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ABSTRACT

We propose a novel regularizer to improve the training of Generative Adversarial
Networks (GANs). The motivation is that when the discriminatorD spreads out its
model capacity in the right way, the learning signals given to the generator G are
more informative and diverse. These in turn help G to explore better and discover
the real data manifold while avoiding large unstable jumps due to the erroneous
extrapolation made by D . Our regularizer guides the rectifier discriminator D to
better allocate its model capacity, by encouraging the binary activation patterns on
selected internal layers of D to have a high joint entropy. Experimental results on
both synthetic data and real datasets demonstrate improvements in stability and
convergence speed of the GAN training, as well as higher sample quality. The ap-
proach also leads to higher classification accuracies in semi-supervised learning.

1 INTRODUCTION

Generative Adversarial Network (GAN) (Goodfellow et al., 2014) has been a new promising ap-
proach to unsupervised learning of complex high dimensional data in the last two years, with suc-
cessful applications on image data (Isola et al., 2016; Shrivastava et al., 2016), and high potential
for predictive representation learning (Mathieu et al., 2015) as well as reinforcement learning (Finn
et al., 2016; Henderson et al., 2017). In a nutshell, GANs learn from unlabeled data by engaging the
generative model (G ) in an adversarial game with a discriminator (D ). D learns to tell apart fake
data generated by G from real data, while G learns to fool D , having access to D ’s input gradient.

Despite its success in generating high-quality data, such adversarial game setting also raises chal-
lenges for the training of GANs. Many architectures and techniques have been proposed (Radford
et al., 2015; Salimans et al., 2016; Gulrajani et al., 2017) to reduce extreme failures and improve
the sample quality of generated data. However, many theoretical and practical open problems still
remain, which have impeded the ease-of-use of GANs in new problems. In particular, G often fails
to capture certain variation or modes in the real data distribution, while D fails to exploit this failure
to provide better training signal for G, leading to subtle mode collapse. Recently Arora et al. (2017)
showed that the capacity of D plays an essential role in giving G sufficient learning guidances to
model the complex real data distribution. With insufficient capacity, D could fail to distinguish real
and generated data distributions even when their Jensen-Shannon divergence or Wasserstein distance
is not small.

In this work, we demonstrate that even with sufficient maximum capacity, D might not allocate its
capacity in a desirable way that facilitates convergence to a good equilibrium. We then propose
a novel regularizer to guide D to have a better model capacity allocation. Our regularizer is con-
structed to encourage D ’s hidden binary activation patterns to have high joint entropy, based on a
connection between the model capacity of a rectifier net and its internal binary activation patterns.
Our experiments show that such high entropy representation leads to faster convergences, improved
sample quality, as well as lower errors in semi-supervised learning.
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Figure 1: Capacity usage of the rectifier discriminator D in different scenarios. D (a rectifier net)
cuts the input space into different linear regions, since rectifier nets compute piece-wise linear func-
tions. left: D uniformly spreads its capacity in the input space, but does not have enough capacity to
distinguish all subtle variations within a data distribution. middle: D uses its capacity in the region
with no data; while real and fake data are correctly separated, variations within real data distribu-
tion are not represented by D, so cannot possibly be communicated to G if this degeneracy persists
through training; meanwhile all fake points in the same linear region passes the same gradient infor-
mation to G, even if they are visually distinct. right: D spends most capacity on real and fake data,
but also in regions where G might move its mass to in future iterations.

2 CAPACITY USAGE OF RECTIFIER NETS AND ITS EFFECTS ON GAN
TRAINING

The motivation of our regularizer starts with an observation that during GAN training, the generator
G receives information about the input space only indirectly through the gradient of D , ∇xD(x).
Typically D is a rectifier net. Absent of the last sigmoid nonlinearity, D computes piecewise linear
functions, meaning that the learning signal to G is (almost) piecewise constant. The final sigmoid
nonlinearity does not change the direction of input gradient in each linear region, but merely the
scale of gradient vectors. The learning of G in GANs can be interpreted as the movement of the
fake samples generated by G toward the real data distribution, guided by the (almost) piecewise
constant vectorial signals according to input space partitioning by D . Hence, the diversity and
informativeness of learning signals to G is closely related to how the input space is partitioned, i.e.
how D ’s model capacity is allocated. In a region of the input space, how much capacity D allocates
into it can be approximately measured by the number of linear pieces in that region (Montufar et al.,
2014). WhenD spreads out its model capacity in a right way, the evenly dispersed partitioning helps
G to explore better and discover the real data manifold, while avoiding large unstable jumps due to
overconfident extrapolation made by D .

