

000 BRAIN-MIMETIC STAGED REPRESENTATION LEARN- 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053

BRAIN-MIMETIC STAGED REPRESENTATION LEARNING WITH DISENTANGLED COARSE AND FINE SEMANTIC FOR EEG VISUAL DECODING

Anonymous authors

Paper under double-blind review

ABSTRACT

Decoding visual information from electroencephalography (EEG) signals remains a fundamental challenge in brain–computer interfaces and medical rehabilitation. Most existing methods focus on refining EEG encoders to obtain stronger EEG embeddings for alignment with visual features, but they largely overlook that human visual perception is inherently staged, progressing from low-level feature detection to high-level semantic abstraction and ultimately to information integration. Inspired by neuroscientific theories of staged vision, we propose a novel EEG representation learning framework that explicitly models the three stages of brain visual processing: Phase-I for low-level visual representation learning, Phase-II for high-level semantic representation learning, and Phase-III for integrative information fusion. To further enhance semantic modelling, we propose (i) a multimodal dual-level semantic learning mechanism, which disentangles coarse label-level semantics and fine image-level semantics from visual EEG channels, and (ii) a new concept of virtual EEG channels, which expand the representational capacity of EEG signals. Extensive experiments on the largest benchmark dataset demonstrate significant improvements over state-of-the-art methods under both subject-dependent and subject-independent zero-shot settings, confirming both robustness and generalisability of our method. By explicitly modelling staged brain-mimetic processing and dual-level enriched semantic representations, our work not only advances decoding performance but also provides a biologically grounded perspective for future EEG-based brain decoding research.

1 INTRODUCTION

Decoding visual information from electroencephalography (EEG) signals is a central task in brain–computer interface research (Wilson et al., 2024; Ferrante et al., 2024b), with broad implications for neurorehabilitation (Zhang et al., 2025c), visual cognition (De La Torre-Ortiz & Ruotsalo, 2024), and brain-inspired artificial intelligence (Pereira et al., 2018; Ding et al., 2025). However, this task remains highly challenging due to the intrinsic low signal-to-noise ratio, severe nonstationarity, and complex spatiotemporal dynamics of EEG signals, which hinder the stable and accurate recovery of visual representations (Guo et al., 2025; Liu et al., 2025; Mentzelopoulos et al., 2024).

Nearly all existing methods address this challenge by refining EEG encoders to extract stronger global embeddings for alignment with visual features. Some methods emphasize noise suppression or representation enrichment, such as uncertainty-aware blur priors for suppressing noise (Wu et al., 2025), multimodal feature integration (Zhang et al., 2025b), wavelet-based contrastive learning for category-aware decoding (Zhang et al., 2025a), and diffusion-driven generative modelling (Li et al., 2024). Others extend this line of work by improving the semantic consistency of global embeddings through tailored loss functions (Chen et al., 2024), employing multimodal graph representations (Du et al., 2023), or aligning EEG embeddings with large-scale vision-language models (Ferrante et al., 2024a; Song et al., 2025). While these methods have advanced the field, they predominantly formulate EEG-based visual decoding as a global embedding alignment problem, thereby failing to capture the inherently staged nature of human visual processing. Consequently, they also neglect the potential of staged EEG embedding learning and disentangled dual-level semantic modelling.

054 Neuroscience provides compelling evidence that human visual perception unfolds progressively and
 055 hierarchically. Felleman & Van Essen (1991) demonstrated that the primate visual cortex follows
 056 a distributed hierarchical structure, while Goodale & Milner (1992) proposed the influential two-
 057 visual-pathway hypothesis, distinguishing the ventral (“what”) and dorsal (“where/how”) streams.
 058 More recent studies confirmed that category-related visual information emerges gradually in the hu-
 059 man brain (Graumann et al., 2022), and event-related potential (ERP) research has shown that EEG
 060 signals reflect distinct cognitive functions across different phases (Kappenman et al., 2021; Xu et al.,
 061 2021). Furthermore, Kroczeck et al. (2019) revealed that certain EEG channels are specifically en-
 062 gaged in semantic processing during language comprehension but not directly responsive to visual
 063 stimuli, suggesting the need for enriched channel mechanisms for visual semantic modelling. Col-
 064 lectively, these findings strongly indicate that EEG-based visual decoding should incorporate staged
 065 and multi-level semantic representation learning rather than relying solely on global embeddings.
 066

067 Inspired by the above neuroscientific theories, and to address the limitations of existing methods, we
 068 propose a brain-mimetic staged representation learning framework for EEG-based visual decoding.
 069 Our framework explicitly models three phases that mirror neural visual processing: Phase-I for low-
 070 level visual representation learning, Phase-II for high-level semantic representation learning, and
 071 Phase-III for integrative information fusion. To further enhance semantic modelling, we introduce
 072 two key innovations: (i) a multimodal dual-level semantic learning mechanism that disentangles
 073 coarse label-level semantics and fine image-level semantics from visual EEG channels; and (ii) the
 074 novel concept of virtual EEG channels, which expand the semantic representational capacity of EEG
 075 signals and improve cross-modal alignment.
 076

077 Extensive experiments on the largest-scale benchmark dataset validate the effectiveness of our
 078 framework. Unlike existing methods that rely only on global embedding alignment, our method
 079 achieves significant improvements under both subject-dependent and subject-independent zero-shot
 080 settings, demonstrating robustness and generalisation across individuals. By bridging neuroscientific
 081 theories with advanced representation learning, this work provides a new perspective for EEG-based
 082 brain decoding and opens avenues for more biologically grounded, interpretable, and generalisable
 083 BCI systems. The main contributions are summarised as follows:
 084

- 085 • **Brain-mimetic staged representative learning framework.** We propose a novel brain-
 086 decoding paradigm that draws on neuroscientific theories of staged vision. The framework
 087 explicitly stages learning into low-level visual perception, high-level semantic abstraction,
 088 and integrative information fusion.
- 089 • **Multimodal dual-level semantic learning mechanism.** We design a novel semantic
 090 learning mechanism that disentangles high-level semantics from EEG visual channels into
 091 coarse label-level semantics and fine image-level semantics, capturing richer neural dy-
 092 namics beyond traditional global embeddings.
- 093 • **Virtual EEG channels.** Inspired by neuroscientific evidence of channel specialization, we
 094 introduce a novel concept of virtual EEG channels to expand the semantic representational
 095 capacity of EEG signals and improve cross-modal alignment. Extensive experiments and
 096 ablations validate their effectiveness, demonstrating strong ability to capture coarse seman-
 097 tics in the visual domain.

