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ABSTRACT

Decoding visual information from electroencephalography (EEG) signals remains
a fundamental challenge in brain–computer interfaces and medical rehabilitation.
Most existing methods focus on refining EEG encoders to obtain stronger EEG
embeddings for alignment with visual features, but they largely overlook that hu-
man visual perception is inherently staged, progressing from low-level feature
detection to high-level semantic abstraction and ultimately to information integra-
tion. Inspired by neuroscientific theories of staged vision, we propose a novel
EEG representation learning framework that explicitly models the three stages
of brain visual processing: Phase-I for low-level visual representation learning,
Phase-II for high-level semantic representation learning, and Phase-III for integra-
tive information fusion. To further enhance semantic modelling, we propose (i)
a multimodal dual-level semantic learning mechanism, which disentangles coarse
label-level semantics and fine image-level semantics from visual EEG channels,
and (ii) a new concept of virtual EEG channels, which expand the representa-
tional capacity of EEG signals. Extensive experiments on the largest benchmark
dataset demonstrate significant improvements over state-of-the-art methods un-
der both subject-dependent and subject-independent zero-shot settings, confirm-
ing both robustness and generalisability of our method. By explicitly modelling
staged brain-mimetic processing and dual-level enriched semantic representations,
our work not only advances decoding performance but also provides a biologically
grounded perspective for future EEG-based brain decoding research.

1 INTRODUCTION

Decoding visual information from electroencephalography (EEG) signals is a central task in brain-
computer interface research (Wilson et al., 2024; Ferrante et al., 2024b), with broad implications for
neurorehabilitation (Zhang et al., 2025c), visual cognition (De La Torre-Ortiz & Ruotsalo, 2024),
and brain-inspired artificial intelligence (Pereira et al., 2018; Ding et al., 2025). However, this task
remains highly challenging due to the intrinsic low signal-to-noise ratio, severe nonstationarity, and
complex spatiotemporal dynamics of EEG signals, which hinder the stable and accurate recovery of
visual representations (Guo et al., 2025; Liu et al., 2025; Mentzelopoulos et al., 2024).

Nearly all existing methods address this challenge by refining EEG encoders to extract stronger
global embeddings for alignment with visual features. Some methods emphasize noise suppression
or representation enrichment, such as uncertainty-aware blur priors for suppressing noise (Wu et al.,
2025), multimodal feature integration (Zhang et al., 2025b), wavelet-based contrastive learning for
category-aware decoding (Zhang et al., 2025a), and diffusion-driven generative modelling (Li et al.,
2024). Others extend this line of work by improving the semantic consistency of global embeddings
through tailored loss functions (Chen et al., 2024), employing multimodal graph representations (Du
et al., 2023), or aligning EEG embeddings with large-scale vision-language models (Ferrante et al.,
2024a; Song et al., 2025). While these methods have advanced the field, they predominantly for-
mulate EEG-based visual decoding as a global embedding alignment problem, thereby failing to
capture the inherently staged nature of human visual processing. Consequently, they also neglect
the potential of staged EEG embedding learning and disentangled dual-level semantic modelling.
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Neuroscience provides compelling evidence that human visual perception unfolds progressively and
hierarchically. Felleman & Van Essen (1991) demonstrated that the primate visual cortex follows
a distributed hierarchical structure, while Goodale & Milner (1992) proposed the influential two-
visual-pathway hypothesis, distinguishing the ventral (“what”) and dorsal (“where/how”) streams.
More recent studies confirmed that category-related visual information emerges gradually in the hu-
man brain (Graumann et al., 2022), and event-related potential (ERP) research has shown that EEG
signals reflect distinct cognitive functions across different phases (Kappenman et al., 2021; Xu et al.,
2021). Furthermore, Kroczek et al. (2019) revealed that certain EEG channels are specifically en-
gaged in semantic processing during language comprehension but not directly responsive to visual
stimuli, suggesting the need for enriched channel mechanisms for visual semantic modelling. Col-
lectively, these findings strongly indicate that EEG-based visual decoding should incorporate staged
and multi-level semantic representation learning rather than relying solely on global embeddings.

Inspired by the above neuroscientific theories, and to address the limitations of existing methods, we
propose a brain-mimetic staged representation learning framework for EEG-based visual decoding.
Our framework explicitly models three phases that mirror neural visual processing: Phase-I for low-
level visual representation learning, Phase-II for high-level semantic representation learning, and
Phase-III for integrative information fusion. To further enhance semantic modelling, we introduce
two key innovations: (i) a multimodal dual-level semantic learning mechanism that disentangles
coarse label-level semantics and fine image-level semantics from visual EEG channels; and (ii) the
novel concept of virtual EEG channels, which expand the semantic representational capacity of EEG
signals and improve cross-modal alignment.