Ideally, when GAN training is stable, the min-max game eventually forces D to represent subtle
variations in the real data distribution and pass this information for the learning of G . However, the
discriminator D is solely tasked to separate real samples from the generated fake ones. Thus D has
no incentive to do so, especially when the classification task for D is too simple. Such is always
the case in the early stage of the training and may persist to the later stage if the input space has
high dimensionality or if G already collapsed. In these situations, D could overfit, and its internal
layers could have degenerate representation whereby large portions of the input space are modelled
as linear regions, as pictorially depicted in Fig. 1, and shown in the synthetic experiment in Sec. 4.1.
With such degeneracy, learning signals from D are not diverse and fail to capture the differences
among different modes or subtle variations of the real data. Furthermore, such degeneracy could
also cause the learning of G to bluntly extrapolate, resulting in large updates, which in turn drops
already discovered real data modes and/or leads to oscillations. We observe this phenomenon in the
synthetic data problem in Sec. 4.1.

In this paper, we propose a new regularizer for training GANs where D is a rectifier net. Our regu-
larizer encourages the discriminator D to cut the input space more finely around where the current
G distribution is supported, as well as where training might transport the generated data distribution
to in the short future, as depicted in Fig. 1 (right). In this way, G receives rich guidance for faster ex-
ploration and more stable convergence. The regularizer facilitates exploration because D tells apart
the generated fake samples from the real ones in distinct ways. This is because if the fake data points
x lie in different regions, learning signals ∇xD(x) to G are likely to point to different directions.
Hence a concentrated mass in the fake data distribution has a better chance of been spread apart. On
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the other hand, the convergence to equilibrium is more stable because there are less large piecewise
linear regions, where G learning constantly receives the same transportation direction, potentially
leading to overshoot and oscillation. Our regularizer is constructed to encourage the activation pat-
terns of the internal representations of points in a mini-batch to be diverse. As shown in Raghu et al.
(2016), the different local linear regions defined by D is closely related to the different activation
patterns of D. In particular, two input points into D with different activation patterns on all layers
of D are guaranteed to lie on different linear regions. More details are presented in Sec. 3 where the
regularizer is defined, along with the analysis of its properties.

2.1 RELATED WORKS

Other regularization/gradient penalty techniques have also been proposed to stabilize GANs training
(Gulrajani et al., 2017; Nagarajan & Kolter, 2017) recently. Gulrajani et al. (2017) adds an input
gradient penalty to the update of D , so that the magnitude of signals passed to G is controlled.
Nagarajan & Kolter (2017) modifies the update ofG to avoid going where the magnitude of∇xD(x)
is large. These methods, as well as other similar works that constrain the input gradient norm or the
Lipschitz constant of D , all try to stabilize the training dynamics by regularizing the learning signal
magnitude. This is different from our method that diversifies the learning signal directions. As
discussed in the previous section, the diversified signal directions help both the convergence speed
and the stability of the training. In Sec. 4.2, we empirically demonstrate that our proposed method
achieves better results than Wasserstein GAN with gradient penalty (WGAN-GP) (Gulrajani et al.,
2017).

The role of model capacity of the discriminator D in training generative adversarial networks
(GANs) has been previously explored by Arora et al. (2017). They show thatD with a finite number
of parameters has limited capacity in distinguishing real data from the generated ones. They suggest
increasing the discriminator D’s capacity among other modifications. Our work can be viewed as
a continuation along this direction, except that we treat the model capacity not as a static number,
but a dynamic function in the different parts of the input space during training. Because even with
a large number of parameters, D might not use its capacity in a right way to help convergence, as
discussed previously. We explore the question on where and how D can utilize its limited capacity
effectively for better training convergence.

Encouraging D to use its capacity in a constructive way is non-trivial. One theoretically sound
potential approach to regularize D is to use a Bayesian neural net, whose model capacity away
from data is not degenerate. However, computationally scalable deep Bayesian neural networks are
still an active area of research (Hernández-Lobato & Adams, 2015; Hasenclever et al., 2017) and
are not easy to use. Alternatively, we can use auxiliary tasks to regularize D’s capacity usage. If
given labelled data, semi-supervised learning as an auxiliary task for D , as shown in Salimans et al.
(2016), improves GAN training stability and the resulting generative model. We hypothesize that if
the data domain has other structures that can be exploited as supervised learning signal, Exploiting
these structures could as well potentially improve the GAN training stability like in Salimans et al.
(2016).