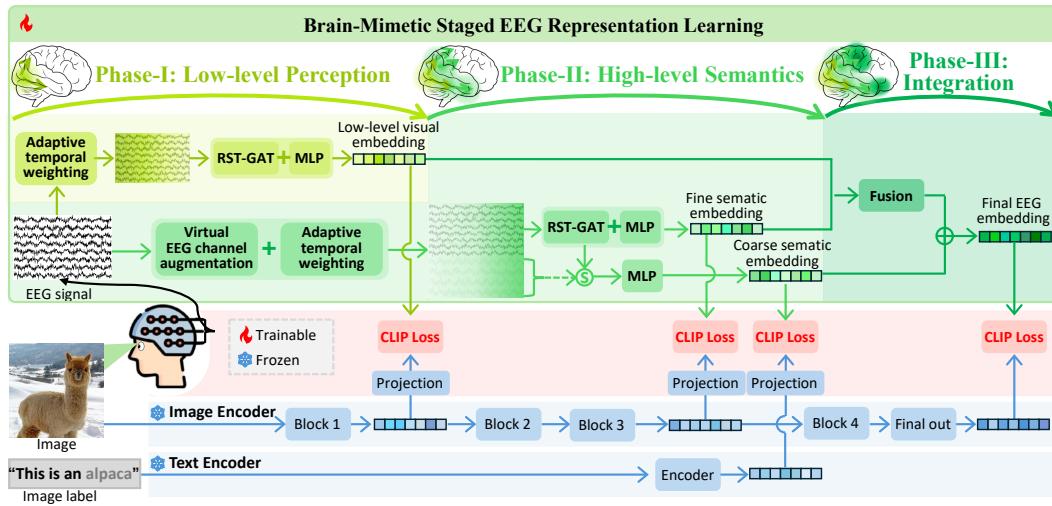
098 2 RELATED WORK

099 Recent advances in EEG-based visual decoding have been dominated by efforts to refine EEG en-
 100 coders in order to obtain stronger embeddings for EEG-vision alignment. Wu et al. (2025) intro-
 101 duced an uncertainty-aware blur prior to suppress noise and improve robustness, while Zhang et al.
 102 (2025b) incorporated multimodal priors such as texture and depth to enhance semantic alignment.
 103 Zhang et al. (2025a) further leveraged wavelet transforms with contrastive loss to boost category
 104 discrimination, and Li et al. (2024) employed guided diffusion models to strengthen EEG-vision
 105 correspondence. Other encoder-centric strategies include classifier-based recognition Song et al.
 106 (2024), semantic consistency losses Chen et al. (2024), and multimodal graph representations Du
 107 et al. (2023), all of which seek to enrich EEG embeddings or reduce modality gaps. Some other
 108 studies have extended this encoder-refinement paradigm with external priors or auxiliary supervi-
 109 sion. Ferrante et al. (2024a) distilled knowledge from CLIP to inject vision-language semantics into
 110

108 EEG decoding, Rajabi et al. (2025) proposed human-aligned priors for biologically plausible mappings, and Ma & Ruotsalo (2024) contrasted EEG responses with visual saliency. Others explored
 109 3D spatiotemporal-geometric modelling Xiao et al. (2025), language-guided decoding Song et al.
 110 (2025), or entropy-based discriminative training Zeng et al. (2023). Despite these innovations, all
 111 existing methods share a fundamental limitation: they treat EEG decoding as a one-shot global em-
 112 bedding alignment problem. As such, they fail to capture the staged dynamics of visual perception
 113 and neglect the potential of staged EEG embedding learning and disentangled dual-level semantic
 114 modelling.
 115

116 In contrast, our work introduces a brain-mimetic staged representation learning framework that mir-
 117 rors the progression of human visual perception from low-level features to high-level semantics and
 118 to integrative fusion. We further enrich semantic modelling through a multimodal dual-level disen-
 119 tanglement mechanism and expand EEG’s representational capacity with the novel concept of virtual
 120 EEG channels. These innovations enable us to more faithfully capture neural dynamics and deliver
 121 substantial improvements in both subject-dependent and subject-independent zero-shot decoding.
 122

123 3 PROPOSED BRAIN-MIMETIC DECODING PARADIGM



143 Figure 1: Overview of our proposed brain-mimetic staged EEG representation learning framework.
 144 It consists of three phases inspired by neuroscientific theories of progressive and hierarchical vision.
Phase-I learns low-level visual embeddings from 17 visual-related EEG channels with adaptive
 145 temporal weighting and aligns them with image low-level features. **Phase-II** extends the 17 visual
 146 channels with virtual EEG channels, applies adaptive temporal weighting, and learns high-level seman-
 147 tics that are disentangled into coarse and fine levels. Coarse semantics capture abstract categor-
 148 ical distinctions and are derived from the virtual channels, while fine semantics reflect more specific
 149 and detailed representations and are derived from all visual and virtual channels. Coarse semantics
 150 are aligned with text (i.e., image label) features, and fine semantics are aligned with high-level image
 151 features. **Phase-III** integrates low-level visual, fine, and coarse semantic embeddings into a unified
 152 EEG representation, which is aligned with the final image embeddings. The entire framework is
 153 trained with multi-level CLIP losses to ensure consistent cross-modal alignment across all stages.
 154

155 Most existing methods for EEG-based visual decoding primarily focus on refining EEG encoders to
 156 obtain stronger embeddings for alignment with visual features. However, they largely overlook that
 157 human visual perception is inherently staged, progressing from early low-level feature detection to
 158 higher-level semantic abstraction and ultimately to integrative information fusion. Neuroscientific
 159 studies have consistently demonstrated such staged processing in the visual cortex (Felleman &
 160 Van Essen, 1991; Goodale & Milner, 1992; Kappenman et al., 2021; Xu et al., 2021). Motivated
 161 by these findings, we propose a brain-mimetic decoding framework that explicitly models the three
 162 stages of neural visual processing: **Phase-I** for low-level visual representation learning, **Phase-II**

162 for high-level semantic representation learning, and **Phase-III** for integrative information fusion. To
 163 further enrich semantic modelling, we introduce two key innovations: (i) a **multimodal dual-level**
 164 **semantic learning mechanism**, which disentangles coarse label-level semantics and fine image-
 165 level semantics from visual EEG channels; and (ii) the new concept of **virtual EEG channels**,
 166 which expand the representational capacity of EEG signals and enhance cross-modal alignment.
 167

168 3.1 PHASE-I: LOW-LEVEL VISUAL REPRESENTATION LEARNING

170 In **Phase-I**, our goal is to learn low-level visual representations from EEG signals and align them
 171 with low-level image features. Image features are obtained from the output of `block1` in ResNet50.
 172 For EEG, we selectively use 17 channels that are primarily associated with visual responses¹ (Kap-
 173 penman et al., 2021). In addition, because low-level visual responses are concentrated in early tem-
 174 poral windows (Goodale & Milner, 1992; Graumann et al., 2022), we design a learnable adaptive
 175 temporal weighting mechanism to emphasize early EEG signals during representation learning.
 176

