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Abstract

Weak supervision, e.g., in the form of partial labels or image tags, is currently
attracting significant attention in CNN segmentation as it can mitigate the lack of
full and laborious pixel/voxel annotations. Enforcing high-order (global) inequality
constraints on the network output, for instance, on the size of the target region,
can leverage unlabeled data, guiding training with domain-specific knowledge.
Inequality constraints are very flexible because they do not assume exact prior
knowledge. However, constrained Lagrangian dual optimization has been largely
avoided in deep networks, mainly for computational tractability reasons. To the
best of our knowledge, the method of Pathak et al. [17] is the only prior work that
addresses deep CNNs with linear constraints in weakly supervised segmentation.
It uses the constraints to synthesize fully-labeled training masks (proposals) from
weak labels, mimicking full supervision and facilitating dual optimization.
We propose to introduce a differentiable term, which enforces inequality constraints
directly in the loss function, avoiding expensive Lagrangian dual iterates and pro-
posal generation. From constrained-optimization perspective, our simple approach
is not optimal as there is no guarantee that the constraints are satisfied. However,
surprisingly, it yields substantially better results than the Lagrangian-based con-
strained CNNs in [17], while reducing the computational demand for training. In
the context of cardiac images, we reached a segmentation performance close to
full supervision using a fraction of the full ground-truth labels (0.1%). While our
experiments focused on basic linear constraints such as the target-region size and
image tags, our framework can be easily extended to other non-linear constraints,
e.g., invariant shape moments [5] or other region statistics [8]. Therefore, it has the
potential to close the gap between weakly and fully supervised learning in semantic
medical image segmentation. Our code is publicly available.

1 Introduction

In the recent years, deep convolutional neural networks (CNNs) have been dominating semantic
segmentation problems, both in computer vision and medical imaging, achieving ground-breaking
performances when full-supervision is available [10, 11]. In semantic segmentation, full supervision
requires laborious pixel/voxel annotations, which may not be available in a breadth of applications,
more so when dealing with volumetric data. Therefore, weak supervision with partial labels, for
instance, bounding boxes [19], points [1], scribbles [22, 21, 9], or image tags [17, 14], is attracting
significant research attention. Imposing prior knowledge on the the network’s output in the form
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of unsupervised loss terms is a well-established approach in machine learning [23, 3]. Such priors
can be viewed as regularization terms that leverage unlabeled data, embedding domain-specific
knowledge. For instance, the recent studies in [22, 21] showed that direct regularization losses,
e.g., dense conditional random field (CRF) or pairwise clustering, can yield outstanding results in
weakly supervised segmentation, reaching almost full-supervision performances in natural image
segmentation; see the results in [22]. Surprisingly, such a principled direct-loss approach is not
common in weakly supervised segmentation. In fact, most of the existing techniques synthesize
fully-labeled training masks (proposals) from the available partial labels, mimicking full supervision
[19, 14, 9, 6]. Typically, such proposal-based techniques iterate two steps: CNN learning and proposal
generation facilitated by dense CRFs and fast mean-field inference [7], which are now the de-facto
choice for pairwise regularization in semantic segmentation algorithms.

Our purpose here is to embed high-order (global) inequality constraints on the network output directly
in the loss function, so as to guide learning. For instance, assume that we have some prior knowledge
on the size (or volume) of the target region, e.g., in the form of lower and upper bounds on size, a
common scenario in medical image segmentation [13, 4]. Let I : Ω ⊂ R2,3 → R denotes a given
training image, with Ω a discrete image domain and |Ω| the number of pixels/voxels in the image.
ΩL ⊆ Ω is a weak (partial) ground-truth segmentation of the image, taking the form of a partial
annotation of the target region, e.g., a few points (see Fig. 2). In this case, one can optimize a partial
cross-entropy loss subject to inequality constraints on the network outputs [17]:

min
θ
H(S) s.t a ≤

∑
p∈Ω

Sp ≤ b (1)

where S = (S1, . . . , S|Ω|) ∈ [0, 1]|Ω| is a vector of softmax probabilities1 generated by the network
at each pixel p and H(S) = −

∑
p∈ΩL

log(Sp) Priors a and b denote the given upper and lower
bounds on the size (or cardinality) of the target region. Inequality constraints of the form in (1) are
very flexible because they do not assume exact knowledge of the target size, unlike [25, 2]. Also,
multiple instance learning (MIL) constraints [17], which enforce image-tag priors, can be handled by
constrained model (1). Image tags are a form of weak supervision, which enforce the constraints that
a target region is present or absent in a given training image [17]. They can be viewed as particular
cases of the inequality constraints in (1). For instance, a suppression constraint, which takes the
form

∑
p∈Ω Sp ≤ 0, enforces that the target region is not in the image.