When no supervised task is available, auto-encoding is another potential possibility. Energy-Based
GAN (EBGAN) (Zhao et al., 2016) and Boundary Equilibrium GAN (BEGAN) (Berthelot et al.,
2017) use auto-encoders as their discriminators. However, both EBGAN and BEGAN have different
objectives from the vanilla GAN. Furthermore, instead of using auto-encoding to simply regularize
D , the auto-encoder loss is used to discriminate real data from fake ones. Hence, it is unclear if their
benefits stem from the regularization effects or the alternative classification approach. Another set
of works that use auto-encoding as an auxiliary task is in learning an inference network along with
GAN (Donahue et al., 2016; Dumoulin et al., 2016). However, they both modify the input to D , so
that D classify not just the data, but together with the corresponding latent codes from G . Again,
in this case, it is unclear if the regularization effect on the model capacity of D is the source of any
improvement in learning stability. Our preliminary results on using the auxiliary auto-encoding loss
on real data show that it does not lead to improvement (see Discussion and Future Work in Sec. 5).
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3 BINARIZED REPRESENTATION ENTROPY

We now introduce our regularizer, the binarized representation entropy regularizer (BRE). Re-
call that we would like to encourage diverse activation patterns in D across different sam-
ples. For a sample x, its activation pattern on a particular internal layer of D can be rep-
resented by a binary vector, as shown in Figure 2. In particular, let h ∈ Rd be the
immediate pre-nonlinearity activity of a sample x on a particular layer of d hidden units
1. The activation pattern of x on this layer can be represented by the sign vector of
h, defined as s = sign(h) := h

|h| ∈ {±1}d where | · | is entry-wise absolute value.

    is the binary 

activation vector 

of      on layer L 

Figure 2: Activation vector sk of a sample xk on
a layer L immediately before nonlinearity.

We call this binary vector s ∈ {±1}d the acti-
vation vector of the sample x on this particular
layer.

In this work, we model the activation vector
of each sample in a particular layer of D as
a random binary vector. Given a mini-batch,
{x1, . . . , xK} of size K, assume that each bi-
nary activation vector sk of xk, k = 1, . . . ,K,
on a particular layer with d hidden units is an
independent sample of a random binary vec-
tor U = (U1, . . . , Ud), where Ui denotes a
Bernoulli random variable2 with parameters pi
and distribution function Pi for i = 1, . . . , d.
Also denotes the joint distribution function of
(U1, . . . , Ud) by P. To have diverse activation patterns, we would like to construct a regularizer
that encourages P to have a large joint entropy. Ideally, one could use an empirical estimate of
the entropy function as a desired regularizer. However, sample-based estimation of the entropy of a
high-dimensional distribution has been well known to be difficult, especially with a small mini-batch
size (Darbellay & Vajda, 1999; Miller, 2003; Kybic, 2007; Kybic & Vnučko, 2012; Scott, 2015).

We instead propose a simple binarized representation entropy (BRE) regularizer, which encourages
the entropy of P to be larger (in a weak manner). For a particular layer in D, our BRE regularizer
RBRE is computed over a mini-batch of {x1, . . . , xK}, and consists of two terms, marginal entropy
RME and activation correlation RAC, both acting on the binarized activation vectors of the hidden
units3: RBRE = RME +RAC, where

RME =
1

d

d∑
i=1

s̄2(i) =
1

d

d∑
i=1

(
1

K

K∑
k=1

sk,i

)2

; and RAC =
1

K(K − 1)
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d
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Figure 3: Notations for defining RBRE.

Here s̄(i) = 1
K

∑K
k=1 sk,i is the average of the ith ele-

ment (corresponding to the ith hidden unit) of the activa-
tion vectors sk across the mini-batch, where sk is the acti-
vation vector of xk for k = 1, . . . ,K, as shown in Figure
3. Thus RME can be interpreted as an empirical estimate
of 1

d

∑d
i=1 E [Ui ]

2, and RAC as an empirical estimate of
1
dE
[
|U>Ũ |

]
= 1

dE
[
|
∑d
i=1 UiŨi|

]
, where U , Ũ are

two i.i.d. random vectors with probability function P.

As shown in Section 3.1, our regularizer encourages a
large joint entropy of this random binary vector. In par-
ticular, we show that the first term, RME, encourages in-
dividual hidden units to be active half of the time on aver-
age, to have high marginal entropy; the second term,RAC,
encourages low activation correlation between each pair

1We use column vectors in this paper.
2The Bernoulli distribution is defined over {+1,−1} instead of {0, 1}.
3We may apply this regularizer to multiple layers in D. In that case, we will sum all the RBRE’s of each

layer.
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of the hidden units. We further show in Section 3.2 that having the regularizer being close to 0 is
a necessary condition for (U1, . . . , Ud) to achieve its maximum entropy. Details in the practical
implementation of our regularizer are discussed in Section 3.3.

3.1 BRE ENCOURAGES HIGH JOINT ENTROPY OF THE ACTIVATION PATTERNS

Note that each summand s̄(i) in RME is an empirical estimate of 2pi − 1, the mean of the marginal
distribution Pi. Thus minimizing s̄2(i) leads to pi = 1

2 , i.e. Ui is zero-mean for i = 1, . . . , d. In other
words, RME is 0 when there are equal number of ±1 in U .

