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ABSTRACT

Single image face relighting is the challenging problem of estimating the illumi-
nation cast on images by a point light source varying in position, intensity and
possibly colour. Learning the relationship between the light source properties
and the face location is critical to the photo-realism of the estimated relit im-
age. Prior works do not explicitly model this relationship which adversely affects
the accuracy and photo-realism of the estimated relit image. We present a novel
framework that explicitly models this relationship by integrating a novel light fea-
ture embedding with self-attention and cross attention layers in a custom image
relighting network. Our proposed method estimates more photo-realistic relit im-
ages with accurate shadows and outperforms prior works despite being trained
only on synthetic data. Our method is able to generalize to out-of-training light
source positions and also achieves unsupervised adaptation from synthetic to real
images.

1 INTRODUCTION

Single image face relighting is the complex problem of changing the illumination in the source
image according to a given target light direction. It is an active area of research in computer vision
and has applications in various domains such as face recognition (Le & Kakadiaris, 2019; Huang
et al., 2020; Qing et al., 2004), background lighting transfer (Nestmeyer et al., 2020; Pandey et al.,
2021) and image editing Li et al. (2018); Luan et al. (2017); Shih et al. (2014).

Two crucial aspects of face relighting are accurate rendering of shadows and preserving of facial
details. A popular approach for single image face relighting is to rely on the estimated image intrin-
sics such as albedo and surface normal for relighting the image (Zhou et al., 2019; Hou et al., 2021;
2022). Additional information such as shadow masks (Hou et al., 2021) or face geometry (Hou
et al., 2022) can be used to improve accuracy of estimated shadows. While these methods work
well, the estimated relit images are not photo-realistic since the models have been trained on the
inexact ground truth images in the DPR dataset (Zhou et al., 2019), and they estimate only the lu-
minance channel & append colour channels from the input image. Some have tried to address these
limitations by training on a new relighting dataset in a two-stage pipeline (Pidaparthy et al., 2024).
While the shadows are sharp, they are often not photo-realistic.

None of the prior works explicitly addressed the fundamental challenge of image relighting, which is
learning the complex relationship between light source information and face location & orientation.
Ponglertnapakorn et al. (2023) tried to implicitly learn this relationship using the prior knowledge
of large diffusion models, however their approach significantly increased the computation cost and
inference time. Further, prior works only explore relighting with white colour light and lack a
method to incorporate light colour.

To address these limitations, we designed a novel lighting embedding that allows joint modelling of
the light source properties, which are the position, colour and intensity. We propose a novel lighting
network that enables the model to learn the relationship between light source position, intensity and
colour. This representative light feature is then combined with image features in a residual convo-
lutional autoencoder. By integrating self-attention and cross-attention layers at multiple resolutions,
the network allows for learning the relationship between light features and image features. These
combined features are passed to a residual decoder which estimates the relit image. The pipeline
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of our proposed image relighting network is shown in Fig 1. Through extensive experimental vali-
dation, we show that our method outperforms other SOTA methods and that our model generalizes
very well to out-of-training light source properties. Additionally, we are able to achieve unsuper-
vised adaptation from synthetic to real images.

Figure 1: The proposed image relighting network architecture for face relighting is shown. The
target light source properties are input to a lighting network which extracts light features. The RGB
image and luminance channel are input to a residual encoder which learns the image features and
combines them with the light features in a residual decoder to estimate the relit image. Multi-head
attention layers are used to explicitly model the relationship between the light source and input
image (face). Figure is best viewed in colour.

In summary, our contributions are:

• A novel light feature embedding that allows for joint modelling of the light properties
(position, intensity and colour). This embedding provides an approach that can be easily
extended to any other light properties.

• A novel lighting network that enables the network to explicitly learn the relationship be-
tween the light source position, intensity and colour.

• A novel image relighting network that explicitly models the relationship between the light
source properties and face location & orientation.