∑
p∈Ω Sp > 1 enforces the

presence of the region.

Even though constraints of the form (1) are linear (and hence convex) with respect to the network
outputs, constrained problem (1) is very challenging due to the non-convexity of CNNs. One
possibility would be to minimize the corresponding Lagrangian dual. However, as pointed out in
[17, 12], this is computationally intractable for semantic segmentation networks involving millions of
parameters; one has to optimize a CNN within each dual iteration. In fact, constrained optimization
has been largely avoided in deep networks [20], even thought some Lagrangian techniques were
applied to neural networks a long time before the deep learning era [24, 18]. These constrained
optimization techniques are not applicable to deep CNNs as they solve large linear systems of
equations. The numerical solvers underlying these constrained techniques would have to deal with
matrices of very large dimensions in the case of deep networks [12].

To the best of our knowledge, the method of Pathak et al. [17] is the only prior work that addresses
constrained deep CNNs in weakly supervised segmentation. It uses the constraints to synthesize
fully-labeled training masks (proposals) from the available partial labels, mimicking full supervision,
which avoids intractable dual optimization of the constraints when minimizing the loss function.
The main idea of [17] is to model the proposals via a latent distribution. Then, they minimize a KL
divergence, encouraging the softmax output of the CNN to match the latent distribution as closely
as possible. Therefore, they impose constraints on the latent distribution rather than on the network
output, which facilitates Lagrangian dual optimization. This decouples stochastic gradient descent
learning of the network parameters and constrained optimization: The authors of [17] alternate
between optimizing w.r.t the latent distribution, which corresponds to proposal generation subject to
the constraints2, and standard stochastic gradient descent for optimizing w.r.t the network parameters.

1The softmax probabilities take the form: Sp(θ, I) ∝ exp fp(θ, I), where fp(θ, I) is a real scalar function
representing the output of the network for pixel p. For notation simplicity, we omit the dependence of Sp on θ
and I as this does not result in any ambiguity in the presentation.

2This sub-problem is convex when the constraints are convex.
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We propose to introduce a differentiable term, which enforces inequality constraints (1) directly
in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation. From
constrained optimization perspective, our simple approach is not optimal as there is no guarantee
that the constraints are satisfied. However, surprisingly, it yields substantially better results than the
Lagrangian-based constrained CNNs in [17], while reducing the computational demand for training.
In the context of cardiac image segmentation, we reached a performance close to full supervision
while using a fraction of the full ground-truth labels (0.1%). Our framework can be easily extended
to non-linear inequality constraints, e.g., invariant shape moments [5] or other region statistics [8].
Therefore, it has the potential to close the gap between weakly and fully supervised learning in
semantic medical image segmentation. Our code is publicly available 3.

2 Proposed loss function

We propose the following loss for weakly supervised segmentation:

H(S) + λ C (VS), (2)

where VS =
∑

p∈Ω Sp, λ is a positive constant that weighs the importance of the constraints and
function C is given by (See the illustration in Fig. 1):

C(VS) =


(VS − a)

2
, if VS ≤ a

(VS − b)2
, if VS ≥ b

0, otherwise
(3)

Now, our differentiable term C accommodates standard stochastic gradient descent. During back-
propagation, the term of gradient-descent update corresponding to C can be written as follows:

−∂C(VS)

∂θ
∝


(a− VS)

∂Sp

∂θ , if VS < a

(b− VS)
∂Sp

∂θ , if VS > b

0, otherwise
(4)

where ∂Sp

∂θ denotes the standard derivative of the softmax outputs of the network. The gradient in
(4) has a clear interpretation. During back-propagation, when the current constraints are satisfied,
i.e., a ≤ VS ≤ b, observe that ∂C(VS)