Moreover, for j, k = 1, . . . ,K where j 6= k, minimizing |s>j sk| in the second term RAC is es-

sentially equivalent to minimizing
(
s>j sk

)2
. Thus, minimizing RAC can be seen as minimizing

E
[(
U>Ũ

)2 ]
where U, Ũ are i.i.d. from P. Since minimizingRME is enforcing Ui to be zero-mean

for i = 1, . . . , d, as shown in Proposition 3.1, minimizing RAC enforces the pairwise independence
of the Ui’s.

Lastly, Assuming the hidden units Ui’s are zero-mean and pairwise independent, by Corollary 3.3
of Gavinsky & Pudlák (2015) (which we restate in Appendix C for completeness), we have that the
entropy of P satisfies

H(P) ≥ log(d+ 1).

Proposition 3.1. Let U = (U1, . . . , Ud) be a zero-mean multivariate Bernoulli vector of P, and
Ũ = (Ũ1, . . . , Ũd) denotes another random vector of P that is independent to U . Then

E
[(
U>Ũ

)2 ]
= E

( d∑
i=1

UiŨi

)2
 = d+

d∑
i,t=1

i 6=t

Cov (Ui, Ut)
2
.

We defer the proof of this proposition to Appendix B.

3.2 MAXIMUM ENTROPY REPRESENTATION HAS RBRE ≈ 0.

We further show that RBRE ≈ 0 is a necessary condition for P to achieve the maximum entropy.

It is straightforward that the maximum entropy of P is achieved if and only if E [Ui ] = 0 (pi = 1/2)
for all i ∈ {1, ..., d}, i.e. each hidden unit is activated half of the time, and (U1, . . . , Ud) are mutually
independent. Therefore, the ith element of the average activation vector s̄(i) is approximately zero
for i ∈ {1, ..., d}, and so is RME.

Further, note that RAC is an empirical estimate of E
[ ∣∣∣∑d

i=1Mi/d
∣∣∣ ] where Mi = UiŨi for i =

1, . . . , d. Note that given pi = 1/2 and Ui’s are mutually independent, one can show that Mi’s are
mutually independent and have the distribution of Bernoulli(0.5) as well. Therefore by the Central
Limit Theorem, the distribution of

∑d
i=1Mi converges in distribution to the Gaussian distribution

N (0, d). Given sufficiently large d, the distribution of
∑d

i=1Mi

d is approximately N (0, 1/d), and
thus RAC is approximately zero4.

3.3 GAN TRAINING WITH BRE REGULARIZER

PRACTICAL IMPLEMENTATIONS OF RBRE
In practice, due to the degenerate gradient of the sign function, we replace s in RME by its smooth
approximation a = softsign(h) := h

|h|+ε , where ε is a hyperparameter to be chosen. If ε is too
small, the nonlinearity becomes too non-smooth for stochastic gradient descent; if it is too large, it
fails to be a good approximation to the sign function. Furthermore, not only different layers could
have different scales of h, hence requiring different ε, during training the scale of h could change

4Note that the expectation of RAC under the maximum entropy assumption is not zero, but a small number
on the order of 1e− 3.
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too. Therefore, instead of setting a fixed ε, we set ε = ζ avg(|h|), where ζ is some small constant
and avg(|h|) is a scalar, where the average runs over samples in the minibatch and the d dimensions
of the layer. In this way, softsign(·) is invariant with respect to any multiplicative scaling of h in
the forward pass of the computation; in the backward pass for the gradient computation, we do
not backpropagate through ε. We choose ζ = 0.001, as we observe empirically that this usually
makes 90% to 99% of units to have absolute value at least .9. An alternative to this softsign is the
tanh nonlinearity. However, tanh lacks the scale invariance of our proposed softsign with varying ε,
hence potentially less effective in capturing the nature of input space partitioning. In Sec. 4.2 (Table.
1), we confirm empirically that using tanh instead of softsign decreases the effectiveness of BRE.

We also relaxRAC by allowing a soft margin term, asRAC = avgj 6=k max
(
0, |a>j ak|/d− η

)
. Recall

that a>j ak/d has an approximate distribution ofN(0, 1/d), so a good choice for the margin threshold
is η = c

√
1/d, where we adopt the “3σ rule” and choose c = 3 to leave 99.7% of i, j pairs

unpenalized in the maximum entropy case.

To regularize GAN training, RBRE is applied to the immediate pre-nonlinearity activities on se-
lected layers of D . Therefore, if there is any normalization layer before nonlinearity, RBRE needs
to be applied after the normalization. We emphasize that we use softsign for the regularizer only, we
do not modify the nonlinearity or any other structure of the neural net.