2 PRIOR WORK

There are broadly four types of approaches explored for face relighting: 1) intrinsic image de-
composition and rendering (Barron & Malik, 2014; Egger et al., 2018; Genova et al., 2018; Le &
Kakadiaris, 2019; Lee & Lee, 2020; Lee et al., 2005; Li et al., 2014; Lin et al., 2020; Nestmeyer
et al., 2020; Sengupta et al., 2018; Shahlaei & Blanz, 2015; Shu et al., 2017; Tewari et al., 2017;
Tran et al., 2019; Tran & Liu, 2018; 2019; Wang et al., 2008; Yamaguchi et al., 2018), 2) image-to-
image translation (Atoum et al., 2020; Tewari et al., 2021; Liu et al., 2021; Sun et al., 2019), 3) style
transfer (Li et al., 2018; Luan et al., 2017; Shih et al., 2014; Shu et al., 2017; Pandey et al., 2021;
Ponglertnapakorn et al., 2023; Yeh et al., 2022) and 4) ratio image estimation (Peers et al., 2007;
Shashua & Riklin-Raviv, 2001; Wen et al., 2003; Stoschek, 2000).

Given an input image and light source position, the intrinsic image decomposition methods aim to
estimate components such as albedo, surface normal, reflectance and lighting. These components
are then used to render a relit image based on the light source position. The effectiveness of these
methods heavily depends on the accuracy of each intrinsic map and a cascading of the estimation
errors results in relit images that lack high frequency details and may contain artefacts.

To address the issue of cascading errors, some approaches have framed relighting as an image-to-
image translation task. Although these methods can estimate relit images with varying accuracy (Sun
et al., 2019; Zhou et al., 2019), they struggle with inaccurate shadow predictions and adapting to

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

different light intensities. Another approach to relighting is image style transfer (Li et al., 2018;
Luan et al., 2017), where both source and references images are provided as inputs and the lighting
of the reference image is transferred to the source image. Some have explored using environment
lighting maps of a reference image to transfer lighting to a source image (Pandey et al., 2021;
Ponglertnapakorn et al., 2023; Yeh et al., 2022). However, these approaches require high-quality
non-occluded source and reference image pairs with diverse lighting variations, and ground truth
environment lighting maps which can be expensive to obtain. In contrast, our method does not
require any reference images or environment maps and can relight an image for any given light
source position.

Some approaches have focused on learning a per-pixel multiplier map by estimating the ratio be-
tween the source and target images. However, these approaches require multiple input images (Peers
et al., 2007; Shashua & Riklin-Raviv, 2001) or both source and target images (Stoschek, 2000) at
inference, which limits their suitability for real-world applications.

Accurate estimation of shadows is critical to face relighting. Towards this end, some methods learn
a weightage function on the estimated shadow mask (Hou et al., 2021), while some others have used
ray-tracing to estimate the shadows approaches have explored the utility of a shadow pixels (Hou
et al., 2022). While these methods estimate shadows with reasonable accuracy, the relit images
often lack photo-realism due to hard boundaries in the shadow regions, whereas real shadows are
softer and have diffused edges. Some have tried to overcome these limitations by improving the
quality of the training dataset and combing attention features at multiple scales (Pidaparthy et al.,
2024), however the estimated relit images has colour artefact issues and the performance suffers on
input images with existing shadows. Another approach tried to leveraged the knowledge of large
diffusion models (Ponglertnapakorn et al., 2023), but this method comes at a significant increase
in computational costs and inference time. Also, several pre-processing blocks further increase the
inference time.

We address several limitations of the prior work and propose a lightweight network architecture for
fast inference on edge devices. We believe that incorporating light colour can improve the model per-
formance. Hence, we design a novel light embedding that allows the model to learn the correlation
between light source position, intensity and colour. Next, we design a novel network architecture
that explicitly learns the relationship between the light source information and face location & ori-
entation. This enables the model to accurately learn the face illumination and shadow strength, and
thus, estimate a photo-realistic relit image.

3 DATASET

We obtained training and test datasets from Pidaparthy et al. (2024). We made a few important mod-
ifications to their dataset preparation strategy that significantly improved the quality of the ground
truth dataset.