177 Formally, let (e_v, v) denote a batch of EEG-image pairs, where $e_v \in \mathbb{R}^{B \times C_1 \times T}$ represents B EEG
 178 samples with $C_1 = 17$ channels and T time steps, and $v \in \mathbb{V}$ denotes the corresponding images.
 179 A learnable temporal weight $w_t \in \mathbb{R}^{1 \times T}$ is applied to adaptively emphasize different temporal seg-
 180 ments. For low-level EEG visual representation learning, we design a **Residual SpatioTemporal**
 181 **Graph Attention Networks (RST-GAT)**, which incorporates residual connections and spatiotem-
 182 poral attention into GAT (Veličković et al., 2018) and MLP, to encode the low-level EEG visual
 183 representation $e_1 \in \mathbb{R}^{B \times 256}$. This encoding process is defined as:
 184

$$e_1 = f_{\text{MLP}}(f_{\text{ST-GAT}}(e_v \otimes w_t + e_v) + e_v), \quad (1)$$

185 where \otimes denotes element-wise multiplication with broadcasting along the channel dimension.
 186 Meanwhile, the low-level image feature $v_1 \in \mathbb{R}^{B \times 256}$ is obtained by projecting the ResNet50-
 187 `block1` output through an MLP. Finally, we employ a CLIP loss to encourage alignment between
 188 the low-level EEG embeddings and the corresponding low-level image features:
 189

$$\mathcal{L}_{\text{CLIP}}^I = \text{CLIP_LOSS}(e_1, v_1). \quad (2)$$

191 3.2 PHASE-II: HIGH-LEVEL SEMANTIC REPRESENTATION LEARNING

193 **Phase-II** aims to mimic the mid-stage of neural signal processing, where the brain gradually forms
 194 and strengthens semantic representations. Our goal is to learn high-level semantic representations
 195 from EEG signals. To capture their hierarchical nature, we disentangle them into two levels. **Coarse**
 196 **semantics** capture abstract categorical distinctions and are aligned with text features derived from
 197 class labels. **Fine semantics** capture more specific and detailed representations and are aligned
 198 with high-level image features. This dual-level design allows the model to reflect both abstract and
 199 detailed semantic processing. To support this mechanism, we introduce **virtual EEG channels**.
 200 These channels expand the representational capacity of EEG signals and provide a stronger basis for
 201 disentangling coarse and fine semantics.
 202

203 3.2.1 VIRTUAL EEG CHANNEL AUGMENTATION

204 Neuroscientific studies show that a subset of EEG channels (12 in total²) are selectively engaged in
 205 semantic processing during language comprehension (Kroczeck et al., 2019). However, these chan-
 206 nels are not responsive to visual stimuli like images. Inspired by this evidence, we propose *virtual*
 207 *EEG channels* to enhance semantic modeling in the visual domain. Analogous to the 12 language-
 208 related semantic channels, we construct 12 virtual channels, denoted as $e_{\text{virtual}} \in \mathbb{R}^{B \times 12 \times T}$, which
 209 are learned and enriched within the proposed *Dual-Level Semantic Learning* module (Section 3.2.2).
 210 Ablation experiments (Section 4.5) confirm that these virtual channels improve the EEG repres-
 211 entation learning and outperform the real language-related channels, demonstrating their ability to
 212 capture semantic information from EEG signals more effectively.
 213

¹17 channels primarily associated with visual responses: O1, O2, Oz, PO3, PO4, PO7, PO8, POz, P3, P4, P5, P6, P7, P8, Pz, CPz, and Iz (Kappenman et al., 2021).

²Semantic-related channels for language comprehension: Fp1, F3, F7, FC5, FC1, C3, T7, CP5, P7, FT7, F5, TP7 (Kroczeck et al., 2019; Gifford et al., 2022).

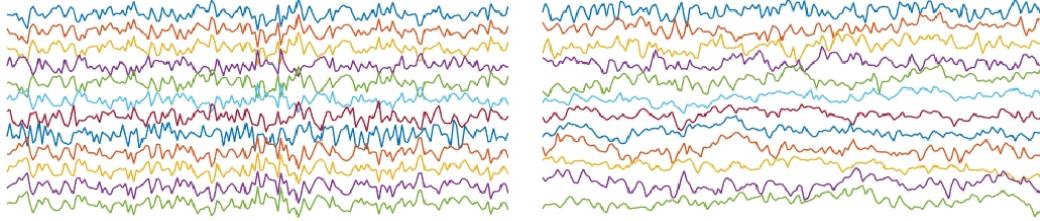
216 3.2.2 MULTIMODAL DUAL-LEVEL SEMANTIC LEARNING MECHANISM
217

218 In **Phase-II**, our goal is to model high-level semantics from EEG signals. To better reflect the hi-
219 erarchical nature of semantic processing, we design a **multimodal dual-level semantic learning**
220 **mechanism**. The mechanism disentangles EEG-based semantic representations into two levels.
221 **Coarse semantics** capture abstract categorical distinctions, are derived from the virtual channels,
222 and are aligned with text features extracted from image class labels. **Fine semantics** capture spe-
223 cific and detailed representations, are derived from both real and virtual channels, and are aligned
224 with mid- to high-level image features. This multimodal dual-level alignment enables the model to
225 capture richer semantic dynamics beyond global embeddings, thereby enhancing semantic modeling
226 capacity. Since semantic processing in the brain mainly occurs in the mid-to-late temporal stages
227 (Kappenman et al., 2021; Felleman & Van Essen, 1991; Xu et al., 2021), we also design a learnable
228 adaptive temporal weighting mechanism (similar to Phase-I) that emphasizes EEG signals within
229 the corresponding time window.

230 Formally, after augmentation, the EEG signals are expanded to 29 channels, denoted as $\ddot{e} =$
231 $[e_v | e_{virtual}] \in \mathbb{R}^{B \times 29 \times T}$, where $e_v \in \mathbb{R}^{B \times 17 \times T}$ corresponds to the 17 visual-related EEG channels
232 (identical to those used in Phase-I, Section 3.1) and $e_{virtual} \in \mathbb{R}^{B \times 12 \times T}$ denotes the proposed 12
233 virtual EEG channels. An RST-GAT encoder, similar to the one in Phase-I, is deployed to facilitate
234 the encoding process, defined as:

$$235 \ddot{e}_2 = f_{\text{ST-GAT}}(\ddot{e} \otimes \ddot{w}_t + \ddot{e}) + \ddot{e} = [\ddot{e}_v | \ddot{e}_{virtual}], \quad (3)$$

236 where \otimes denotes element-wise multiplication with broadcasting along the channel dimension and
237 $\ddot{w}_t \in \mathbb{R}^{1 \times T}$ represents the learnable temporal weight. $\ddot{e}_v \in \mathbb{R}^{B \times 17 \times T}$ corresponds to fine EEG
238 semantics, while $\ddot{e}_{virtual} \in \mathbb{R}^{B \times 12 \times T}$ corresponds to coarse EEG semantics.