Extensive experiments on the largest-scale benchmark dataset validate the effectiveness of our
framework. Unlike existing methods that rely only on global embedding alignment, our method
achieves significant improvements under both subject-dependent and subject-independent zero-shot
settings, demonstrating robustness and generalisation across individuals. By bridging neuroscientific
theories with advanced representation learning, this work provides a new perspective for EEG-based
brain decoding and opens avenues for more biologically grounded, interpretable, and generalisable
BCI systems. The main contributions are summarised as follows:

• Brain-mimetic staged representative learning framework. We propose a novel brain-
decoding paradigm that draws on neuroscientific theories of staged vision. The framework
explicitly stages learning into low-level visual perception, high-level semantic abstraction,
and integrative information fusion.

• Multimodal dual-level semantic learning mechanism. We design a novel semantic
learning mechanism that disentangles high-level semantics from EEG visual channels into
coarse label-level semantics and fine image-level semantics, capturing richer neural dy-
namics beyond traditional global embeddings.

• Virtual EEG channels. Inspired by neuroscientific evidence of channel specialization, we
introduce a novel concept of virtual EEG channels to expand the semantic representational
capacity of EEG signals and improve cross-modal alignment. Extensive experiments and
ablations validate their effectiveness, demonstrating strong ability to capture coarse seman-
tics in the visual domain.

2 RELATED WORK

Recent advances in EEG-based visual decoding have been dominated by efforts to refine EEG en-
coders in order to obtain stronger embeddings for EEG-vision alignment. Wu et al. (2025) intro-
duced an uncertainty-aware blur prior to suppress noise and improve robustness, while Zhang et al.
(2025b) incorporated multimodal priors such as texture and depth to enhance semantic alignment.
Zhang et al. (2025a) further leveraged wavelet transforms with contrastive loss to boost category
discrimination, and Li et al. (2024) employed guided diffusion models to strengthen EEG–vision
correspondence. Other encoder-centric strategies include classifier-based recognition Song et al.
(2024), semantic consistency losses Chen et al. (2024), and multimodal graph representations Du
et al. (2023), all of which seek to enrich EEG embeddings or reduce modality gaps. Some other
studies have extended this encoder-refinement paradigm with external priors or auxiliary supervi-
sion. Ferrante et al. (2024a) distilled knowledge from CLIP to inject vision–language semantics into
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EEG decoding, Rajabi et al. (2025) proposed human-aligned priors for biologically plausible map-
pings, and Ma & Ruotsalo (2024) contrasted EEG responses with visual saliency. Others explored
3D spatiotemporal-geometric modelling Xiao et al. (2025), language-guided decoding Song et al.
(2025), or entropy-based discriminative training Zeng et al. (2023). Despite these innovations, all
existing methods share a fundamental limitation: they treat EEG decoding as a one-shot global em-
bedding alignment problem. As such, they fail to capture the staged dynamics of visual perception
and neglect the potential of staged EEG embedding learning and disentangled dual-level semantic
modelling.

In contrast, our work introduces a brain-mimetic staged representation learning framework that mir-
rors the progression of human visual perception from low-level features to high-level semantics and
to integrative fusion. We further enrich semantic modelling through a multimodal dual-level disen-
tanglement mechanism and expand EEG’s representational capacity with the novel concept of virtual
EEG channels. These innovations enable us to more faithfully capture neural dynamics and deliver
substantial improvements in both subject-dependent and subject-independent zero-shot decoding.

3 PROPOSED BRAIN-MIMETIC DECODING PARADIGM

Brain-Mimetic Staged EEG Representation Learning

\\\
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Figure 1: Overview of our proposed brain-mimetic staged EEG representation learning framework.
It consists of three phases inspired by neuroscientific theories of progressive and hierarchical vision.
Phase-I learns low-level visual embeddings from 17 visual-related EEG channels with adaptive
temporal weighting and aligns them with image low-level features. Phase-II extends the 17 visual
channels with virtual EEG channels, applies adaptive temporal weighting, and learns high-level se-
mantics that are disentangled into coarse and fine levels. Coarse semantics capture abstract categor-
ical distinctions and are derived from the virtual channels, while fine semantics reflect more specific
and detailed representations and are derived from all visual and virtual channels. Coarse semantics
are aligned with text (i.e., image label) features, and fine semantics are aligned with high-level image
features. Phase-III integrates low-level visual, fine, and coarse semantic embeddings into a unified
EEG representation, which is aligned with the final image embeddings. The entire framework is
trained with multi-level CLIP losses to ensure consistent cross-modal alignment across all stages.