We believe that incorporating light colour information during training can improve the illumination
on the face and reduce the colour artefacts in estimated relit images. Since there are no publicly
available relighting datasets with coloured lighting, we generated our own dataset using the syn-
thetic OLAT lighting rig in Blender software (Pidaparthy et al., 2024). Our dataset consisted of 7
maximally separated light colours: White (255, 255, 255), Red (255, 0, 0), Green (0, 255, 0), Blue
(0, 0, 255), Yellow (255, 255, 0), Magenta (255, 0, 255) and Cyan (0, 255, 255). Sample images
from the training dataset are seen in Fig 2.

Next, we manually corrected the offset of the 3D models and aligned the face location all of models
to be the same in the synthetic lighting rig. This ensured uniformity when augmenting the training
dataset through rotation or displacement of the subject positions (3D models), which made it easier
for the model to learn the relationship between light source information and face location & orienta-
tion. Additionally, we also modified the 3D models to have less reflective surfaces and cast sharper
shadows. This significantly improved the photo-realism of the ground truth relit images.

The light source properties are represented as a 7D tuple of (x, y, z, i, r, g, b) where (x, y, z), i and
(r, g, b) refers to the light position, intensity and colour, respectively. Using the same strategy as that
in Pidaparthy et al. (2024), we sample the light position from a unit volume such that x ∈ [−1,+1],
y ∈ [0.4, 1] and z ∈ [−1,+1]. The intensity (i) is varied such that i ∈ [0.4, 1]. The X-Z plane
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is in the front of the 3D human model (face) and Y -direction indicates the frontal distance of the
3D human model from the light source. We generated 3,000 input-relit image pairs for each 3D
human model while randomly varying the light source position, intensity and colour. We augmented
the training dataset through left-right rotation of the 3D human models and changing the relative
position between the 3D model and the camera.

Figure 2: Sample images from the ground truth dataset. Top row: Input images; Middle row: Light
source position; Bottom row: Ground truth relit images. Figure best viewed in colour.

4 IMAGE RELIGHTING NETWORK

A key challenge in face relighting is precisely estimating the illumination and shadows cast on the
face by a light source. This involves learning the complex relationship between the face location &
orientation and the light source properties. In this section, we describe our novel lightweight image
relighting network (Fig1) that achieves two goals: 1) accurate estimation of shadows and illumina-
tion on the face and 2) efficient inference on edge devices. To achieve this, we propose a novel light
embedding that jointly models the light source properties. We train a lighting network that learns the
correlation between the light source position, intensity and colour. These embeddings are combined
with image features, learnt using a residual convolutional autoencoder, in cross-attention blocks that
capture the relationship between light and face information. The combined features are then passed
to a decoder to generate a photo-realistic relit image.

4.1 LIGHTING NETWORK

Most prior work encoded only the light source position using a 9-dimensional Spherical Harmonics
(SH) vector, which captures the maximum variance of the light source position moving along a unit
sphere (Zhou et al., 2019; Hou et al., 2021; 2022; Ponglertnapakorn et al., 2023). More recent works
have appended light source intensity to obtain a 10-D SH vector (Pidaparthy et al., 2024). The SH
vector is passed to a lighting network to obtain the light features.

Although SH vectors are helpful for handling variations in the light positions across a sphere, they
have some limitations. The SH vector models only the light source position. Even when intensity
is appended, they fail to capture the correlation between the light source position and intensity. The
illumination on an image depends on both position and intensity since a high-intensity light farther
from the face and low-intensity light closer to the face might cast similar illuminations. Our initial
experiments showed that the SH vector might not be adequate to model the wider range of variations
in light source positions and intensities. Additionally, SH vector does not account for light colour,
which we believe is crucial for improving the accuracy of illumination on the face and reducing the
colour artefacts. This necessitates a more comprehensive light embedding that jointly models the
light source properties and provides a rich representation of the correlation between them.
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Towards this end, we propose a more complex representation for the 7D light source tuple that
can be easily extended to any other properties of the light source. Our proposed encoding for the
position, intensity and colour of the light is inspired by the positional encoding used in vision trans-
formers (Dosovitskiy et al., 2020; Vaswani et al., 2017).