239
240
241
242
243
244
245
246
247 Figure 2: Visual comparison of coarse EEG semantic features: the left panel shows the features
248 ($\ddot{e}_{virtual}$) learned using the proposed 12 virtual EEG channels, while the right panel shows the
249 features learned using 12 real language-related EEG channels in the ablation study **xC-Ori-12** (Sec-
250 tion 4.5). The ablation experiments demonstrate that the virtual channels enhance EEG repres-
251 entation learning and achieve superior performance compared to the original language-related channels,
252 obtaining a 4.7 point improvement from 50.3% to 55.0%.

253 For the coarse EEG semantics, $\ddot{e}_{virtual}$ is first combined with the learnable temporal weight \ddot{w}_t and
254 then passed through an MLP to obtain the coarse semantic representation:

$$255 \hat{e}_{coarse} = f_{\text{MLP}}(\ddot{e}_{virtual} \circledast \ddot{w}_t), \quad (4)$$

256 where \circledast denotes weighted temporal aggregation, implemented as batch-wise matrix multiplication
257 along the temporal dimension. The resulting coarse semantic $\hat{e}_{coarse} \in \mathbb{R}^{B \times 1024}$ is aligned with
258 coarse text semantics $t_{coarse} \in \mathbb{R}^{B \times 1024}$ extracted from the pretrained CLIP text encoder (Ilharco
259 et al., 2021). The corresponding alignment loss is:

$$260 \mathcal{L}_{\text{CLIP-coarse}}^{II} = \text{CLIP LOSS}(\hat{e}_{coarse}, t_{coarse}). \quad (5)$$

261 For the fine EEG semantics, \ddot{e}_2 is projected through an MLP to produce the fine semantic repres-
262 entation $\hat{e}_{fine} \in \mathbb{R}^{B \times 1024}$:

$$263 \hat{e}_{fine} = f_{\text{MLP}}(\ddot{e}_2), \quad (6)$$

264 which is aligned with fine image semantics $v_{fine} \in \mathbb{R}^{B \times 1024}$ obtained from the projected output of
265 ResNet50-block3. The corresponding alignment loss is:

$$266 \mathcal{L}_{\text{CLIP-fine}}^{II} = \text{CLIP LOSS}(\hat{e}_{fine}, v_{fine}). \quad (7)$$

270 3.3 PHASE-III: INTEGRATIVE INFORMATION FUSION
271

272 **Phase-III** performs integrative information fusion, where low-level visual features from Phase-I and
273 high-level semantic features from Phase-II are combined into a unified EEG representation. This is
274 inspired by neuroscientific evidence that high-level cognition arises from the progressive integration
275 of multiple information pathways Felleman & Van Essen (1991); Graumann et al. (2022); Goodale
276 & Milner (1992). Specifically, we first fuse the low-level visual feature e_1 with the fine semantic
277 representation \hat{e}_{fine} , and then integrate the coarse semantic representation \hat{e}_{coarse} . The fused EEG
278 representation is finally aligned with the final image embedding extracted by ResNet50.

279 Formally, the integrative information fusion is computed as:

$$280 \quad e_{\text{EEG}} = f_{\text{MLP}}([e_1 | \hat{e}_{\text{fine}}]) + \hat{e}_{\text{coarse}}, \quad (8)$$

282 where $[\cdot | \cdot]$ denotes concatenation. The resulting EEG representation $e_{\text{EEG}} \in \mathbb{R}^{B \times 1024}$ is aligned
283 with the final image embedding $v_{\text{image}} \in \mathbb{R}^{B \times 1024}$ through:

$$284 \quad \mathcal{L}_{\text{CLIP}}^{III} = \text{CLIP_LOSS}(e_{\text{EEG}}, v_{\text{Image}}). \quad (9)$$

286 The overall training objective is defined as the weighted sum of the losses from the three phases:

$$288 \quad \mathcal{L}_{\text{total}} = \alpha_1 \mathcal{L}_{\text{CLIP}}^I + \alpha_2 (\mathcal{L}_{\text{CLIP-coarse}}^{II} + \mathcal{L}_{\text{CLIP-fine}}^{II}) + \alpha_3 \mathcal{L}_{\text{CLIP}}^{III}, \quad (10)$$

290 where $\alpha_1, \alpha_2, \alpha_3$ balance the three phases and are empirically set to 0.1, 0.2, and 0.5, respectively,
291 in our experiments.

292 4 EXPERIMENTS
293294 4.1 BENCHMARK DATASET
295

296 The benchmark dataset THINGS-EEG (Gifford et al., 2022) was employed for all experiments.
297 THINGS-EEG is currently the largest publicly available EEG dataset for brain decoding, and it has
298 become a widely recognised benchmark in recent top-tier conference and journal publications, par-
299 ticularly in the context of zero-shot learning settings. The dataset was designed to capture rich and
300 generalisable neural representations of visual-semantic concepts, thereby providing a challenging
301 and comprehensive testbed for evaluating model generalisation across subjects and unseen cate-
302 gories. Data were collected using a Rapid Serial Visual Presentation paradigm, in which visual
303 stimuli were presented in rapid succession while EEG signals were recorded. The dataset contains
304 neural responses from 10 participants, each exposed to a broad spectrum of object categories en-
305 compassing diverse visual and semantic domains. The **training set** consists of 1,654 object classes,
306 each represented by 10 different images, with each image presented four times in a randomised se-
307 quence. This yields a total of 66,160 EEG samples. The **test set** contains 200 held-out classes, each
308 represented by a single image repeated 80 times, resulting in 16,000 EEG samples. All stimuli were
309 presented in a randomised order to reduce habituation and expectancy effects.

310 Two experimental settings are used in the experiments:

- 311 1) **Subject-dependent 200-way zero-shot classification:** The model is trained on the training set
312 and evaluated on the test set of the same subject.
- 313 2) **Subject-independent 200-way zero-shot classification:** The model is trained entirely on the
314 training sets of other subjects and evaluated on the test set of the target subject.

