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ABSTRACT

We investigate deep generative models that can exchange multiple modalities bi-
directionally, e.g., generating images from corresponding texts and vice versa.
Recently, some studies handle multiple modalities on deep generative models.
However, these models typically assume that modalities are forced to have a
conditioned relation, i.e., we can only generate modalities in one direction. To
achieve our objective, we should extract a joint representation that captures high-
level concepts among all modalities and through which we can exchange them
bi-directionally. As described herein, we propose a joint multimodal variational
autoencoder (JMVAE), in which all modalities are independently conditioned on
joint representation. In other words, it models a joint distribution of modalities.
Furthermore, to be able to generate missing modalities from the remaining modal-
ities properly, we develop an additional method, JMVAE-kl, that is trained by
reducing the divergence between JMVAE’s encoder and prepared networks of re-
spective modalities. Our experiments show that JMVAE can generate multiple
modalities bi-directionally.

1 INTRODUCTION

In our world, information is represented through various modalities and people often exchange such
information bi-directionally. To do so, it is important to extract a joint representation that cap-
tures high-level concepts among all modalities. Deep neural network architectures have been used
widely for multimodal learning by sharing the top of hidden layers in modality specific networks
as joint representations (Ngiam et al., 2011; Srivastava & Salakhutdinov, 2012). Among them, gen-
erative approaches using deep Boltzmann machines (DBMs) (Srivastava & Salakhutdinov, 2012;
Sohn et al., 2014) offer the important advantage that these can generate modalities bi-directionally.

Recently, variational autoencoders (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014) have
been proposed to estimate flexible deep generative models by variational inference methods.
These models can be trained on large-scale and high-dimensional dataset compared with DBMs
with MCMC training. However, some previous studies (Kingma et al., 2014; Sohn et al., 2015;
Pandey & Dukkipati, 2016) are forced to model conditional distribution. Therefore, it can only gen-
erate modalities in one direction.

We develop a novel multimodal learning model with VAEs, which we call a joint multimodal vari-
ational autoencoder (JMVAE). The most significant feature of our model is that all modalities, x
and w (e.g., images and texts), are conditioned independently on a latent variable z correspond-
ing to joint representation, i.e., the JMVAE models a joint distribution of all modalities, p(x,w).
Therefore, we can extract a high-level representation that contains all information of modalities.
Moreover, since it models a joint distribution, we can draw samples from both p(x|w) and p(w|x).
Because, at this time, modalities that we want to generate are usually missing, the inferred latent
variable becomes incomplete and generated samples might be collapsed in the testing time when
missing modalities are high-dimensional and complicated. To prevent this issue, we propose a
method of preparing the new encoders for each modality, p(z|x) and p(z|w), and reducing the
divergence between the multimodal encoder p(z|x,w), which we call JMVAE-kl. This contributes
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to more effective bi-directional generation of modalities, e.g., from face images to texts (attributes)
and vice versa.

2 PROPOSED METHOD

We consider i.i.d. dataset (X,W) = {(x1,w1), ..., (xN ,wN )}, where two modalities x and w

have different kinds of dimensions and structures. Our objective is to generate two modalities bi-
directionally. For that reason, we assume that these are conditioned independently on the same latent
concept z: joint representation. Therefore, we assume their generating processes as z ∼ p(z) and
x,w ∼ p(x,w|z) = pθx(x|z)pθw (w|z), where θx and θw represent the model parameters of each
independent p. One can see that this models joint distribution of all modalities, p(x,w). Therefore,
we designate this model as a joint multimodal variational autoencoder (JMVAE).

Considering an approximate posterior distribution as qφ(z|x,w), we can estimate a lower bound of
the log-likelihood log p(x,w) as follows:

LJM (x,w) = −DKL(qφ(z|x,w)||p(z)) + Eqφ(z|x,w)[log pθx(x|z)] + Eqφ(z|x,w)[log pθw(w|z)]. (1)

To optimize the lower bound L(x) with respect to parameters, we estimate gradients of Equation 1
using stochastic gradient variational Bayes (SGVB).

In the JMVAE, we can extract joint latent features by sampling from the encoder qφ(z|x,w) at
testing time. Our objective is to exchange modalities bi-directionally, e.g., images to texts and vice
versa. In this setting, modalities that we want to sample are missing, so that inputs of such modalities
are set to zero. However, if missing modalities are high-dimensional and complicated such as natural
images, then the inferred latent variable becomes incomplete and generated samples might collapse.

We propose a method to solve this issue, which we designate as JMVAE-kl. Suppose that we have
encoders with a single input, qφx

(z|x) and qφw
(z|w), where φx and φw are parameters. We would

like to train them by bringing their encoders close to an encoder qφ(z|x,w). Therefore, the object
function of JMVAE-kl becomes

LJMkl(α)(x,w) = LJM (x,w) − α · [DKL(qφ(z|x,w)||qφx
(z|x)) +DKL(qφ(z|x,w)||qφw

(z|w))], (2)

where α is a factor that regulates the KL divergence terms.