WHICH LAYERS SHOULD RBRE BE APPLIED ON?
Technically RBRE can be applied on any rectifier layer before the nonlinearity. However, having
it on the last hidden rectifier layer before classification might hinder D ’s ability to separate real
from fake, as the high entropy representation encouraged by RBRE might not be compatible with
linear classification. Therefore, for unsupervised learning, we apply RBRE on all except the last
rectifier nonlinearity before the final classification; for semi-supervised tasks using the augmented
class setup from Salimans et al. (2016), we apply RBRE only on 2nd, 4th and 6th convolutional
layer, and leave the three nonlinear layers before the final softmax untouched.

WHICH PART OF THE DATA SHOULD RBRE BE APPLIED ON?
Recall from Sec. 2 that we want D to spend enough capacity on both the real data manifold, and the
current generated data manifold byG , as well as having adequate capacity in region where we do not
currently observe real or fake points but might in future iterations. To enforce this, we apply RBRE
on generated data minibatch, as well as random interpolation inbetween real and generated data.
Specifically, let xk and x̃k be a real and a fake data points respectively, we sample αk ∼ U(0, 1)
and let x̂k = αkxk + (1 − αk)x̃k, and apply RBRE on selected layer representation computed on
interpolated data points {x̂k | k = 1 . . . ,K} as well.

4 EXPERIMENTS

Using a 2D synthetic dataset and CIFAR10 dataset (Krizhevsky, 2009), we show that our BRE
improves unsupervised GAN training in two ways: (a) when GAN training is unstable (for e.g.
due to architectures that are less well tuned than DCGAN (Radford et al., 2015)), BRE stabilizes
the training and achieves much-improved results, often surpassing tuned configurations. (b) with
architecture and hyperparameters settings that are engineered to be stable already, BRE makes GAN
learning converges faster. We then demonstrate that BRE regularization improves semi-supervised
classification accuracy on CIFAR10 and SVHN dataset (Netzer et al., 2011). Additional results on
imbalanced 2D mixture as well as CelebA dataset are presented in the Appendix D.

4.1 SYNTHETIC DATASET: MIXTURE OF GAUSSIANS

We first demonstrate BRE regularizer’s effect on fitting a 2D mixture of Gaussian. In Figure 4,
the top three rows and bottom three ones correspond respectively to experiments without the BRE
regularizer (control) and with the regularizer (treat). Within each setting, each row represents one
iteration during GAN training, selected to be at the beginning, middle, and the end of the training
process. The first column shows real data points (blue) and generated data points (red). The second
to fifth columns show hidden layers 1 to 4 of D , where contiguous pixels with the same colour have
the same binary activation pattern on that particular layer. The last column shows the probability
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Figure 4: Fitting 2D Mixture of Gaussian (MoG): h1-h4 show the input space linear region defined
by different binary activation patterns on each layer; each colour corresponds to one unique binary
pattern; the last column shows probability of being real according to D ; BRE is applied on h2
and h3. Experimental details and more visualization in Appendix A and D, including one set of
comparison for fitting an imbalanced mixture in Fig. 16-17.

of real data according to D . The BRE regularizer is added on layers h2 and h3. More results in
Appendix D.

By adding BRE, the input domain is partitioned more finely as reflected by visualization for layers
h2, h3 and h4. The richer D representation allows more effective exploration of different input re-
gions because the gradient signals provided byD toG are more diverse than the degenerate baseline
case where D is linear in large regions of the input. Once a real data mode is discovered, G locks
onto it without oscillation. This shows that with better D capacity usage, the GAN optimisation
converges faster and is more stable, while the resulting equilibrium suffers much less from mode
dropping.

4.2 FASTER AND BETTER CONVERGENCE IN UNSUPERVISED LEARNING

We quantitatively measure the resulting G using the Inception score (Salimans et al., 2016).

Table 1 shows improved final Inception scores on DCGAN, as well as the following non-standard
architectures (only mentioning difference from the standard DCGAN): densely connected convnet
Huang et al. (2016) for D ; G and D with an equal number of filters on each layer; D with ReLU
nonlinearity. In all cases, the models regularized by BRE improve over the baseline counter-parts
without regularization (no-BRE). Furthermore, vanilla GAN’s with BRE applied on multiple D
layers (BRE multi) always outperform WGAN-GP (Gulrajani et al., 2017). Fig. 6 shows some
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generated samples from a DCGAN-ReLU model without and with BRE regularization. Fig. 9 of
Appendix D.1 show more samples laid out by t-SNE visualization to better illustrate mode collaps-
ing.

densenet D

WGAN-GP BRE single 3.9589± 0.6632
WGAN-GP no-BRE 4.1046± 0.3443
no-BRE 6.3662± 0.1465
BRE multi 6.5650± 0.1979
BRE single 6.6261± 0.1529