315 4.2 BASELINES AND EVALUATION METRICS
316

317 We compare our method against seven state-of-the-art EEG visual decoding approaches published
318 in top-tier venues over the past two years, including Wu et al. (2025) (CVPR), Zhang et al. (2025b)
319 (AAAI), Zhang et al. (2025a) (IJCAI), Li et al. (2024) (NeurIPS), Song et al. (2024) (ICLR), Chen
320 et al. (2024) (arXiv), Du et al. (2023) (TPAMI). These methods have advanced the field by intro-
321 ducing priors, multimodal cues, or consistency losses, yet they generally share key limitations: they
322 often emphasise global alignment while overlooking the staged nature of visual processing, and lack
323 mechanisms to integrate low-level, semantic, and fused representations in a biologically informed
manner (more discussion in the Related Work, Section 2). Our method addresses these gaps through

324 a brain-inspired three-phase framework, channel-guided representative learning, and the introduction
 325 of virtual channels, enabling more accurate and generalisable EEG-to-vision decoding. Since all
 326 of these methods have been evaluated on the same benchmark dataset THINGS-EEG under the two
 327 experimental settings and have reported results accordingly, we also follow this protocol and adopt
 328 Top-1 and Top-5 classification accuracy as the primary evaluation metrics to ensure consistency and
 329 provide a comprehensive assessment of model performance.

330 4.3 KEY IMPLEMENTATION DETAILS

332 All experiments were carried out on a single NVIDIA GeForce RTX 4090 GPU, with the framework
 333 implemented in PyTorch. For EEG signal preprocessing, we follow the standard pipeline described
 334 in Song et al. (2024); Wu et al. (2025). For visual feature extraction, we employ the pretrained
 335 Open-CLIP ResNet50 model (Ilharco et al., 2021), keeping its parameters fixed throughout training.
 336 Model optimization is performed using the AdamW optimizer with a learning rate of 0.0001 and a
 337 batch size of 1024. Training is conducted for 40 epochs, with the random seed set to 42 to ensure
 338 reproducibility. The same hyperparameter configuration is applied consistently across both subject-
 339 dependent and subject-independent experimental settings.

340 4.4 EXPERIMENTAL RESULTS

342 4.4.1 SUBJECT-DEPENDENT 200-WAY ZERO-SHOT EXPERIMENTS

344 Table 1 presents the 200-way zero-shot classification results under the subject-dependent setting.
 345 Our method achieves the best Top-1 accuracy on all 10 subjects, achieving an average of **55.0%**,
 346 which surpasses the strongest prior baseline (Wu et al. (2025) (CVPR), 50.9%) by **+4.1** absolute
 347 (**+8.1%** relative). The gains are consistent across subjects, with particularly large margins on Sub01
 348 (+7.3) and Sub09 (+7.4), indicating improved robustness for difficult participants. Compared with
 349 recent alignment-based models, e.g., Chen et al. (2024) (arXiv) (37.2%), Zhang et al. (2025a) (IJ-
 350 CAI) (33.4%), Zhang et al. (2025b) (AAAI) (35.6%), and Li et al. (2024) (NeurIPS) (28.5%), our
 351 approach improves the average Top-1 accuracy by **17.8-26.5** points, highlighting the effectiveness
 352 of staged learning and channel-level modeling beyond global embeddings. For Top-5 accuracy, our
 353 method also ranks first with an average of **84.2%**, exceeding Zhang et al. (2025b) (AAAI) (80.2%)
 354 and Wu et al. (2025) (CVPR) (79.7%) by **+4.0** and **+4.5** points, respectively (**+5-6%** relative). We
 355 obtain the best performance on 8/10 subjects and remain competitive on the remaining two (Sub01
 and Sub04), while consistently outperforming Wu et al. (2025) (CVPR) on all subjects.

356 Table 1: Subject-dependent Top-1 (top) and Top-5 (bottom) accuracy (%) in 200-way zero-shot.

358 Methods	Sub01	Sub02	Sub03	Sub04	Sub05	Sub06	Sub07	Sub08	Sub09	Sub10	Avg.
359 Du et al. (2023) (TPAMI)	6.1	4.9	5.6	5.0	4.0	6.0	6.5	8.8	4.3	7.0	5.8
360 Song et al. (2024) (ICLR)	13.2	13.5	14.5	20.6	10.1	16.5	17.0	22.9	15.4	17.4	16.1
361 Li et al. (2024) (NeurIPS)	25.6	22.0	25.0	31.4	12.9	21.3	30.5	38.8	34.4	29.1	28.5
362 Chen et al. (2024) (arXiv)	32.6	34.4	38.7	39.8	29.4	34.5	34.5	49.3	39.0	39.8	37.2
363 Zhang et al. (2025a) (IJCAI)	33.0	28.0	33.5	36.0	26.0	30.5	34.0	43.0	31.5	38.5	33.4
364 Zhang et al. (2025b) (AAAI)	31.4	31.4	38.2	40.4	24.4	34.8	34.7	48.1	37.4	35.6	35.6
365 Wu et al. (2025) (CVPR)	41.2	51.2	51.2	51.1	42.2	57.5	49.0	58.6	45.1	61.5	50.9
366 Ours	48.5	56.0	53.5	54.0	44.0	60.0	51.5	64.0	52.5	66.0	55.0
367 Du et al. (2023) (TPAMI)	17.9	14.9	17.4	15.1	13.4	18.2	20.4	23.7	14.0	19.7	17.5
368 Song et al. (2024) (ICLR)	39.5	40.3	42.7	52.7	31.5	44.0	42.1	56.1	41.6	45.8	43.6
369 Li et al. (2024) (NeurIPS)	60.4	54.5	62.4	60.9	43.0	51.1	61.5	72.0	51.5	63.5	60.4
370 Chen et al. (2024) (arXiv)	63.7	69.9	73.5	72.0	58.6	68.8	68.3	79.8	69.6	75.3	69.9
371 Zhang et al. (2025a) (IJCAI)	58.5	56.5	61.0	68.0	48.0	62.5	62.5	73.5	58.5	69.0	61.8
372 Zhang et al. (2025b) (AAAI)	79.7	77.8	85.7	85.8	66.3	78.8	81.0	88.6	79.4	79.3	80.2
373 Wu et al. (2025) (CVPR)	70.5	80.9	82.0	76.9	72.8	83.5	79.9	85.8	76.2	88.2	79.7
374 Ours	74.0	87.5	88.0	80.0	79.5	88.0	83.0	89.0	81.5	91.0	84.2

375 4.4.2 SUBJECT-INDEPENDENT 200-WAY ZERO-SHOT EXPERIMENTS

376 Table 2 presents the 200-way zero-shot classification results under the subject-independent setting
 377 (**Note**: the methods in Table 1, such as Chen et al. (2024) (arXiv), Zhang et al. (2025a) (IJCAI),