∂θ = 0. Therefore, in this case, the gradient stemming from our
term has no effect on the current update of the network parameters. Now, suppose without loss of
generality that the current set of parameters θ corresponds to VS < a, which means the current target
region is smaller than its lower bound a. In this case of constraint violation, term (a− VS) is positive
and, therefore, the first line of (4) performs a gradient ascent step on softmax outputs, increasing Sp.
This makes sense because it increases the size of the current region, VS , so as to satisfy the constraint.
The case VS > b has a similar interpretation.

Figure 1: Illustration of our differentiable loss for imposing soft size constraints on the target region.

The next section details the dataset, the weak annotations and our implementation. Then, we report
comprehensive evaluations of the effect of our constrained-CNN losses on segmentation performance.
We also report comparisons to the Lagrangian-based constrained CNN method in [17] and to the fully
supervised setting.

3The code can be found athttps://github.com/LIVIAETS/SizeLoss_WSS
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3 Experiments

3.1 Dataset

Our experiments focused on left ventricular endocardium segmentation. We used the training set from
the publicly available data of the 2017 ACDC Challenge4. This set consists of 100 cine magnetic
resonance (MR) exams covering well defined pathologies: dilated cardiomyopathy, hypertrophic
cardiomyopathy, myocardial infarction with altered left ventricular ejection fraction and abnormal
right ventricle. It also included normal subjects. The exams were acquired in breath-hold with a
retrospective or prospective gating and a SSFP sequence in 2-chambers, 4-chambers and in short-axis
orientations. A series of short-axis slices cover the LV from the base to the apex, with a thickness of
5 to 8 mm and an inter-slice gap of 5 mm. The spatial resolution goes from 0.83 to 1.75 mm2/pixel.

For all the experiments, we employed the same 75 exams for training and the remaining 25 for
validation. To increase the variability of the data, we augmented the dataset by randomly rotating,
flipping, mirroring and scaling the images.

3.2 Weakly-annotated labels

To generate the weak labels, we employed binary erosion on the fully annotations with a kernel of
size 10×10. If the resulted label disappeared, we repeated the operation with a smaller kernel (i.e.,
7×7) until we get a small contour. Thus, the total number of annotated pixels represented the 0.1% of
the labeled pixels in the fully supervised scenario. Figure 2 depicts some examples of fully annotated
images and the corresponding weak labels.

Figure 2: Examples of different levels of supervision. In the fully labeled images (top), all pixels
are annotated, with red depicting the background and green the object of interest). In the weakly
supervised cases (bottom), only the labels of the green pixels are known. The images were cropped
for a better visualization of the weak labels. The original images are of size 256 × 256 pixels.

To compute lower and upper bounds on the size of the target region, we used the manual segmentation
of a single subject. Specifically, we computed the minimum and maximum values of the size of left
ventricular endocardium over all the slices, and multiplied by a factor of 0.9 and 1.1 the minimum
and maximum value, respectively, to account for size variations across exams.

3.3 Several levels of supervision

Training models with diverse levels of supervision requires defining appropriate objectives for each
case. In this section, we introduce the different models, each with different levels of supervision.

4https://www.creatis.insa-lyon.fr/Challenge/acdc/
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First, we trained a segmentation network from weakly annotated images with no additional informa-
tion, which served as baseline. Training this model relies on computing the cross-entropy only on
labeled pixels, i.e., partial cross-entropy (CE). Then, we trained several models using the same weakly
annotated images with different levels of constraint supervision. First, similar to MIL scenarios, we
used image-tag priors by enforcing the presence or absence of a the target in a given training image,
as introduced earlier. This reduces to enforcing that the size of the predicted region is less or equal
to 0 if the target is absent from the image, or larger than 0 otherwise. Afterwards, we imposed an
upper-bound constraint on the size of the target when the latter is present in the image. In this case, a
in Eqs. (3) and (4) is set equal to 0. Thus, the CNN is constrained to generate segmentations whose
sizes must be below an upper bound b. If the target is not present on the image, we set the upper
bound b equal to 0, similarly to the MIL case for suppression constraints.