Most existing methods for EEG-based visual decoding primarily focus on refining EEG encoders to
obtain stronger embeddings for alignment with visual features. However, they largely overlook that
human visual perception is inherently staged, progressing from early low-level feature detection to
higher-level semantic abstraction and ultimately to integrative information fusion. Neuroscientific
studies have consistently demonstrated such staged processing in the visual cortex (Felleman &
Van Essen, 1991; Goodale & Milner, 1992; Kappenman et al., 2021; Xu et al., 2021). Motivated
by these findings, we propose a brain-mimetic decoding framework that explicitly models the three
stages of neural visual processing: Phase-I for low-level visual representation learning, Phase-II
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for high-level semantic representation learning, and Phase-III for integrative information fusion. To
further enrich semantic modelling, we introduce two key innovations: (i) a multimodal dual-level
semantic learning mechanism, which disentangles coarse label-level semantics and fine image-
level semantics from visual EEG channels; and (ii) the new concept of virtual EEG channels,
which expand the representational capacity of EEG signals and enhance cross-modal alignment.

3.1 PHASE-I: LOW-LEVEL VISUAL REPRESENTATION LEARNING

In Phase-I, our goal is to learn low-level visual representations from EEG signals and align them
with low-level image features. Image features are obtained from the output of block1 in ResNet50.
For EEG, we selectively use 17 channels that are primarily associated with visual responses1 (Kap-
penman et al., 2021). In addition, because low-level visual responses are concentrated in early tem-
poral windows (Goodale & Milner, 1992; Graumann et al., 2022), we design a learnable adaptive
temporal weighting mechanism to emphasize early EEG signals during representation learning.

Formally, let (ev,v) denote a batch of EEG-image pairs, where ev ∈ RB×C1×T represents B EEG
samples with C1 = 17 channels and T time steps, and v ∈ V denotes the corresponding images.
A learnable temporal weight wt ∈ R1×T is applied to adaptively emphasize different temporal seg-
ments. For low-level EEG visual representation learning, we design a Residual SpatioTemporal
Graph Attention Networks (RST-GAT), which incorporates residual connections and spatiotem-
poral attention into GAT (Veličković et al., 2018) and MLP, to encode the low-level EEG visual
representation e1 ∈ RB×256. This encoding process is defined as:

e1 = fMLP

(
fST-GAT(ev ⊗wt + ev) + ev

)
, (1)

where ⊗ denotes element-wise multiplication with broadcasting along the channel dimension.
Meanwhile, the low-level image feature v1 ∈ RB×256 is obtained by projecting the ResNet50-
block1 output through an MLP. Finally, we employ a CLIP loss to encourage alignment between
the low-level EEG embeddings and the corresponding low-level image features:

LI
CLIP = CLIP LOSS(e1,v1). (2)

3.2 PHASE-II: HIGH-LEVEL SEMANTIC REPRESENTATION LEARNING

Phase-II aims to mimic the mid-stage of neural signal processing, where the brain gradually forms
and strengthens semantic representations. Our goal is to learn high-level semantic representations
from EEG signals. To capture their hierarchical nature, we disentangle them into two levels. Coarse
semantics capture abstract categorical distinctions and are aligned with text features derived from
class labels. Fine semantics capture more specific and detailed representations and are aligned
with high-level image features. This dual-level design allows the model to reflect both abstract and
detailed semantic processing. To support this mechanism, we introduce virtual EEG channels.
These channels expand the representational capacity of EEG signals and provide a stronger basis for
disentangling coarse and fine semantics.

3.2.1 VIRTUAL EEG CHANNEL AUGMENTATION

Neuroscientific studies show that a subset of EEG channels (12 in total2) are selectively engaged in
semantic processing during language comprehension (Kroczek et al., 2019). However, these chan-
nels are not responsive to visual stimuli like images. Inspired by this evidence, we propose virtual
EEG channels to enhance semantic modeling in the visual domain. Analogous to the 12 language-
related semantic channels, we construct 12 virtual channels, denoted as evirtual ∈ RB×12×T , which
are learned and enriched within the proposed Dual-Level Semantic Learning module (Section 3.2.2).
Ablation experiments (Section 4.5) confirm that these virtual channels improve the EEG represen-
tation learning and outperform the real language-related channels, demonstrating their ability to
capture semantic information from EEG signals more effectively.

117 channels primarily associated with visual responses: O1, O2, Oz, PO3, PO4, PO7, PO8, POz, P3, P4,
P5, P6, P7, P8, Pz, CPz, and Iz (Kappenman et al., 2021).