Equal Size G and D

no-BRE 5.1330± 0.5491
BRE single 6.0375± 0.3669
BRE multi tanh 6.3455± 0.2132
WGAN-GP BRE single 6.4515± 0.2315
WGAN-GP no-BRE 6.6993± 0.1705
BRE multi 7.0569± 0.2031

ReLU D

ln WGAN-GP no-BRE 4.4359± 0.2975
no-BRE 5.5409± 0.2363
WGAN-GP no-BRE 5.9606± 0.3584
WGAN-GP BRE single 6.2105± 0.3607
BRE single 6.2526± 0.2239
BRE multi tanh 6.3754± 0.2870
BRE multi 6.7715± 0.3162

DCGAN

WGAN-GP no-BRE 6.3284± 0.4642
no-BRE 6.5865± 0.1837
BRE single 6.6908± 0.2539
BRE multi 6.7312± 0.1365

Table 1: BRE on various architectures: no-BRE is the baseline in each case; with BRE weight in
other cases is set to 1.; single and multi signify whether BRE is applied on one layer in the middle
of D or multiple (see Appendix A for more details); ln for layer normalization in G and D (default
is batchnorm); tanh means the softsign nonlinearity in BRE is replaced by tanh.

Fig. 5 shows that with BRE, DCGAN training converges faster, as measured by Inception score.
The 1σ error bars are estimated from ten different random runs. Because DCGAN architecture is
engineered to be stable, in the end, baseline DCGAN can still achieve comparable Inception score
with the regularized version on average. But clearly the convergence is much faster with BRE
during the initial transient phase, confirming our intuition that BRE improves exploration. Fig. 7
shows Inception score and (thresholded) activation correlation values (RAC) during one particular
set of runs with default DCGAN optimization settings, and a more aggressive optimization setting.
In both cases, BRE regularization results in similarly faster convergence, and higher final Inception
score in the unstable case with more aggressive optimization. The bottom row in Fig. 7 shows that
BRE regularization is indeed making a qualitative difference to the activation correlation (RAC) by
keeping it low during training in both cases.

Figure 5: Even with stable DCGAN architecture,
BRE makes convergence faster.

Figure 6: Samples for DCGAN-ReLU without BRE
(left) vs with BRE (right)

4.3 IMPROVED SEMI-SUPERVISED LEARNING ON CIFAR10 AND SVHN

BRE regularization is not only compatible with semi-supervised learning using GAN’s, but also
improves classification accuracy.
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(a) (b)

(c) (d)
Figure 7: Inception scores and regularizer values during training: (left column, i.e. (a) and (c))
default optimization setting; (right column, i.e. (b) and (d)) more aggressive optimization. Details
in Appendix A. (top row, i.e. (a) and (b)) Inception scores during training; (bottom row, i.e. (c) and
(d)) RAC term of BRE on fake, real, and interpolation inbetween. Even though BRE is not applied
on real, model still allocates enough capacity when BRE is applied on fake and interpolation.

Table. 2 shows results on CIFAR10 with feature matching semi-supervised learning GAN. BRE al-
lows the learning process to discover a better solution during training that also generalizes better,
indicated by a lower training classification loss as well as lower test classification error rates. We
used the same code and hyperparameters 5 from Salimans et al. (2016). Details on BRE hyperpa-
rameters are in Appendix A, learning curve plots in Appendix D.2.

On Street View House Numbers (SVHN) dataset (Netzer et al., 2011), with the same setup from
Salimans et al. (2016), learning is not always stable when trained for a long time. Fig. 8 (top
row) shows that without BRE regularization, when trained for a very long time, sometimes learning
diverges. Such failure is dramatically reduced by BRE (bottom row of Fig. 8).

Test error rate (%) Train classification loss

FM (reported in Salimans et al. (2016)) 18.63± 2.32
FM, 10 ensemble (reported in Salimans et al. (2016)) 15.59± 0.47

FM (our run) 17.42± 0.50 9.25e−4± 5.05e−4
FM + BRE 16.98± 0.52 5.03e−4± 3.50e−4
FM, 10 ensemble (our run) 14.25
FM + BRE, 10 ensemble 13.93

Table 2: Semi supervised learning on CIFAR10: feature matching (FM) from Salimans et al.
(2016)); 1000 labeled training examples.

5 DISCUSSION AND FUTURE WORK

There are still many unexplored avenues along this line of research. For example, how can our new
regularizer collaborate with other GANs training techniques to further improve the training GANs?

5https://github.com/openai/improved-gan
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Figure 8: Improved semi-supervised learning on SVHN: each curve corresponds to a different ran-
dom seeding; we repeat the same set of seeds for runs without BRE (Top row), and with BRE
(Bottom column); both the random seed for selecting labeled examples and random seeds for model
parameter initialization are varied.