Let l = (x, y, z, i, r, g, b) be the target light source 7D tuple. The x-position is encoded by a vector
of dimension d = 128, which we denote as Lx. The components of Lx are

Lx(2j) = sin
( x

n2j/d

)
and Lx(2j + 1) = cos

( x

n2j/d

)
(1)

where n = 10, 000 is a scaling factor and j is the index position of the array Lx such that 0 ≤ j ≤
d/2− 1. Odd positions are represented by a sine function and even positions by cosine function.

In a similar manner, we compute the embeddings for the other 6 components which we denote as Ly ,
Lz , Li, Lr, Lg and Lb (Fig 3a). We concatenate the seven embeddings to obtain an 896-dimensional
light embedding, L∗ = [Lx Ly Lz Li Lr Lg Lb]. Instead of using a Multi Layer Perceptron (MLP)
for computing the light features like prior works have done, we use a convolutional network that
reduces the number of computations and optimizes the inference time on edge devices. We zero-pad
the light embedding (L∗) and reshape them to a 1×32×32 image. This image is passed to a lighting
network (Fig 3(b)) which consists of an encoder and decoder module both having three convolution
layers with 32, 128 and 512 channels. After each convolution layer, Multi DConv Head Attention
(MDHA) modules ((Pidaparthy et al., 2024)) with self-attention layers1 are used. This enables the
network to learn the correlation between the light source position, intensity and colour. The output
of the encoder is a 128 × 16 × 16 image which is passed through an MDHA module to obtain the
light features (XL) that are combined with image features in a residual convolutional autoencoder.

(a) (b)

Figure 3: (a) For each component of target light 7D tuple, we compute a novel light embedding
which is then concatenated and reshaped to obtain the target light embedding (L∗). (b) The proposed
light network consists of an encoder and decoder, each having three convolutional layers (indicated
in blue) with a MDHA module is used after each convolutional layer. The light features (XL) is
computed on the output of the encoder module.

4.2 RESIDUAL CONVOLUTIONAL AUTOENCODER

We trained a modified ResNet-34 based residual convolutional autoencoder to estimate the relit
image (Fig 4). The input data (ID) has 4 channels: RGB image (IRGB) and luminance channel
(IL). The input data is passed to the encoder which consists of four ResNet blocks having 16, 32,
64 and 128 channels, respectively. The feature maps are downscaled by half after each block. The
128-D image features (XI ) output by the encoder are added with the light features (XL) as seen in
Fig 4. The combined output is then passed through a decoder that estimates the relit image. The
decoder is a mirror of the encoder and consists of four ResNet blocks having 128, 64, 32 and 16
channels, respectively, and the feature maps are upscaled by a factor of 2 after each block. Multi
DConv Head Attention (MDHA) modules (Pidaparthy et al., 2024) have been used at each level of
the skip connection since they help preserve fine-grained facial details.

The two main goals of the residual convolutional autoencoder are: 1) learn the relationship between
face location & orientation and light source information; and 2) estimate accurate and photo-realistic
relit images. None of the prior works tried to explicitly learn the rich and dense relationship between
the light source information and the face location & orientation. We propose to use cross-attention

1These modules are indicated as MDHA-S4, S5, S6, S7 and S8.
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Figure 4: The architecture of the proposed residual convolutional autoencoder is shown. The en-
coder and decoder consists of four ResNet blocks each (indicated in blue). Five MDHA modules
are used at each level of the skip connections between the encoder and decoder. The light features
are passed to the cross-attention layers of two MDHA modules (indicated with grey lines).

layers in the MDHA modules to learn the relationship between the light source information and face
location, and then leverage this understanding at higher resolutions of the decoder to improve the
accuracy and photo-realism of the estimated relit image.