Finally, we imposed both upper- and lower-bound constraints on the size of the target region. Forward
and backward passes are defined by Eqs. (3) and (4), whith a and b computed from a single fully
annotated subject, a described in Section 3.2. The lower and upper bounds were set equal to 98
and 1723 pixels, respectively. In all these cases, the partial cross-entropy of annotated pixels and
the proposed constrained-CNN losses are jointly minimized. Finally, we report the full-supervision
performance, where class labels (i.e., endocardium and background) are known for every pixel during
training, and were used in a sum of per-pixel cross-entropy.

The Lagrangian proposals in [17] reuse the same network and loss function as the fully-supervised
setting. At each iteration, the method alternates two steps. First, it synthesizes a ground truth Ỹ with
projected gradient ascent (PGA) over the dual variables, with the network parameters fixed. Then, for
fixed Ỹ , the cross-entropy between Ỹ and S is optimized as in standard CNN training. We found
that limiting the number of iterations for the PGA to 500 (instead of the original 3000) saved time
without impacting the results. We used the same bounds as in the proposed direct losses.

3.4 Training and implementation details

For all the experiments, we used ENet [15], as it has shown a good trade-off between accuracy and
inference time. Nevertheless, the proposed loss is general and can be used in conjunction with any
CNN. The network is trained from scratch by employing Adam optimizer and a batch size of 1.
The initial learning rate was set to 5×10−3 and decreased by 2 after 100 epochs. The weight of
our loss in (2) was empirically set to 1×10−2. The input images are of size 256 × 256 pixels. We
computed the common Dice similarity coefficient (DSC) to compare the different models. We used
a combination of PyTorch [16] and NumPy for our implementations, and ran the experiments on a
machine equipped with a NVIDIA GTX 1080 Ti GPU (11GBs of memory). The code is available at
https://github.com/LIVIAETS/SizeLoss_WSS.

4 Results

This section reports our results. First, in Sec. 4.1, we evaluate the impact of including different losses
during training in a weakly supervised setting. Then, in Sec. 4.2, we juxtapose the performances
of our direct loss to the iterative Lagrangian proposals [17], showing that our simple method yields
substantial improvements over [17] in the same weakly supervised settings. We also provide the
results for the fully supervised setting in Sec. 4.3. We further provide qualitative results in Sec. 4.4.
Finally, we compare the different learning strategies in terms of efficiency (Sec. 4.5), showing that
our direct constrained-CNN loss does not add to the training time, unlike the Lagrangian method in
[? ].

4.1 Weakly supervised segmentation with size loss

Table 1 reports the results on the validation set for all the models trained with both the Lagrangian
proposals in [17] and our direct loss. As expected, using the partial cross entropy with a fraction of
the labeled endocardium pixels yielded poor results, with a mean DSC less than 0.10. Enforcing the
image-tag constraints, as in the MIL scenarios, increased substantially the DSC to a value of 0.7122.
More interestingly, we observed that constraining the CNN predictions with the proposed direct size
loss significantly increased the performances, as can be seen on both Table 1 and Fig 3. Imposing both
lower and upper bounds on the size of the predicted region yielded the best performance. Specifically,
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if we use only an upper bound b on region size, we achieve a mean DSC value of 0.8189, whereas if
a lower bound a is also considered, mean DSC increases up to 0.8415.

Table 1: Segmentation results with different levels of supervision.
Model Method DSC (Val)

Weakly
supervised

Partial CE 0.0721
CE + Tags Lagrangian Proposals [17] 0.6157
Partial CE + Tags Direct loss (Ours) 0.7122
CE + Tags + Size* Lagrangian Proposals [17] 0.6175
Partial CE + Tags + Size* Direct loss (Ours) 0.8189
CE + Tags + Size** Lagrangian Proposals [17] 0.6526
Partial CE + Tags + Size** Direct loss (Ours) 0.8415

Fully
supervised Cross-entropy 0.9284

*Upper bound / ** Lower and upper bounds

Figure 3: Evolution of the DSC on validation samples for the weakly supervised learning models and
strategies analyzed, as well as for the full-supervision setting. We plot the evolution when using only
image tags and when adding bounds on the size of the prediction.