We leave such further explorations for future works. Meanwhile, there are two interesting questions
related to the central theme of this work.

DOES DIRECTLY REGULARIZING THE DIVERSITY OF ∇xD(x) WORK? IF NOT, WHY NOT?

To diversify G ’s learning signals, it might be tempting to enforce gradient directions ∇xD(xk) to
be diverse. However, in rectifier networks, if two inputs share the same activation pattern, the input
gradients located at the two points are co-linear; hence any gradient-based learning with such di-
versity regularizer would have difficulty pulling them apart. In general, unlike BRE which operates
directly on both activated and non-activated portions ofD ’s internal units, an input gradient regular-
izer can only access information on the activated path in the network, so that it can only encourage
existing non-shared activated path, but cannot directly create any new non-shared activated path. In
theory, tanh nonlinearities as activations for D could avoid this problem, but such network is hard
to train in the first place. In our preliminary studies, on networks with tanh, input gradient diversity
regularizer with either cosine similarity or a soft-sign based regularizer like BRE does not work.

COULD AUXILIARY TASKS HELP REGULARIZE D ?

As discussed in Sec. 2.1, auxilary tasks could potentially regularize D and stabilize training. One
possible auxilary task is reconstruction loss. We performed some preliminary experiments, and
found that reconstructing real data as auxilary tasks worsens the resulting learnedG . See Appendix.
D.3 for results. Further study is needed, and is beyond the scope of this work.

6 CONCLUSIONS

We proposed a novel regularizer in this paper to guide the discriminator in GANs to better allocate
its model capacity. Based on the relation between the model capacity and the activation pattern of the
network, we constructed our regularizer to encourage a high joint entropy of the activation pattern
on the hidden layers of the discriminator D. Experimental results demonstrated the benefits of our
new regularizer: faster progress in the initial phase of learning thanks to improved exploration, more
stable convergence, and better final results in both unsupervised and semi-supervised learning.
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A MODEL AND HYPERPARAMETER DETAILS

A.1 2D EXAMPLE

G is 4-layer (excluding noise layer) MLP with ReLU hidden activation function, and tanh visible
activation; D is 5-layer MLP with LeakyRelu(.2). Both D and G has 10 units on each hidden layer,
no batch or other normalization is used in D or G , no other stabilization techniques are used; For
Fig. 4, Fig. 12, and Fig. 13, lr=.001 with adam(.0, .999), and BRE regularizer weight 1., applied on
h2 and h3; both lr and BRE weight linearly decay to over iterations to 1e− 6 and 0 respectively. For
Fig. 12 and Fig. 13, lr=.002 with adam(.5, .999), and BRE regularizer weight 1., applied on h2.

A.2 UNSUPERVISED LEARNING CIFAR10

Table. 1, “single” means that BRE is applied on a single layer (the middle one of all nonlinear
layers of D ), while “multi” means all nonlinear layers except the first one and last two (the final
classification and the nonlinear layer before it).

For Fig. 7, the default optimization setting (left column, i.e. (a) and (c)) is lr = 2e−4 and one D
update per G update, lr for both D and G annealled to 1e − 6 over 90K G updates; while the
aggressive setting (right column, i.e. (b) and (d)) is lr = 2e−3 and three D update for every G
update, lr for both D and G annealed to 1e− 6 over 10K G updates.

A.3 SEMI-SUPERVISED LEARNING

We used exactly the same code and GAN hyperparameters 6 from Salimans et al. (2016). RBRE
regularization is applied on every other second layer, starting from the 2nd until 4 layers before the
classification layer (applied on three layers in total). On CIFAR10, we used a regularizer weight of
.01, and on SVHN we used 0.1. BRE is applied on real, fake and interp data.

B PROOF OF PROPOSITION 3.1

Proof. Let Mi = UiŨi. Then

E

( d∑
i=1

UiŨi

)2
 = E

( d∑
i=1

Mi

)2


=

d∑
i=1

E
[
M2
i

]
+
∑
i 6=t

E [MiMt ]

=

d∑
i=1

E
[
U2
i Ũ

2
i

]
+
∑
i 6=t

E
[
UiŨiUtŨt

]
(1)
=

d∑
i=1

E
[
U2
i

]2
+
∑
i 6=t

E [UiUt ]
2

(2)
= d+

∑
i 6=t

E [UiUt ]
2

(3)
= d+

∑
i 6=t

Cov (Ui, Ut)
2
,

where Equation (1) is due to the independence of U and Ũ , Equation (2) is due to that U2
i = 1 with

probability 1, and Equation (3) is because E [Ui ] = 0.