2Semantic-related channels for language comprehension: Fp1, F3, F7, FC5, FC1, C3, T7, CP5, P7, FT7,
F5, TP7 (Kroczek et al., 2019; Gifford et al., 2022).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2.2 MULTIMODAL DUAL-LEVEL SEMANTIC LEARNING MECHANISM

In Phase-II, our goal is to model high-level semantics from EEG signals. To better reflect the hi-
erarchical nature of semantic processing, we design a multimodal dual-level semantic learning
mechanism. The mechanism disentangles EEG-based semantic representations into two levels.
Coarse semantics capture abstract categorical distinctions, are derived from the virtual channels,
and are aligned with text features extracted from image class labels. Fine semantics capture spe-
cific and detailed representations, are derived from both real and virtual channels, and are aligned
with mid- to high-level image features. This multimodal dual-level alignment enables the model to
capture richer semantic dynamics beyond global embeddings, thereby enhancing semantic modeling
capacity. Since semantic processing in the brain mainly occurs in the mid-to-late temporal stages
(Kappenman et al., 2021; Felleman & Van Essen, 1991; Xu et al., 2021), we also design a learnable
adaptive temporal weighting mechanism (similar to Phase-I) that emphasizes EEG signals within
the corresponding time window.

Formally, after augmentation, the EEG signals are expanded to 29 channels, denoted as ë =
[ev|evirtual] ∈ RB×29×T , where ev ∈ RB×17×T corresponds to the 17 visual-related EEG channels
(identical to those used in Phase-I, Section 3.1) and evirtual ∈ RB×12×T denotes the proposed 12
virtual EEG channels. An RST-GAT encoder, similar to the one in Phase-I, is deployed to facilitate
the encoding process, defined as:

ë2 = fST-GAT(ë⊗ ẅt + ë) + ë = [ëv|ëvirtual], (3)

where ⊗ denotes element-wise multiplication with broadcasting along the channel dimension and
ẅt ∈ R1×T represents the learnable temporal weight. ëv ∈ RB×17×T corresponds to fine EEG
semantics, while ëvirtual ∈ RB×12×T corresponds to coarse EEG semantics.

Figure 2: Visual comparison of coarse EEG semantic features: the left panel shows the features
(ëvirtual) learned using the proposed 12 virtual EEG channels, while the right panel shows the
features learned using 12 real language-related EEG channels in the ablation study xC-Ori-12 (Sec-
tion 4.5). The ablation experiments demonstrate that the virtual channels enhance EEG representa-
tion learning and achieve superior performance compared to the original language-related channels,
obtaining a 4.7 point improvement from 50.3% to 55.0%.

For the coarse EEG semantics, ëvirtual is first combined with the learnable temporal weight ẅt and
then passed through an MLP to obtain the coarse semantic representation:

êcoarse = fMLP(ëvirtual ⊛ ẅt), (4)

where ⊛ denotes weighted temporal aggregation, implemented as batch-wise matrix multiplication
along the temporal dimension. The resulting coarse semantic êcoarse ∈ RB×1024 is aligned with
coarse text semantics tcoarse ∈ RB×1024 extracted from the pretrained CLIP text encoder (Ilharco
et al., 2021). The corresponding alignment loss is:

LII
CLIP-coarse = CLIP LOSS(êcoarse, tcoarse). (5)

For the fine EEG semantics, ë2 is projected through an MLP to produce the fine semantic represen-
tation êfine ∈ RB×1024:

êfine = fMLP(ë2), (6)

which is aligned with fine image semantics vfine ∈ RB×1024 obtained from the projected output of
ResNet50-block3. The corresponding alignment loss is:

LII
CLIP-fine = CLIP LOSS(êfine,vfine). (7)

5
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3.3 PHASE-III: INTEGRATIVE INFORMATION FUSION

Phase-III performs integrative information fusion, where low-level visual features from Phase-I and
high-level semantic features from Phase-II are combined into a unified EEG representation. This is
inspired by neuroscientific evidence that high-level cognition arises from the progressive integration
of multiple information pathways Felleman & Van Essen (1991); Graumann et al. (2022); Goodale
& Milner (1992). Specifically, we first fuse the low-level visual feature e1 with the fine semantic
representation êfine, and then integrate the coarse semantic representation êcoarse. The fused EEG
representation is finally aligned with the final image embedding extracted by ResNet50.

Formally, the integrative information fusion is computed as:

eEEG = fMLP([e1 | êfine]) + êcoarse, (8)

where [·|·] denotes concatenation. The resulting EEG representation eEEG ∈ RB×1024 is aligned
with the final image embedding vimage ∈ RB×1024 through:

LIII
CLIP = CLIP LOSS(eEEG,vImage). (9)

The overall training objective is defined as the weighted sum of the losses from the three phases:

Ltotal = α1LI
CLIP + α2(LII

CLIP-coarse + LII
CLIP-fine) + α3LIII

CLIP, (10)

where α1, α2, α3 balance the three phases and are empirically set to 0.1, 0.2, and 0.5, respectively,
in our experiments.