378 and Zhang et al. (2025b) (AAAI), did not report results for this setting). Our method achieves
 379 the best overall Top-1 accuracy of **13.2%**, outperforming the strongest baseline Wu et al. (2025)
 380 (CVPR) (12.4%) by **+0.8** points on average. Notably, our framework consistently surpasses all prior
 381 approaches on several subjects (e.g., Sub01, Sub02, Sub05, Sub06, and Sub10), and reaches parity
 382 with the best baseline on Sub09 and Sub04, demonstrating that the proposed staged learning and
 383 channel-level augmentation achieves superior generalization across unseen subjects. Compared with
 384 Li et al. (2024) (NeurIPS) (11.8%) and Song et al. (2024) (ICLR) (6.2%), our method improves Top-
 385 1 accuracy by **+1.4** and **+7.0** points, respectively, highlighting advances beyond global embedding
 386 alignment strategies. For Top-5 accuracy, our method achieves an average of **32.3%**, which is
 387 competitive with Li et al. (2024) (NeurIPS) (33.7%) and Wu et al. (2025) (CVPR) (33.4%), and
 388 substantially higher than Song et al. (2024) (ICLR) (21.4%) and Du et al. (2023) (TPAMI) (7.0%).
 389

390 **Discussion.** We note that subject-independent performance is naturally lower than subject-
 391 dependent performance, a gap that is well recognized in EEG research. EEG signals are highly
 392 identity-dependent, reflecting individual variability in brain anatomy, electrode placement, and cog-
 393 nitive processing, which introduces substantial inter-subject variability (Huang et al., 2023; Saha
 394 & Baumert, 2020; Wei & Ding, 2023). Consequently, methods that more faithfully mimic subject-
 395 specific neural learning patterns often excel in within-subject decoding but require larger adjust-
 396 ments when generalizing across unseen individuals. In contrast, less biologically grounded ap-
 397 proaches may appear less affected across subjects, yet this reflects weaker modeling of true neural
 398 dynamics rather than genuine robustness. Despite this inherent challenge, our framework still
 399 achieves the best average Top-1 accuracy among all baselines, and consistently delivers stable Top-1
 400 accuracy improvements across most subjects. This robustness confirms that our framework captures
 401 genuine neural dynamics, yielding not only superior within-subject decoding but also competitive
 402 advantages under the more demanding subject-independent setting.

402 **Table 2: Subject-independent Top-1 (top) and Top-5 (bottom) accuracy (%) in 200-way zero-shot.**

403 Methods	404 Sub01	404 Sub02	404 Sub03	404 Sub04	404 Sub05	404 Sub06	404 Sub07	404 Sub08	404 Sub09	404 Sub10	404 Avg.
405 Du et al. (2023) (TPAMI)	2.3	1.5	1.4	1.7	1.5	1.8	2.1	2.2	1.6	2.3	1.8
406 Song et al. (2024) (ICLR)	7.6	5.9	6.0	6.3	4.4	5.6	5.6	6.3	5.7	8.4	6.2
407 Li et al. (2024) (NeurIPS)	10.5	7.1	11.9	14.7	7.0	11.1	16.1	15.0	4.9	20.5	11.8
408 Wu et al. (2025) (CVPR)	<u>11.5</u>	<u>15.5</u>	<u>9.8</u>	13.0	<u>8.8</u>	<u>11.7</u>	<u>10.2</u>	<u>12.2</u>	15.5	<u>16.0</u>	<u>12.4</u>
409 Ours	13.0	16.2	8.0	<u>14.5</u>	10.0	14.0	9.5	11.5	<u>14.5</u>	20.5	13.2
410 Du et al. (2023) (TPAMI)	8.0	6.3	5.9	6.7	5.6	7.2	8.1	7.6	6.4	8.5	7.0
411 Song et al. (2024) (ICLR)	22.8	20.5	22.3	20.7	18.3	22.2	19.7	22.0	17.6	28.3	21.4
412 Li et al. (2024) (NeurIPS)	26.8	24.8	33.8	39.4	23.9	35.8	43.5	40.3	22.7	46.5	33.7
413 Wu et al. (2025) (CVPR)	<u>29.7</u>	<u>40.0</u>	<u>27.0</u>	32.3	33.8	31.0	23.8	<u>32.2</u>	40.5	<u>43.5</u>	<u>33.4</u>
414 Ours	32.0	41.5	22.0	34.5	<u>31.5</u>	<u>31.5</u>	27.0	30.5	<u>32.0</u>	40.0	32.3

415 4.5 ABLATION STUDY

416 To rigorously validate the rationale behind each design of our framework, we conduct the following
 417 ablation experiments:

418 **(0) Ours-All:** The full version of our proposed method with all components enabled.
 419 **(1) xC-Ori-12:** The proposed 12 virtual channels (i.e., $e_{virtual}$ in Section 3.2.1) are removed and
 420 replaced with the 12 real language-related semantic EEG channels.
 421 **(2) xC-Ori-12-xC:** Based on ablation experiment **xC-Ori-12**, the coarse semantic branch is further
 422 disabled (i.e., Eq. (4) and Eq. (5) are removed).
 423 **(3) xC-x12V:** The 12 virtual channels are removed; only the 17 visual EEG channels are used, and
 424 the coarse semantic branch (Eq. (4)) is computed using features from all 17 channels.
 425 **(4) xP-xPhaseI:** Phase-I is disabled.
 426 **(5) xP-xPhaseII:** Phase-II is disabled.
 427 **(6) xP-PhaseII-xF:** The fine semantic branch (Eq. (6) and Eq. (7)) in Phase-II is disabled.
 428 **(7) xP-PhaseII-xC:** The coarse semantic branch (Eq. (4) and Eq. (5)) in Phase-II is disabled.

429 We conduct ablation studies in the subject-dependent 200-way zero-shot setting. Table 3 sum-
 430 marises the contribution of each component. The full model (**Ours-All**) attains the highest Top-

1/Top-5 averages of **55.0%/84.2%**. Replacing the proposed *virtual EEG channels* with the real 12 language-related semantic channels (**xC-Ori-12**) reduces Top-1 to **50.3%** (-4.7) and Top-5 to **82.4%** (-1.8), indicating that virtual channels provide a stronger semantic carrier for visual EEG. Removing the coarse semantic branch on top of this replacement (**xC-Ori-12-xC**) further drops performance to **49.0%/80.6%** (Top-1/Top-5), showing that coarse label-level supervision contributes to robustness beyond fine-grained cues. When virtual channels are removed but only the 17 visual channels are kept (**xC-x12V**), the model performs reasonably (**53.4%/83.0%**), yet lags behind **Ours-All** by 1.6/1.2 points (Top-1/Top-5), confirming the net gain brought by virtual-channel augmentation.