6https://github.com/openai/improved-gan
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C COROLLARY 3.3 OF GAVINSKY & PUDLÁK (2015)

Theorem C.1 (Corollary 3.3 of Gavinsky & Pudlák (2015)). Let Hmin(P) =
− log (maxx P(X = x)). Also let (U1, . . . , Ud) be pairwise independent random variable of
Bernoulli(0.5). Then,

H(P) ≥ Hmin(P) ≥ log(d+ 1).

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 MORE SAMPLES FROM DCGAN-RELU

We show more samples generated from the DCGAN-ReLU model, mentioned in Sec. 4.2, without
the BRE regularizer (with red frames) and with the BRE regularizer (with blue frames) in Fig. 9.
In Fig. 9 images are arranged based on L2 distances in the original pixel value space. Images that
are similar in pixel values are roughly grouped together. To achieve this, we apply t-SNE (Maaten
& Hinton, 2008) to reduce the dimensionality of these images into 2D points. These 2D coordinates
are then transformed to 2D grids RasterFairy 7. At the same time, the neighborhood relations of the
rastered 2D points are preserved to a certain degree. We then use these rastered 2D points to arrange
the location of these images.

D.2 SEMI-SUPERVISED LEARNING CURVES

Fig. 10 shows the Learning curves for semi-supervised learning on CIFAR10.

D.3 RECONSTRUCTION AS AUXILIARY TASK TO REGULARIZE D WORSENS RESULTS

D Recon, no BRE

ln, λrecon = 10 6.1958± 0.2438
ln, λrecon = 1 6.2218± 0.2390
ln, λrecon = .1 6.2437± 0.2346
ln, λrecon = 0 6.4025± 0.2187

bn, λrecon = 1 6.5356± 0.2176
bn, λrecon = .1 6.5475± 0.2798
bn, λrecon = 0 6.5865± 0.1837

Table 3: Reconstruction as an auxiliary task worsens results. λrecon is the weight of the l2 recon-
struction loss term. With both batch or layer normalization, reconstruction auxiliary task hurts the
final results.

D.4 CELEBA

We compare stable and unstable runs of DCGAN on CelebA dataset (Liu et al., 2015), as well as
the effect of the BRE regularizer. Fig. 11(a) shows thresholded RAC term (defined in Sec. 3.3)
through training. The model being investigated is a 4-layer DCGAN for both G and D , with batch
normalization. The unstable run (Fig. 11(b)) uses a large initial learning rate of .01 and 3 D update
steps for each G update, whereas the stable run (Fig. 11(d)) uses initial lr = 2e− 3 and 1 D update
for each G update. Even without the BRE regularizer, we can see that when GAN training is stable,
D uses more capacity around fake and real data as well as inbetween, as measured by RAC values
in Fig. 11(a). When BRE regularizer is applied, the usage of D ’s capacity is more improved, and
resulted in more diversity in the learned distribution by G (Fig. 11(c)).

D.5 ADDITIONAL 2D MOG RESULTS

We show more 2D mixture of Gaussian results in Fig. 12, 13, 14, and 15.
7https://github.com/Quasimondo/RasterFairy
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Figure 9: Rastered t-SNE visualization of DCGAN-ReLU CIFAR10 samples. Images with red
frames are generated without BRE and images with blue frames are generated with BRE. Locations
roughly indicates similarity between images in the pixel value space.
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Figure 10: Improved semi-supervised learning on CIFAR-10: BRE regularizer placed on every other
second layer, starting from the 2nd until 4 layers before the classification layer. Regularizer weight
is .01 and not decayed.

Figure 11: (Thresholded) Activity correlation (AC) values (top left) and samples at iteration 10K:
(top right) DCGAN unstable run (lr = .01 and 3 D update steps for each G update); (lower right)
DCGAN stable run (lr = 2e − 3 and 1 D update steps for each G update); (lower left) BRE-
DCGAN, DCGAN training with BRE regularizer same hyperparameters as DCGAN stable run in
lower right plot. BRE-DCGAN results are visibly more diverse.
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Figure 12: More Results on Fitting 2D Mixture of Gaussian on the control group. See Figure 4 for
detailed description.
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Figure 13: More Results on Fitting 2D Mixture of Gaussian on the treat group. See Figure 4 for
detailed description.
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Figure 14: More Results on Fitting 2D Mixture of Gaussian on the control group. See Figure 4 for
detailed description.
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Figure 15: More Results on Fitting 2D Mixture of Gaussian on the treat group. See Figure 4 for
detailed description.
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Figure 16: More Results on Fitting imbalanced 2D Mixture of Gaussian (probabilities [.1, .3, .3, .3])
on the control group. See Figure 4 for detailed description.
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Figure 17: More Results on Fitting imbalanced 2D Mixture of Gaussian (probabilities [.1, .3, .3, .3])
on the treat group. See Figure 4 for detailed description.
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