4 EXPERIMENTS

4.1 BENCHMARK DATASET

The benchmark dataset THINGS-EEG (Gifford et al., 2022) was employed for all experiments.
THINGS-EEG is currently the largest publicly available EEG dataset for brain decoding, and it has
become a widely recognised benchmark in recent top-tier conference and journal publications, par-
ticularly in the context of zero-shot learning settings. The dataset was designed to capture rich and
generalisable neural representations of visual-semantic concepts, thereby providing a challenging
and comprehensive testbed for evaluating model generalisation across subjects and unseen cate-
gories. Data were collected using a Rapid Serial Visual Presentation paradigm, in which visual
stimuli were presented in rapid succession while EEG signals were recorded. The dataset contains
neural responses from 10 participants, each exposed to a broad spectrum of object categories en-
compassing diverse visual and semantic domains. The training set consists of 1,654 object classes,
each represented by 10 different images, with each image presented four times in a randomised se-
quence. This yields a total of 66,160 EEG samples. The test set contains 200 held-out classes, each
represented by a single image repeated 80 times, resulting in 16,000 EEG samples. All stimuli were
presented in a randomised order to reduce habituation and expectancy effects.

Two experimental settings are used in the experiments:
1) Subject-dependent 200-way zero-shot classification: The model is trained on the training set
and evaluated on the test set of the same subject.
2) Subject-independent 200-way zero-shot classification: The model is trained entirely on the
training sets of other subjects and evaluated on the test set of the target subject.

4.2 BASELINES AND EVALUATION METRICS

We compare our method against seven state-of-the-art EEG visual decoding approaches published
in top-tier venues over the past two years, including Wu et al. (2025) (CVPR), Zhang et al. (2025b)
(AAAI), Zhang et al. (2025a) (IJCAI), Li et al. (2024) (NeurIPS), Song et al. (2024) (ICLR), Chen
et al. (2024) (arXiv), Du et al. (2023) (TPAMI). These methods have advanced the field by intro-
ducing priors, multimodal cues, or consistency losses, yet they generally share key limitations: they
often emphasise global alignment while overlooking the staged nature of visual processing, and lack
mechanisms to integrate low-level, semantic, and fused representations in a biologically informed
manner (more discussion in the Related Work, Section 2). Our method addresses these gaps through
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a brain-inspired three-phase framework, channel-guided representative learning, and the introduc-
tion of virtual channels, enabling more accurate and generalisable EEG-to-vision decoding. Since all
of these methods have been evaluated on the same benchmark dataset THINGS-EEG under the two
experimental settings and have reported results accordingly, we also follow this protocol and adopt
Top-1 and Top-5 classification accuracy as the primary evaluation metrics to ensure consistency and
provide a comprehensive assessment of model performance.

4.3 KEY IMPLEMENTATION DETAILS

All experiments were carried out on a single NVIDIA GeForce RTX 4090 GPU, with the framework
implemented in PyTorch. For EEG signal preprocessing, we follow the standard pipeline described
in Song et al. (2024); Wu et al. (2025). For visual feature extraction, we employ the pretrained
Open-CLIP ResNet50 model (Ilharco et al., 2021), keeping its parameters fixed throughout training.
Model optimization is performed using the AdamW optimizer with a learning rate of 0.0001 and a
batch size of 1024. Training is conducted for 40 epochs, with the random seed set to 42 to ensure
reproducibility. The same hyperparameter configuration is applied consistently across both subject-
dependent and subject-independent experimental settings.

4.4 EXPERIMENTAL RESULTS

4.4.1 SUBJECT-DEPENDENT 200-WAY ZERO-SHOT EXPERIMENTS

Table 1 presents the 200-way zero-shot classification results under the subject-dependent setting.
Our method achieves the best Top-1 accuracy on all 10 subjects, achieving an average of 55.0%,
which surpasses the strongest prior baseline (Wu et al. (2025) (CVPR), 50.9%) by +4.1 absolute
(+8.1% relative). The gains are consistent across subjects, with particularly large margins on Sub01
(+7.3) and Sub09 (+7.4), indicating improved robustness for difficult participants. Compared with
recent alignment-based models, e.g., Chen et al. (2024) (arXiv) (37.2%), Zhang et al. (2025a) (IJ-
CAI) (33.4%), Zhang et al. (2025b) (AAAI) (35.6%), and Li et al. (2024) (NeurIPS) (28.5%), our
approach improves the average Top-1 accuracy by 17.8-26.5 points, highlighting the effectiveness
of staged learning and channel-level modeling beyond global embeddings. For Top-5 accuracy, our
method also ranks first with an average of 84.2%, exceeding Zhang et al. (2025b) (AAAI) (80.2%)
and Wu et al. (2025) (CVPR) (79.7%) by +4.0 and +4.5 points, respectively (+5-6% relative). We
obtain the best performance on 8/10 subjects and remain competitive on the remaining two (Sub01
and Sub04), while consistently outperforming Wu et al. (2025) (CVPR) on all subjects.