3 EXPERIMENTS

In this experiment, we used CelebA (Liu et al., 2015) dataset. CelebA consists of 202,599 color
face images and corresponding 40 binary attributes such as male, eyeglasses, and mustache. In this
work, we regard them as two modalities. Beforehand, we cropped the images to squares and resized
to 64 × 64 and normalized. In this experiment, we trained the JMVAE-kl (α = 0.1) lower bound
as JMVAE. In order to generate clearer images, we combined JMVAE with generative adversarial
networks (GANs) (Goodfellow et al., 2014) in the same way as a VAE-GAN model (Larsen et al.,
2015). The models were implemented using Theano (Team et al., 2016), Lasagne (Dieleman et al.,
2015) and Tars1. Our code is available online2.

Table 1 presents the evaluations of marginal and conditional log-likelihood. We compare the test
marginal log-likelihood against VAEs (Kingma & Welling, 2013; Rezende et al., 2014) and the test
conditional log-likelihood against CVAEs (Kingma et al., 2014; Sohn et al., 2015) and CMMAs
(Pandey & Dukkipati, 2016). Just like the JMVAE setting, we combine all competitive models with
GAN. From this table, it is apparent that values of both marginal and conditional log-likelihood with
JMVAEs are larger than those with other competitive methods.

Next, we confirm that JMVAE can generate images from attributes. Figure 1(a) portrays generated
faces conditioned on various attributes. We find that we can generate an average face of each attribute
and various random faces conditioned on a certain attributes. Figure 1(b) shows that samples are
gathered for each attribute and that locations of each variation are the same irrespective of attributes.
From these results, we find that manifold learning of joint representation with images and attributes
works well.

1https://github.com/masa-su/Tars
2https://github.com/masa-su/jmvae
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Table 1: Evaluation of log-likelihood : left, marginal log-likelihood; right, conditional log-likelihood.
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Figure 1: (a) Generation of average faces and corresponding random faces. We first set all values of attributes
{−1, 1} randomly and designate them as Base. Then, we choose an attribute that we want to set (e.g., Male,
Bald, Smiling) and change this value in Base to 2 (or −2 if we want to set ”Not”). Each column corresponds
to same attribute according to legend. Average faces are generated from p(x|zmean), where zmean is a mean
of q(z|w). Moreover, we can obtain various images conditioned on the same values of attributes such as
x ∼ p(x|z), where z = zmean + σ ⊙ ǫ, ǫ ∼ N (0, ζ), and ζ is the parameter which determines the range
of variance. Each row in random faces has the same ǫ. (b) PCA visualizations of latent representation. Colors
indicate which attribute each sample is conditioned on.

Finally, we demonstrate that JMVAE can generate bi-directionally between faces and attributes.
Figure 2 shows that JMVAE can generate both attributes and changed images conditioned on various
attributes from images which had no attribute information. This way of generating an image by
varying attributes is similar to the way of the CMMA (Pandey & Dukkipati, 2016). However, the
CMMA cannot generate attributes from an image because it only generates images from attributes
in one direction.

4 CONCLUSION

In this paper, we introduced a novel multimodal learning model with VAEs, the joint multimodal
variational autoencoders (JMVAE). In this model, modalities are conditioned independently on joint
representation, i.e., it models a joint distribution of all modalities. We further proposed the method
(JMVAE-kl) of reducing the divergence between JMVAE’s encoder and a prepared encoder of each
modality to prevent generated samples from collapsing when modalities are missing. We con-
firmed that the JMVAE can obtain appropriate joint representations and high log-likelihoods on
CelebA datasets. Moreover, we demonstrated that the JMVAE can generate multiple modalities
bi-directionally.

Male : 0.95
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Figure 2: Portraits of the Mona Lisa (upper) and Mozart (lower), generated their attributes, and reconstructed
images conditioned on varied attributes, according to the legend. We cropped and resized it in the same way
as CelebA. The procedure is as follows: generate the corresponding attributes w from an unlabeled image x;
generate an average face xmean from the attributes w; select attributes which we want to vary and change the
values of these attributes; generate the changed average face x

′

mean
from the changed attributes; and obtain a

changed reconstruction image x
′ by x+ x

′

mean
− xmean.
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A TEST LOWER BOUNDS

A lower bound used to estimate test marginal log-likelihood log p(x) of the JMVAE are as follows:

L(x) = Eqφ(z|x,w)[log
pθx(x|z)p(z)

qφ(z|x,w)
]. (3)

We can also estimate test conditional log-likelihood log p(x|w) from this lower bound as
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L(x|w) = Eqφ(z|x,w)[log
pθx(x|z)pθw (w|z)p(z)

qφ(z|x,w)
]− log p(w), (4)

where log p(w) = logEp(z)[pθw(w|z)] = log 1
Nw

∑Nw

i pθw(w|z(i)) and z
(i) ∼ p(z). In this paper,

we set Nw = 10.

We can obtain a tighter bound on the log-likelihood by k-fold importance weighted sampling
(Burda et al., 2015). For example, we obtain an importance weighted bound on log p(x) from Equa-
tion 3 as follows:

log p(x) ≥ E
z1,...,zk∼qφx (z|x,w)[log

1

k

k∑

i=1

pθx(x|z)p(z)

qφx
(z|x,w)

] = Lk(x). (5)
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