Recall that the deeper layers in a deep neural network (lower resolution layers) learn high-level
image features, while the earlier layers in the network (high resolution layers) learn low-level images
features. Thus, to explicitly learn the complex relationship between light source properties and face
location & orientation, we propose to use cross-attention layers in the MDHA modules at lower
resolutions as seen in Fig 42. The output of these MDHA modules are the composite features
(obtained by combining the image and light features) which are computed as

Q = Wq XI K = Wk XL V = Wv XL XC = softmax
(
QKT

√
dk

)
V (2)

where Q, K, V denote the query, key and value matrices, respectively (Vaswani et al., 2017; Doso-
vitskiy et al., 2020). Wq , Wk, Wv denote the learned weight matrices and XI , XL denote the image
and light features. XC denotes the composite feature representation obtained by combining the light
and image features. We estimate the query from the image features and the key-value pairs from the
light features.

The output features of the “MDHA-C1” and “MDHA-C2” layers are the passed to the higher reso-
lution layers for refining the fine-grained facial details. Hence, self-attention layers are used in the
MDHA modules at higher resolution (see “MDHA-S1” and “MDHA-S2” in Fig 4). This ensures
that the decoder estimates a more photo-realistic image with accurate shadows and illumination.

4.3 TRAINING LOSSES

We used three different losses for training the image relighting network: 1) lighting loss, 2) image
reconstruction loss and 3) VGG loss.

All prior works have trained the lighting network to optimize the MSE loss on the 9-D or 10-D SH
vector. However, MSE is sensitive to the magnitude of the vectors and hence, it can be misleading
when calculating the distance between two vectors. Further, changes in components of the light
vector have more effect on the output results than other components. MSE might not be able to
accurately capture this. Hence, we used the cosine dissimilarity metric to measure the distance
between the estimated and ground truth light embeddings.

Let L∗ be the light embedding for the target light source 7D tuple (ground truth). Let L̂ = NL(L
∗)

be the estimated light embedding, where NL refers to the lighting network. We define the light loss
2“MDHA - S1’ and “MDHA - C1” denote to the MDHA modules with self-attention layers and cross-

attention layers.
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as

Llight = 1.0− L∗ . L̂

||L∗|| ||L̂||
(3)

We measured the image reconstruction loss at both global (Lglobal) and local (Llocal) scales. The
image reconstruction loss had two components: 1) structural dissimilarity (DSSIM) loss (Ldssim)
and 2) smooth L1 loss (Lsmooth). We define DSSIM loss as Ldssim = 1−SSIM

2 , where SSIM
score is computed using the built-in PyTorch function to compute the SSIM score.

We define the smooth L1 loss as

Lsmooth(R
∗, R̂) =

{
(R∗ − R̂)2 if |R∗ − R̂1| < 0.5,

|R∗ − R̂| − 0.25 otherwise
(4)

where R∗ and R̂ = NR(ID) are the ground truth and estimated relit images, respectively. NR and
ID refer to the residual convolutional autoencoder and the 4-channel input data, respectively. To
compute the loss at local scales, we divided the image into 128 × 128 pixel patches, overlapping
by 50%. Let P ∗ and P̂ be the image patches from the ground truth and estimated relit images,
respectively. We define the global and local image reconstruction losses as

Lglobal = λ1 Lsmooth(R
∗, R̂) + λ2 Ldssim(R∗, R̂) (5)

Llocal =
∑
k

λ3 Lsmooth(P
∗, P̂1) + λ4 Ldssim(P ∗, P̂ ) (6)

where k is the total number of patches.

We also computed the VGG loss (Lvgg) using the output of the first three convolutional blocks of
the pre-trained VGG-19 network (Simonyan & Zisserman, 2014) (Nvgg). The VGG loss is defined
as

Lvgg = 1.0 ∗ ||Nvggb1(R
∗)−Nvggb1(R̂)||22 + 0.8 ∗ ||Nvggb2(R

∗)−Nvggb2(R̂)||22
+ 0.6 ∗ ||Nvggb3(R

∗)−Nvggb3(R̂)||22 (7)

where Nvggb1 , Nvggb2 and Nvggb3 are the output of the first, second and third convolutional blocks.

Thus, the final loss used for training the image relighting network was

Lfinal = Lglobal + Llocal + λ5 Llight + λ6 Lvgg (8)

where λ1 = λ5 = 1, λ2 = λ3 = λ6 = 10 and λ4 = 100 are the weights for each loss term.