Eliminating the low-level phase (**xP-xPhaseI**) leads to **52.4%/81.8%**, evidencing the necessity of early-stage low-level alignment for stabilizing mid-/late-stage learning. Removing the dual-level semantic phase altogether (**xP-xPhaseII**) causes a larger degradation to **48.7%/79.3%**, underscoring the central role of Phase-II. Within Phase-II, disabling the fine semantic branch (**xP-PhaseII-xF**) yields **47.8%/80.4%**, whereas disabling the coarse semantic branch (**xP-PhaseII-xC**) gives **53.0%/83.3%**. Thus, the *fine semantic* branch is the primary driver for Top-1 discrimination (largest drop when removed), while the *coarse semantic* branch improves calibration/recall (clear Top-5 gain), and their combination with Phase-I features (Phase-III fusion) delivers the best overall accuracy and consistency across subjects.

Overall, these results validate that (1) Phase-I anchors early low-level signals, (2) Phase-II’s dual-level semantics together with virtual channels capture richer neural dynamics, and (3) Phase-III integrates them into a unified representation, jointly achieving state-of-the-art performance.

Table 3: Ablation studies on subject-dependent Top-1 (top) and Top-5 (bottom) accuracy (%).

Methods	Sub01	Sub02	Sub03	Sub04	Sub05	Sub06	Sub07	Sub08	Sub09	Sub10	Avg.
Ours-All	48.5	56.0	53.5	54.0	44.0	60.0	51.5	64.0	52.5	66.0	55.0
xC-Ori-12	45.5	51.5	46.5	51.0	42.5	55.5	42.0	61.5	47.0	59.5	50.3
xC-Ori-12-xC	45.0	52.0	47.5	<u>52.5</u>	41.5	54.5	42.0	61.5	45.5	62.0	50.4
xC-x12V	45.0	53.5	<u>51.0</u>	<u>52.5</u>	45.5	57.0	<u>50.5</u>	67.0	<u>51.0</u>	61.0	53.4
xP-xPhaseI	46.5	54.5	<u>51.0</u>	50.0	45.5	56.5	48.5	<u>64.5</u>	49.0	63.5	53.0
xP-xPhaseII	46.0	47.0	50.5	50.5	42.0	54.5	47.5	56.5	42.5	55.0	49.2
xP-PhaseII-xF	49.0	44.0	46.5	49.0	38.0	55.0	46.5	57.5	42.0	57.0	48.5
xP-PhaseII-xC	51.0	55.0	<u>51.0</u>	49.5	45.5	59.0	50.5	63.5	49.5	66.5	54.1
Ours-All	74.0	87.5	88.0	80.0	79.5	88.0	83.0	89.0	81.5	91.0	84.2
xC-Ori-12	<u>76.0</u>	81.0	83.0	83.5	74.0	81.5	78.0	88.0	80.5	87.5	81.3
xC-Ori-12-xC	<u>75.5</u>	82.5	84.0	<u>83.0</u>	76.5	82.0	77.5	88.0	80.5	89.0	81.9
xC-x12V	75.5	84.5	<u>87.5</u>	80.5	77.0	85.0	81.0	<u>89.0</u>	83.5	88.0	83.2
xP-xPhaseI	72.5	<u>85.0</u>	85.0	78.5	77.0	<u>86.5</u>	80.5	<u>89.0</u>	83.5	88.5	82.6
xP-xPhaseII	78.0	82.5	81.0	79.0	74.5	83.5	78.0	85.0	79.0	86.0	80.7
xP-PhaseII-xF	<u>76.0</u>	81.5	82.5	82.5	71.5	83.5	76.5	85.0	79.0	86.0	80.4
xP-PhaseII-xC	73.5	84.5	87.0	80.5	<u>78.5</u>	86.0	<u>82.5</u>	90.0	80.0	<u>90.5</u>	83.3

5 CONCLUSION

This work establishes a new paradigm for EEG-based visual decoding by grounding EEG representation learning in the staged principles of human visual perception. Rather than treating EEG decoding as a single-step global alignment task, our brain-mimetic framework demonstrates how low-level perception, hierarchical semantic abstraction, and integrative fusion can be explicitly modeled within a unified system. Through the introduction of dual-level multimodal semantic learning and virtual EEG channels, we extend the representational capacity of EEG signals and show how biologically inspired design can translate into measurable improvements in robustness and generalization. Experiments and ablations on large-scale benchmarks confirm that this paradigm consistently advances the frontier of EEG-based visual decoding. Beyond its immediate performance gains, our study highlights the promise of bridging neuroscience and machine learning. By aligning computational models with staged neural processes, we open new perspectives for building more reliable and generalizable brain-computer interfaces and for advancing brain-inspired artificial intelligence. Looking ahead, further work may explore adaptive strategies to better mitigate inter-subject variability, extending the reach of this paradigm to broader real-world applications.

486 REFERENCES
487

488 Hongzhou Chen, Lianghua He, Yihang Liu, and Longzhen Yang. Visual neural decoding via im-
489 proved visual-eeg semantic consistency. *arXiv preprint arXiv:2408.06788*, 2024.

490 Carlos De La Torre-Ortiz and Tuukka Ruotsalo. Perceptual visual similarity from eeg: Prediction
491 and image generation. In *ACM MM*, pp. 11146–11155, 2024.

492 Yidan Ding, Chalisa Udompanyawit, Yisha Zhang, and Bin He. Eeg-based brain-computer interface
493 enables real-time robotic hand control at individual finger level. *Nature Communications*, 16(1):
494 1–20, 2025.

495 Changde Du, Kaicheng Fu, Jinpeng Li, and Huiguang He. Decoding visual neural representations
496 by multimodal learning of brain-visual-linguistic features. *IEEE TPAMI*, 45(9):10760–10777,
497 2023.

498 Daniel J Felleman and David C Van Essen. Distributed hierarchical processing in the primate cere-
499 bral cortex. *Cerebral Cortex (New York, NY: 1991)*, 1(1):1–47, 1991.

500 Matteo Ferrante, Tommaso Boccato, Stefano Bargione, and Nicola Toschi. Decoding eeg signals of
501 visual brain representations with a clip based knowledge distillation. In *ICLR 2024 Workshop on*
502 *Learning from Time Series For Health*, 2024a.

503 Matteo Ferrante, Tommaso Boccato, Stefano Bargione, and Nicola Toschi. Decoding visual brain
504 representations from electroencephalography through knowledge distillation and latent diffusion
505 models. *Computers in Biology and Medicine*, 178:108701, 2024b.

506 Alessandro T Gifford, Kshitij Dwivedi, Gemma Roig, and Radoslaw M Cichy. A large and rich eeg
507 dataset for modeling human visual object recognition. *NeuroImage*, 264:119754, 2022.

508 Melvyn A Goodale and A David Milner. Separate visual pathways for perception and action. *Trends*
509 *in Neurosciences*, 15(1):20–25, 1992.

510 Monika Graumann, Caterina Ciuffi, Kshitij Dwivedi, Gemma Roig, and Radoslaw M Cichy. The
511 spatiotemporal neural dynamics of object location representations in the human brain. *Nature*
512 *Human Behaviour*, 6(6):796–811, 2022.