4.2 Implicit loss against segmentation proposals

In this section, we juxtapose our direct constrained-CNN loss to the Lagrangian proposals in [17].
From Table 1 and Fig. 3 we observe that, for all the models of weak supervision, our direct loss
outperformed substantially the Lagrangian proposals [17]. First, we observed that, for embedding
image tags as suppression/presence constraints, Lagrangian proposals achieved a mean DSC of
0.6157, while our direct loss yielded an increase of 15%, with a mean DSC equal to 0.7122. This
difference becomes more significant when adding constraints in the form of upper/lower bound on
the size of target region. In these cases, our direct loss outperformed Lagrangian proposals by a
margin of 30%. Another observation from Fig. 3 is that training with Lagrangian proposals typically
achieves its best performance faster than the proposed loss term, but does not improve after a few
epochs. More importantly, one can see that the DSC evolution for Lagrangian proposals is less stable
than with our direct loss.

4.3 Pixel-level annotations

Finally, we compared the weakly supervised strategies to a network trained on fully labeled images.
Training the network with strong pixel-level annotations achieved a mean DSC of 0.9284 on the
validation set. This result represents an increase of a 10% with respect to the best proposed method.
Nevertheless, it is worth mentioning that the performance achieved by our weakly supervised learning
approach with size loss constraints approaches the fully-supervised setting with only 0.1 % of the
annotated ground-truth pixels. This indicates that the current work has the potential to bridge the gap
between fully and weakly supervised learning for semantic medical image segmentation.
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4.4 Qualitative results

To get some intuition about the different learning strategies and their effects on the segmentation, we
visualize some results in Fig. 4. Particularly, the model containing the partial cross-entropy and size
loss constraints with lower and upper bounds is investigated. For the three learning methods, i.e.,
fully supervised, Lagrangian proposals and our direct loss, we selected the best performing model
to display these images. Even though generating proposals during training actually improved the
segmentation performance compared to the partial cross-entropy (Table 1), looking at the examples
in Fig. 4 (third column), we can observe that these segmentations are far from being satisfactory.
Nevertheless, integrating the proposed size-constrained loss directly in the back-propagation increases
substantially the accuracy of the network, as can be seen in the last column of Fig. 4. An interesting
observation is that, in some cases (last row), weakly supervised learning produces more reliable
segmentations than training with full supervision.

Figure 4: Qualitative comparison of the different methods. Each row represents a 2D slice from
different scans. We can easily see that our method achieves results comparable to full supervision.
(Best viewed in colors)
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4.5 Efficiency

In this section, we compare the several learning approaches in terms of efficiency (Table 2). Both the
weakly supervised partial cross-entropy and the fully supervised model need to compute only one
loss per pass. This is reflected in the lowest training times reported in the table. Including the size
loss does not add to the computational time, as can be seen in these results. As expected, the iterative
process introduced by [17] at each forward pass adds a non-negligible overhead during training. To
generate their synthetic ground truth, they need to optimize the Lagrangian function with respect
to its dual variables (Lagrange multipliers of the constraints), which requires alternating between
training a CNN and Lagrangian-dual optimization. Even in the simplest optimization case (with only
one constraint), where optimization over the dual variable converges rapidly, the method still adds a
few milliseconds at each iteration.

Table 2: Training times for the diverse supervised learning strategies, using tags and size constraints.
Method Training time (ms/image)
Partial CE 10
Direct loss 10
Lagragian proposals 15
Fully supervised 10

5 Conclusion

We presented a novel loss function for weakly supervised image segmentation, which despite its
simplicity reach almost full supervision performances. We perform significantly better than the other
proposed methods for this task, achieving 90% of full supervision performance with only 0.1% of
annotated pixels, while having negligible computation overhead. While our experiments focused on
basic linear constraints such as the target-region size and image tags, our direct constrained-CNN
loss can be easily extended to other non-linear constraints, e.g., invariant shape moments [5] or
other region statistics [8]. Therefore, it has the potential to close the gap between weakly and fully
supervised learning in semantic medical image segmentation.
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