Table 1: Subject-dependent Top-1 (top) and Top-5 (bottom) accuracy (%) in 200-way zero-shot.
Methods Sub01 Sub02 Sub03 Sub04 Sub05 Sub06 Sub07 Sub08 Sub09 Sub10 Avg.
Du et al. (2023) (TPAMI) 6.1 4.9 5.6 5.0 4.0 6.0 6.5 8.8 4.3 7.0 5.8
Song et al. (2024) (ICLR) 13.2 13.5 14.5 20.6 10.1 16.5 17.0 22.9 15.4 17.4 16.1
Li et al. (2024) (NeurIPS) 25.6 22.0 25.0 31.4 12.9 21.3 30.5 38.8 34.4 29.1 28.5
Chen et al. (2024) (arXiv) 32.6 34.4 38.7 39.8 29.4 34.5 34.5 49.3 39.0 39.8 37.2
Zhang et al. (2025a) (IJCAI) 33.0 28.0 33.5 36.0 26.0 30.5 34.0 43.0 31.5 38.5 33.4
Zhang et al. (2025b) (AAAI) 31.4 31.4 38.2 40.4 24.4 34.8 34.7 48.1 37.4 35.6 35.6
Wu et al. (2025) (CVPR) 41.2 51.2 51.2 51.1 42.2 57.5 49.0 58.6 45.1 61.5 50.9
Ours 48.5 56.0 53.5 54.0 44.0 60.0 51.5 64.0 52.5 66.0 55.0
Du et al. (2023) (TPAMI) 17.9 14.9 17.4 15.1 13.4 18.2 20.4 23.7 14.0 19.7 17.5
Song et al. (2024) (ICLR) 39.5 40.3 42.7 52.7 31.5 44.0 42.1 56.1 41.6 45.8 43.6
Li et al. (2024) (NeurIPS) 60.4 54.5 62.4 60.9 43.0 51.1 61.5 72.0 51.5 63.5 60.4
Chen et al. (2024) (arXiv) 63.7 69.9 73.5 72.0 58.6 68.8 68.3 79.8 69.6 75.3 69.9
Zhang et al. (2025a) (IJCAI) 58.5 56.5 61.0 68.0 48.0 62.5 62.5 73.5 58.5 69.0 61.8
Zhang et al. (2025b) (AAAI) 79.7 77.8 85.7 85.8 66.3 78.8 81.0 88.6 79.4 79.3 80.2
Wu et al. (2025) (CVPR) 70.5 80.9 82.0 76.9 72.8 83.5 79.9 85.8 76.2 88.2 79.7
Ours 74.0 87.5 88.0 80.0 79.5 88.0 83.0 89.0 81.5 91.0 84.2

4.4.2 SUBJECT-INDEPENDENT 200-WAY ZERO-SHOT EXPERIMENTS

Table 2 presents the 200-way zero-shot classification results under the subject-independent setting
(Note: the methods in Table 1, such as Chen et al. (2024) (arXiv), Zhang et al. (2025a) (IJCAI),

7
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and Zhang et al. (2025b) (AAAI), did not report results for this setting). Our method achieves
the best overall Top-1 accuracy of 13.2%, outperforming the strongest baseline Wu et al. (2025)
(CVPR) (12.4%) by +0.8 points on average. Notably, our framework consistently surpasses all prior
approaches on several subjects (e.g., Sub01, Sub02, Sub05, Sub06, and Sub10), and reaches parity
with the best baseline on Sub09 and Sub04, demonstrating that the proposed staged learning and
channel-level augmentation achieves superior generalization across unseen subjects. Compared with
Li et al. (2024) (NeurIPS) (11.8%) and Song et al. (2024) (ICLR) (6.2%), our method improves Top-
1 accuracy by +1.4 and +7.0 points, respectively, highlighting advances beyond global embedding
alignment strategies. For Top-5 accuracy, our method achieves an average of 32.3%, which is
competitive with Li et al. (2024) (NeurIPS) (33.7%) and Wu et al. (2025) (CVPR) (33.4%), and
substantially higher than Song et al. (2024) (ICLR) (21.4%) and Du et al. (2023) (TPAMI) (7.0%).