4.4 TRAINING DETAILS

Unlike prior works, we do not estimate any image instrinsic map nor do we use any additional
networks during training. Our single-stage pipeline is able to estimate photo-realistic relit images
with high accuracy and achieve unsupervised domain adaptation from synthetic to real images. We
achieve this using specific data augmentation techniques while preparing the training dataset.

We generating the training dataset, we randomly apply left-right rotation on the 3D model of
r ∈ [−60,+60] degrees. We also vary the position of the 3D model w.r.t the camera by a dis-
placement of dx ∈ [−0.3,+0.3] and dz ∈ [−0.3,+0.3] along X and Z directions, respectively.
Further, we used two different types of data augmentation during training: 1) image flipping and 2)
brightness and contrast jitter. The image is flipped horizontally (left-right mirroring) and the light
source position is appropriately updated. The brightness and contrast of the RGB image are adjusted
by an additive factor of b and multiplicative factor of c, where b ∈ [−20,+20] and c ∈ [0.8, 1.2].
These augmentations result in a training dataset that captures multiple different variations of the
input images and thus, improves the generalization of the model to real images.

The image relighting network was trained on a dataset of 21,000 images and validated on 3,000
images. The input data to the residual convolutional autoencoder consisted of 4-channels - RGB
image (IRGB) and luminance channel (IL), which were resized to 512 × 512 pixels. The input to
the lighting network was the light features embedding computed on the target light source 4D tuple.

7
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The training loss was optimized using Adam optimizer (Kingma & Ba, 2014) with L2 regularization
of 0.01. The initial learning rate of 1e − 5 was decayed by a factor of 0.9 after each epoch and the
network was trained for 30 epochs with a batch size of 8. In a manner similar to all prior works, we
also work with the segmented foreground region. We used the segmentation masks obtained using
the pre-trained Mask R-CNN (He et al., 2017) model in PyTorch.

5 RESULTS

We discuss the quantitative and qualitative performance of our model in this section. We evaluated
the quantitative performance of the model on two real image test datasets provided by Pidaparthy
et al. (2024): 1) Multi-Pie (MP) test dataset and 2) Real Human (RH) test dataset. The Multi-pie
dataset (Gross et al., 2010) has 6,474 images, captured using 249 subjects with 2 different expres-
sions and 13 different light source positions. The Real human dataset consisted of 432 images with
6 different subjects and 72 images per subject. This dataset consisted of significantly different out-
of-training light source positions, which tested the generalization capabilities of the models. For a
fair comparison with prior works, we evaluated our model on these datasets that used white coloured
light.

We compared the performance of our model against four prior works (Zhou et al., 2019; Hou et al.,
2021; 2022; Pidaparthy et al., 2024). All these methods estimated the relit image given a single input
image and the target light source position3. Additionally, they are also lightweight for fast inference
on edge devices. We quantified the performance using three metrics: 1) MSE, 2) DSSIM4 and 3)
LPIPS (Zhang et al., 2018). Both DSSIM and LPIPS have been shown to be highly correlated with
the perceptual quality of the images (Nestmeyer et al., 2020; Zhang et al., 2018). The quantitative
results can be seen in Table 1.

Model Trained on
real images

# training
examples Dataset MSE ↓ DSSIM ↓ LPIPS ↓

Zhou et al. (2019) ✓ 135,000 RH 0.0716 0.2988 0.3736
Hou et al. (2021) ✓ 180,000 RH 0.0090 0.1906 0.2650
Hou et al. (2022) ✓ 180,000 RH 0.0152 0.0787 0.1522

Pidaparthy et al. (2024) ✗ 21,000 RH 0.0049 0.0336 0.0741
Ours ✗ 21,000 RH 0.0043 0.0307 0.0701

Zhou et al. (2019) ✓ 135,000 MP 0.0845 0.3548 0.4389
Hou et al. (2021) ✓ 180,000 MP 0.0125 0.2801 0.2538
Hou et al. (2022) ✓ 180,000 MP 0.0118 0.2850 0.2607

Pidaparthy et al. (2024) ✗ 21,000 MP 0.0096 0.0639 0.1361
Ours ✗ 21,000 MP 0.0079 0.0587 0.1323

Table 1: Performance comparison of our model against prior works on two real image test datasets:
1) Real Human test dataset (RH) and 2) Multi-Pie dataset (MP).