513 Zhanqiang Guo, Jiamin Wu, Yonghao Song, Jiahui Bu, Weijian Mai, Qihao Zheng, Wanli Ouyang,
514 and Chunfeng Song. Neuro-3d: Towards 3d visual decoding from eeg signals. In *CVPR*, pp.
515 23870–23880, 2025.

516 Gan Huang, Zhiheng Zhao, Shaorong Zhang, Zhenxing Hu, Jiaming Fan, Meisong Fu, Jiale Chen,
517 Yaqiong Xiao, Jun Wang, and Guo Dan. Discrepancy between inter-and intra-subject variabil-
518 ity in eeg-based motor imagery brain-computer interface: Evidence from multiple perspectives.
519 *Frontiers in Neuroscience*, 17:1122661, 2023.

520 Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
521 Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
522 Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL <https://doi.org/10.5281/zenodo.5143773>.

523 Emily S Kappenman, Jaclyn L Farrens, Wendy Zhang, Andrew X Stewart, and Steven J Luck. Erp
524 core: An open resource for human event-related potential research. *NeuroImage*, 225:117465,
525 2021.

526 Leon OH Krocze, Thomas C Gunter, Anna U Rysop, Angela D Friederici, and Gesa Hartwigs. Con-
527 tributions of left frontal and temporal cortex to sentence comprehension: Evidence from si-
528 multaneous tms-eeg. *Cortex*, 115:86–98, 2019.

529 Dongyang Li, Chen Wei, Shiying Li, Jiachen Zou, and Quanying Liu. Visual decoding and recon-
530 struction via eeg embeddings with guided diffusion. *NeurIPS*, 37:102822–102864, 2024.

531 Siwei Liu, Jia Zhang, Hanrui Wu, Guoxu Zhou, Qibin Zhao, and Jinyi Long. Towards spatio-
532 temporal representation learning for eeg classification in motor imagery-based bci system.
533 *Knowledge-Based Systems*, pp. 113801, 2025.

540 Jun Ma and Tuukka Ruotsalo. Cognition-supervised saliency detection: Contrasting eeg signals and
 541 visual stimuli. In *ACM MM*, pp. 7744–7753, 2024.

542

543 Georgios Mentzelopoulos, Evangelos Chatzipantazis, Ashwin G Ramayya, Michelle J Hedlund,
 544 Vivek P Buch, Kostas Daniilidis, Konrad P Kording, and Flavia Vitale. Neural decoding from
 545 stereotactic eeg: accounting for electrode variability across subjects. *NeurIPS*, 37:108600–
 546 108624, 2024.

547

548 Francisco Pereira, Bin Lou, Brianna Pritchett, Samuel Ritter, Samuel J Gershman, Nancy Kan-
 549 wisher, Matthew Botvinick, and Evelina Fedorenko. Toward a universal decoder of linguistic
 550 meaning from brain activation. *Nature Communications*, 9(1):963, 2018.

551

552 Nona Rajabi, Antônio H Ribeiro, Miguel Vasco, Farzaneh Taleb, Mårten Björkman, and Danica
 553 Kragic. Human-aligned image models improve visual decoding from the brain. In *ICML*, 2025.

554

555 Simanto Saha and Mathias Baumert. Intra-and inter-subject variability in eeg-based sensorimotor
 556 brain computer interface: a review. *Frontiers in Computational Neuroscience*, 13:87, 2020.

557

558 Yonghao Song, Bingchuan Liu, Xiang Li, Nanlin Shi, Yijun Wang, and Xiaorong Gao. Decoding
 559 natural images from eeg for object recognition. In *ICLR*, 2024.

560

561 Yonghao Song, Yijun Wang, Huiguang He, and Xiaorong Gao. Recognizing natural images from eeg
 562 with language-guided contrastive learning. *IEEE Transactions on Neural Networks and Learning
 563 Systems*, 2025.

564

565 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 566 Bengio. Graph attention networks. In *ICLR*, 2018.

567

568 Qingguo Wei and Xinjie Ding. Intra-and inter-subject common spatial pattern for reducing calibra-
 569 tion effort in mi-based bci. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*,
 570 31:904–916, 2023.

571

572 Holly Wilson, Xi Chen, Mohammad Golbabaei, Michael J Proulx, and Eamonn O’Neill. Feasibility
 573 of decoding visual information from eeg. *Brain-Computer Interfaces*, 11(1-2):33–60, 2024.

574

575 Haitao Wu, Qing Li, Changqing Zhang, Zhen He, and Xiaomin Ying. Bridging the vision-brain gap
 576 with an uncertainty-aware blur prior. In *CVPR*, pp. 2246–2257, 2025.

577

578 Xin Xiao, Kaiwen Wei, Jiang Zhong, Xuekai Wei, and Jielu Yan. Eeg decoding and visual recon-
 579 struction via 3d geometric with nonstationarity modelling. In *ICASSP*, pp. 1–5. IEEE, 2025.

580

581 Lichao Xu, Minpeng Xu, Tzyy-Ping Jung, and Dong Ming. Review of brain encoding and decoding
 582 mechanisms for eeg-based brain–computer interface. *Cognitive Neurodynamics*, 15(4):569–584,
 583 2021.

584

585 Hong Zeng, Nianzhang Xia, Dongguan Qian, Motonobu Hattori, Chu Wang, and Wanzeng Kong.
 586 Dm-re2i: A framework based on diffusion model for the reconstruction from eeg to image.
 587 *Biomedical Signal Processing and Control*, 86:105125, 2023.

588

589 Enshang Zhang et al. Category-aware eeg image generation based on wavelet transform and contrast
 590 semantic loss. In *IJCAI*, 2025a.

591

592 Kaifan Zhang, Lihuo He, Xin Jiang, Wen Lu, Di Wang, and Xinbo Gao. Cognitioncapturer: Decod-
 593 ing visual stimuli from human eeg signal with multimodal information. In *AAAI*, volume 39, pp.
 14486–14493, 2025b.

594

595 Shuailei Zhang, Yi Ding, Muyun Jiang, Ning Tang, Effie Chew, Kai Keng Ang, and Cuntai Guan.
 596 Cat-net: A co-adaptive transfer learning network for bci-assisted neurorehabilitation. In *ICASSP*,
 597 pp. 1–5. IEEE, 2025c.

594
595

A APPENDIX

596 This manuscript is the authors' original work. Except for minor English grammar checking with
597 ChatGPT, no large language model or AI tool was used for idea generation, problem formulation,
598 literature search or screening, methodology design, code implementation, data processing, experi-
599 mental design, statistical analysis, figure or table drafting, or substantive writing. All intellectual
600 contributions, including conceptualization, model design, and empirical evaluation, are solely those
601 of the authors.

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647