Discussion. We note that subject-independent performance is naturally lower than subject-
dependent performance, a gap that is well recognized in EEG research. EEG signals are highly
identity-dependent, reflecting individual variability in brain anatomy, electrode placement, and cog-
nitive processing, which introduces substantial inter-subject variability (Huang et al., 2023; Saha
& Baumert, 2020; Wei & Ding, 2023). Consequently, methods that more faithfully mimic subject-
specific neural learning patterns often excel in within-subject decoding but require larger adjust-
ments when generalizing across unseen individuals. In contrast, less biologically grounded ap-
proaches may appear less affected across subjects, yet this reflects weaker modeling of true neu-
ral dynamics rather than genuine robustness. Despite this inherent challenge, our framework still
achieves the best average Top-1 accuracy among all baselines, and consistently delivers stable Top-1
accuracy improvements across most subjects. This robustness confirms that our framework captures
genuine neural dynamics, yielding not only superior within-subject decoding but also competitive
advantages under the more demanding subject-independent setting.

Table 2: Subject-independent Top-1 (top) and Top-5 (bottom) accuracy (%) in 200-way zero-shot.
Methods Sub01 Sub02 Sub03 Sub04 Sub05 Sub06 Sub07 Sub08 Sub09 Sub10 Avg.
Du et al. (2023) (TPAMI) 2.3 1.5 1.4 1.7 1.5 1.8 2.1 2.2 1.6 2.3 1.8
Song et al. (2024) (ICLR) 7.6 5.9 6.0 6.3 4.4 5.6 5.6 6.3 5.7 8.4 6.2
Li et al. (2024) (NeurIPS) 10.5 7.1 11.9 14.7 7.0 11.1 16.1 15.0 4.9 20.5 11.8
Wu et al. (2025) (CVPR) 11.5 15.5 9.8 13.0 8.8 11.7 10.2 12.2 15.5 16.0 12.4
Ours 13.0 16.2 8.0 14.5 10.0 14.0 9.5 11.5 14.5 20.5 13.2
Du et al. (2023) (TPAMI) 8.0 6.3 5.9 6.7 5.6 7.2 8.1 7.6 6.4 8.5 7.0
Song et al. (2024) (ICLR) 22.8 20.5 22.3 20.7 18.3 22.2 19.7 22.0 17.6 28.3 21.4
Li et al. (2024) (NeurIPS) 26.8 24.8 33.8 39.4 23.9 35.8 43.5 40.3 22.7 46.5 33.7
Wu et al. (2025) (CVPR) 29.7 40.0 27.0 32.3 33.8 31.0 23.8 32.2 40.5 43.5 33.4
Ours 32.0 41.5 22.0 34.5 31.5 31.5 27.0 30.5 32.0 40.0 32.3

4.5 ABLATION STUDY

To rigorously validate the rationale behind each design of our framework, we conduct the following
ablation experiments:
(0) Ours-All: The full version of our proposed method with all components enabled.
(1) xC-Ori-12: The proposed 12 virtual channels (i.e., evirtual in Section 3.2.1) are removed and
replaced with the 12 real language-related semantic EEG channels.
(2) xC-Ori-12-xC: Based on ablation experiment xC-Ori-12, the coarse semantic branch is further
disabled (i.e., Eq. (4) and Eq. (5) are removed).
(3) xC-x12V: The 12 virtual channels are removed; only the 17 visual EEG channels are used, and
the coarse semantic branch (Eq. (4)) is computed using features from all 17 channels.
(4) xP-xPhaseI: Phase-I is disabled.
(5) xP-xPhaseII: Phase-II is disabled.
(6) xP-PhaseII-xF: The fine semantic branch (Eq. (6) and Eq. (7)) in Phase-II is disabled.
(7) xP-PhaseII-xC: The coarse semantic branch (Eq. (4) and Eq. (5)) in Phase-II is disabled.

We conduct ablation studies in the subject-dependent 200-way zero-shot setting. Table 3 sum-
marises the contribution of each component. The full model (Ours-All) attains the highest Top-
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1/Top-5 averages of 55.0%/84.2%. Replacing the proposed virtual EEG channels with the real 12
language-related semantic channels (xC-Ori-12) reduces Top-1 to 50.3% (-4.7) and Top-5 to 82.4%
(-1.8), indicating that virtual channels provide a stronger semantic carrier for visual EEG. Removing
the coarse semantic branch on top of this replacement (xC-Ori-12-xC) further drops performance
to 49.0%/80.6% (Top-1/Top-5), showing that coarse label-level supervision contributes to robust-
ness beyond fine-grained cues. When virtual channels are removed but only the 17 visual channels
are kept (xC-x12V), the model performs reasonably (53.4%/83.0%), yet lags behind Ours-All by
1.6/1.2 points (Top-1/Top-5), confirming the net gain brought by virtual-channel augmentation.