Our model outperforms all the prior works on both real image test datasets. All the metrics are
substantially lower than the prior works, indicating that our estimated relit images are much more
accurate and photo-realistic. Despite training on multiple different light colours as compared to
prior work, our method is able to outperform all prior works on white light. We used a similar
training dataset to that used by Pidaparthy et al. (2024)5, and our model significantly outperforms
their work, especially on the challenging Multi-pie (MP) dataset. This shows the benefits of our
design choices which include a novel light embedding and a network architecture that explicitly
learns the relationship between the light source information and face location & orientation. As the
real human (RH) test dataset consists of out-of-training light source positions, the metrics indicate
that our model generalizes significantly better than prior works to these new light positions.

The qualitative results shown in Fig 5 backs up the findings in Table 1. We observed that the
illumination on the face and accuracy of the shadows are significantly better than prior works. In

3All prior works used only (x, y, z) except Pidaparthy et al. (2024) who used (x, y, z, i).
4We compute DSSIM as DSSIM = 1−SSIM

2
where SSIM measures the structural similarity.

5We mainly added the light colour as an additional component.
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Figure 5: Qualitative comparison of our model against other methods on the real human test dataset
(RH) (columns 1, 2), Celeb-FFHQ dataset (columns 3-5) and Multi-pie dataset (MP) (last column).
Rows 1 and 2 are the input image and light source position; rows 3-6 are the results from Zhou et al.
(2019), Hou et al. (2021), Hou et al. (2022) and Pidaparthy et al. (2024); rows 7 and 8 are our results
and ground truth relit images. We do not have ground truth relit images on the Celeb-FFHQ dataset.
Images are best viewed in colour.

many of the prior works, the shadows are incorrectly cast across the forehead. Our method is able
to illuminate the face correctly. We also observed that the estimated relit images from our method
have significantly improved the colour artefacts issues observed in prior works (see Fig 5 columns
3,4,6). This shows the benefits of modelling the light colour in addition to position and intensity.
Our method is also able to handle directional lighting and shadows on the input images much better
than prior works (see Fig 5 column 3, 5) since we specifically learn the relationship between input
features and light features.
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Fig 6 shows the generalization of our model across different light source colours. We observe that the
model is able to apply light colour appropriately and generate accurate shadows (see Fig 6 columns 1
and 2). Our method is able to generalize across a variety of input images that have different ambient
lighting and directional shadows, and different facial structures & ethnicities.

Figure 6: Qualitative results from our model for different colours of target light source. Top row:
input images; middle row; light source position and last row: predicted results.

6 LIMITATIONS FUTURE WORK

We have shown the effectiveness of our methods for accurately modelling shadows and generating
photo-realistic relit images. However, there are some limitations of the model. Currently, a seg-
mentation mask is used at inference to segment the foreground object (human) which is passed as
input to the model. One possible future extension of this work is to automatically localize the face
in the input image and relight the image without using any foreground segmentation mask. Another
possible extension is to capture the effect of multiple light sources by modelling their effect as a
single composite light source.

7 CONCLUSION

We proposed a novel approach for face relighting given a single image and a light source position.
We used a novel light embedding that jointly modelled the light source position, intensity and colour.
The network enables learning the correlation between these parameters. We used cross-attention
layers in the convolutional autoencoder to explicitly learn the relationship between the light source
properties and the face location. Qualitative results show the benefit of various design choices and
our model generates photo-realistic relit images. Our model is also able to easily generalize across
multiple different coloured lighting. Quantitative analysis showed that our model outperforms SOTA
methods on two challenging real image datasets. Our model is lightweight and has only 9.4M
parameters.
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