pdf/1207.4684
https://arxiv.org/pdf/1207.6365

[CW15a] Kenneth L Clarkson and David P Woodruff. Input sparsity and hardness for robust
subspace approximation. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science (FOCS), pages 310–329. IEEE, https://arxiv.org/pdf/1510.
06073, 2015.

[CW15b] Kenneth L Clarkson and David P Woodruff. Sketching for m-estimators: A unified
approach to robust regression. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 921–939. SIAM, 2015.

[DDH+09] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Ma-
honey. Sampling algorithms and coresets for `p regression. SIAM Journal on Comput-
ing, 38(5):2060–2078, 2009.

[DSSW18] Huaian Diao, Zhao Song, Wen Sun, and David P. Woodruff. Sketching for Kronecker
product regression and p-splines. AISTATS 2018, 2018.

[EM06] Paul HC Eilers and Brian D Marx. Multidimensional density smoothing with p-splines.
In Proceedings of the 21st international workshop on statistical modelling, 2006.

[GO16] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2016.

[GVL13] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2013.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. Journal of the ACM (JACM), 53(3):307–323, 2006.

[IVWW19] Piotr Indyk, Ali Vakilian, Tal Wagner, and David P. Woodruff. Sample-optimal low-
rank approximation of distance matrices. In COLT, 2019.

[KNPW11] Daniel M Kane, Jelani Nelson, Ely Porat, and David P Woodruff. Fast moment esti-
mation in data streams in optimal space. In Proceedings of the forty-third annual ACM
symposium on Theory of computing (STOC), pages 745–754. ACM, 2011.

[KNW10] Daniel M Kane, Jelani Nelson, and David P Woodruff. On the exact space complexity
of sketching and streaming small norms. In Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete Algorithms, pages 1161–1178. SIAM, 2010.

[LHW17] Xingguo Li, Jarvis Haupt, and David Woodruff. Near optimal sketching of low-
rank tensor regression. In Advances in Neural Information Processing Systems, pages
3466–3476, 2017.

[LNNT16] Kasper Green Larsen, Jelani Nelson, Huy L Nguyên, and Mikkel Thorup. Heavy
hitters via cluster-preserving clustering. In 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS), pages 61–70. IEEE, 2016.

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in
the current matrix multiplication time. In COLT. https://arxiv.org/pdf/1905.
04447.pdf, 2019.

[Mah11] Michael W. Mahoney. Randomized algorithms for matrices and data. Foundations and
Trends in Machine Learning, 3(2):123–224, 2011.

[MM13] Xiangrui Meng and Michael W Mahoney. Low-distortion subspace embeddings in
input-sparsity time and applications to robust linear regression. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing (STOC), pages 91–100.
ACM, https://arxiv.org/pdf/1210.3135, 2013.

[MW17] Cameron Musco and David P Woodruff. Sublinear time low-rank approximation of
positive semidefinite matrices. In 2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS), pages 672–683. IEEE, 2017.

10

https://arxiv.org/pdf/1510.06073
https://arxiv.org/pdf/1510.06073
https://arxiv.org/pdf/1905.04447.pdf
https://arxiv.org/pdf/1905.04447.pdf
https://arxiv.org/pdf/1210.3135

[NN13] Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In 2013 IEEE 54th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 117–126. IEEE, https://arxiv.org/
pdf/1211.1002, 2013.

[Nol07] John P Nolan. Stable distributions. 2007.

[NS19] Vasileios Nakos and Zhao Song. Stronger L2/L2 compressed sensing; without iter-
ating. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing
(STOC), 2019.

[OY05] S. Oh, S. Kwon and J. Yun. A method for structured linear total least norm on blind
deconvolution problem. Applied Mathematics and Computing, 19:151–164, 2005.

[RSW16] Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank approxima-
tions with provable guarantees. In Proceedings of the 48th Annual Symposium on the
Theory of Computing (STOC), 2016.

[SW11] Christian Sohler and David P Woodruff. Subspace embeddings for the `1-norm with
applications. In Proceedings of the forty-third annual ACM symposium on Theory of
computing, pages 755–764. ACM, 2011.

[SWZ16] Zhao Song, David P. Woodruff, and Huan Zhang. Sublinear time orthogonal tensor
decomposition. In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems (NIPS) 2016, December 5-10,
2016, Barcelona, Spain, pages 793–801, 2016.

[SWZ17] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with en-
trywise `1-norm error. In Proceedings of the 49th Annual Symposium on the Theory of
Computing (STOC). ACM, https://arxiv.org/pdf/1611.00898, 2017.

[SWZ18] Zhao Song, David P Woodruff, and Peilin Zhong. Towards a zero-one law for entry-
wise low rank approximation. arXiv preprint arXiv:1811.01442, 2018.

[SWZ19a] Zhao Song, David P Woodruff, and Peilin Zhong. Average case column subset selec-
tion for entrywise `1-norm loss. In NeurIPS, 2019.

[SWZ19b] Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank
approximation. In SODA 2019. https://arxiv.org/pdf/1704.08246, 2019.

[SWZ19c] Zhao Song, David P Woodruff, and Peilin Zhong. Towards a zero-one law for column
subset selection. In NeurIPS, 2019.

[VL92] Charles F Van Loan. Computational frameworks for the fast Fourier transform, vol-
ume 10 of Frontiers in Applied Mathematics. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 1992.

[VL00] Charles F Van Loan. The ubiquitous kronecker product. Journal of computational and
applied mathematics, 123(1-2):85–100, 2000.

[VLP93] Charles F Van Loan and N. Pitsianis. Approximation with Kronecker products. In Lin-
ear algebra for large scale and real-time applications (Leuven, 1992), volume 232 of
NATO Adv. Sci. Inst. Ser. E Appl. Sci., pages 293–314. Kluwer Acad. Publ., Dordrecht,
1993.

[Wan19a] Lan Wang. A new tuning-free approach to high-dimensional regression. ., 2019.

[Wan19b] Lan Wang. Personal communication. 2019.

[WKL09] Lan Wang, Bo Kai, and Runze Li. Local rank inference for varying coefficient models.
Journal of the American Statistical Association, 104(488):1631–1645, 2009.

[WL09] Lan Wang and Runze Li. Weighted wilcoxon-type smoothly clipped absolute deviation
method. Biometrics, 65(2):564–571, 2009.

11

https://arxiv.org/pdf/1211.1002
https://arxiv.org/pdf/1211.1002
https://arxiv.org/pdf/1611.00898
https://arxiv.org/pdf/1704.08246

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.

[WPB+18] Lan Wang, Bo Peng, Jelena Bradic, Runze Li, and Yunan Wu. A tuning-free robust
and efficient approach to high-dimensional regression. Technical report, School of
Statistics, University of Minnesota, 2018.

[WW19] Ruosong Wang and David P Woodruff. Tight bounds for `p oblivious subspace em-
beddings. In SODA, 2019.

12

	Introduction
	Our Contributions

	Preliminaries
	Kronecker Product Regression
	Kronecker Product p Regression

	All-Pairs Regression
	Low Rank Approximation of Kronecker Product Matrices
	Numerical Simulations