Eliminating the low-level phase (xP-xPhaseI) leads to 52.4%/81.8%, evidencing the necessity of
early-stage low-level alignment for stabilizing mid-/late-stage learning. Removing the dual-level
semantic phase altogether (xP-xPhaseII) causes a larger degradation to 48.7%/79.3%, underscor-
ing the central role of Phase-II. Within Phase-II, disabling the fine semantic branch (xP-PhaseII-
xF) yields 47.8%/80.4%, whereas disabling the coarse semantic branch (xP-PhaseII-xC) gives
53.0%/83.3%. Thus, the fine semantic branch is the primary driver for Top-1 discrimination (largest
drop when removed), while the coarse semantic branch improves calibration/recall (clear Top-5
gain), and their combination with Phase-I features (Phase-III fusion) delivers the best overall accu-
racy and consistency across subjects.

Overall, these results validate that (1) Phase-I anchors early low-level signals, (2) Phase-II’s dual-
level semantics together with virtual channels capture richer neural dynamics, and (3) Phase-III
integrates them into a unified representation, jointly achieving state-of-the-art performance.

Table 3: Ablation studies on subject-dependent Top-1 (top) and Top-5 (bottom) accuracy (%).
Methods Sub01 Sub02 Sub03 Sub04 Sub05 Sub06 Sub07 Sub08 Sub09 Sub10 Avg.
Ours-All 48.5 56.0 53.5 54.0 44.0 60.0 51.5 64.0 52.5 66.0 55.0
xC-Ori-12 45.5 51.5 46.5 51.0 42.5 55.5 42.0 61.5 47.0 59.5 50.3
xC-Ori-12-xC 45.0 52.0 47.5 52.5 41.5 54.5 42.0 61.5 45.5 62.0 50.4
xC-x12V 45.0 53.5 51.0 52.5 45.5 57.0 50.5 67.0 51.0 61.0 53.4
xP-xPhaseI 46.5 54.5 51.0 50.0 45.5 56.5 48.5 64.5 49.0 63.5 53.0
xP-xPhaseII 46.0 47.0 50.5 50.5 42.0 54.5 47.5 56.5 42.5 55.0 49.2
xP-PhaseII-xF 49.0 44.0 46.5 49.0 38.0 55.0 46.5 57.5 42.0 57.0 48.5
xP-PhaseII-xC 51.0 55.0 51.0 49.5 45.5 59.0 50.5 63.5 49.5 66.5 54.1
Ours-All 74.0 87.5 88.0 80.0 79.5 88.0 83.0 89.0 81.5 91.0 84.2
xC-Ori-12 76.0 81.0 83.0 83.5 74.0 81.5 78.0 88.0 80.5 87.5 81.3
xC-Ori-12-xC 75.5 82.5 84.0 83.0 76.5 82.0 77.5 88.0 80.5 89.0 81.9
xC-x12V 75.5 84.5 87.5 80.5 77.0 85.0 81.0 89.0 83.5 88.0 83.2
xP-xPhaseI 72.5 85.0 85.0 78.5 77.0 86.5 80.5 89.0 83.5 88.5 82.6
xP-xPhaseII 78.0 82.5 81.0 79.0 74.5 83.5 78.0 85.0 79.0 86.0 80.7
xP-PhaseII-xF 76.0 81.5 82.5 82.5 71.5 83.5 76.5 85.0 79.0 86.0 80.4
xP-PhaseII-xC 73.5 84.5 87.0 80.5 78.5 86.0 82.5 90.0 80.0 90.5 83.3

5 CONCLUSION

This work establishes a new paradigm for EEG-based visual decoding by grounding EEG represen-
tation learning in the staged principles of human visual perception. Rather than treating EEG de-
coding as a single-step global alignment task, our brain-mimetic framework demonstrates how low-
level perception, hierarchical semantic abstraction, and integrative fusion can be explicitly modeled
within a unified system. Through the introduction of dual-level multimodal semantic learning and
virtual EEG channels, we extend the representational capacity of EEG signals and show how biolog-
ically inspired design can translate into measurable improvements in robustness and generalization.
Experiments and ablations on large-scale benchmarks confirm that this paradigm consistently ad-
vances the frontier of EEG-based visual decoding. Beyond its immediate performance gains, our
study highlights the promise of bridging neuroscience and machine learning. By aligning compu-
tational models with staged neural processes, we open new perspectives for building more reliable
and generalizable brain–computer interfaces and for advancing brain-inspired artificial intelligence.
Looking ahead, further work may explore adaptive strategies to better mitigate inter-subject vari-
ability, extending the reach of this paradigm to broader real-world applications.
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A APPENDIX

This manuscript is the authors’ original work. Except for minor English grammar checking with
ChatGPT, no large language model or AI tool was used for idea generation, problem formulation,
literature search or screening, methodology design, code implementation, data processing, experi-
mental design, statistical analysis, figure or table drafting, or substantive writing. All intellectual
contributions, including conceptualization, model design, and empirical evaluation, are solely those
of the authors.
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