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Abstract
Human preference alignment is essential to001
improve the interaction quality of large lan-002
guage models (LLMs). Existing aligning meth-003
ods depend on manually annotated preference004
data to guide the LLM optimization directions.005
However, in practice, continuously updating006
LLMs raises a distribution gap between model-007
generated samples and human-preferred re-008
sponses, which hinders model fine-tuning effi-009
ciency. To mitigate this issue, previous methods010
require additional preference annotation on gen-011
erated samples to adapt the shifted distribution,012
which consumes a large amount of annotation013
resources. Targeting more efficient human pref-014
erence optimization, we propose an adversar-015
ial preference optimization (APO) framework,016
where the LLM agent and the preference model017
update alternatively via a min-max game. With-018
out additional annotation, our APO method can019
make a self-adaption to the generation distribu-020
tion gap through the adversarial learning pro-021
cess. Based on comprehensive experiments,022
we find APO further enhances the alignment023
performance of baseline methods in terms of024
helpfulness and harmlessness.025

1 Introduction026

Learned from massive textual data with billions of027

parameters, large language models (LLMs), such028

as ChatGPT (OpenAI, 2023a) and LLaMA-2 (Tou-029

vron et al., 2023b), have shown remarkable AI capa-030

bilities, especially in domains of natural language031

processing (Jiao et al., 2023; Han et al., 2023), log-032

ical (mathematical) reasoning (Liu et al., 2023a;033

Frieder et al., 2023), and programming (Surameery034

and Shakor, 2023; Tian et al., 2023). Among the035

training techniques that push LLMs to such ex-036

cellent performance, human preference alignment037

finetunes LLMs to follow users’ feedback, which038

has been widely recognized as essential for im-039

proving human-model interaction (Ouyang et al.,040

2022; Yuan et al., 2023; Rafailov et al., 2023; Dong041

et al., 2023). However, obtaining highly qualified042

human feedback requires meticulous annotations 043

of all manner of query-response pairs in various 044

topics (Askell et al., 2021), which is rather chal- 045

lenging and forms a sharp contrast to the easy ac- 046

cess of enormous unsupervised pretraining-used 047

text. Hence, the limitation of preference data col- 048

lection raises demands for learning efficiency of 049

preference alignment methods (Yuan et al., 2023; 050

Sun et al., 2023). 051

To utilize preference data, current human feed- 052

back aligning methods are proposed mainly from 053

three perspectives (Wang et al., 2023b): reinforce- 054

ment learning (Ouyang et al., 2022), contrastive 055

learning (Yuan et al., 2023; Rafailov et al., 2023; 056

Liu et al., 2023c), and language modeling (Dong 057

et al., 2023; Touvron et al., 2023b; Wang et al., 058

2023a). Reinforcement learning with human feed- 059

back (RLHF) (Kreutzer et al., 2018; Ziegler et al., 060

2019) is the earliest exploration and has become 061

the mainstream approach for LLMs’ preference 062

optimization (Ouyang et al., 2022; Touvron et al., 063

2023b). RLHF first learns a reward model (RM) 064

from the human preference data, then optimizes 065

the expected reward score of the LLM’s outputs 066

via the Proximal Policy Optimization (PPO) algo- 067

rithm (Schulman et al., 2017). Although widely 068

used, RLHF has been criticized as not only unsta- 069

ble during the fine-tuning, but also complicated in 070

implementation and computational resource con- 071

sumption (Yuan et al., 2023; Rafailov et al., 2023). 072

For more efficient and steady training, instead of 073

directly optimizing the non-differentiable rewards, 074

contrastive learning methods (Yuan et al., 2023; 075

Rafailov et al., 2023; Zhao et al., 2023) enlarge the 076

likelihood gap between positive and negative re- 077

sponse pairs, where the positive and negative labels 078

can be either annotated by humans or predicted by 079

reward models. Alternatively, language modeling- 080

based methods (Dong et al., 2023; Liu et al., 2023b; 081

Wang et al., 2023a) remain using language mod- 082

eling loss to align preference, but with different 083
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Figure 1: Sampling distribution shifting: After LLM
updating, the response sample distribution shifts, which
raises a gap with the annotation range.

data preparation strategies. For example, rejec-084

tion sampling (Dong et al., 2023; Touvron et al.,085

2023b) select responses with top reward scores086

as the language modeling fine-tuning data, while087

Wang et al. (2023a) and Liu et al. (2023b) add dif-088

ferent prompts to different responses based on the089

corresponding preference levels.090

Although contrastive-learning & language-091

modeling-based methods have partly alleviated092

the inefficiency of RLHF, the sampling distribu-093

tion shifting problem (Touvron et al., 2023b) still094

hinders the alignment effectiveness: after a few095

steps of preference alignment updates, a distribu-096

tion gap emerges between LLM generated sam-097

ples and preference-annotated data. Consequently,098

the reward model performs worse rapidly on the099

newly generated LLM responses, if not additionally100

trained on new samples from the shifted distribu-101

tion. To address this problem, most of the afore-102

mentioned methods (Ouyang et al., 2022; Dong103

et al., 2023; Yuan et al., 2023) require additional104

annotation of human feedback on newly generated105

responses (Touvron et al., 2023b) after a few LLM106

updating steps, which leads to increasingly mas-107

sive manpower costs (Askell et al., 2021). Besides,108

the vast time consumption of extra manual anno-109

tation also significantly slows down the feedback110

alignment learning process.111

To reduce the manual annotation efforts and112

improve the preference optimization efficiency,113

we propose a novel adversarial learning frame-114

work called Adversarial Preference Optimization115

(APO). Inspired by generative adversarial net-116

works (GANs) (Goodfellow et al., 2014; Arjovsky117

et al., 2017), we conduct an adversarial game be-118

tween the RM and the LLM agent: the LLM119

generates responses to maximize the expected re-120

ward score, while the RM aims to distinguish the121

score difference between golden and sampled re-122

sponses. To verify the effectiveness of our APO123

framework, we conduct experiments on the Help-124

ful&Harmless (Bai et al., 2022) datasets with Al-125

paca (Taori et al., 2023) and LLaMA-2 (Touvron 126

et al., 2023b) as the base LLMs. With the same 127

amount of human preference data, both the LLM 128

and the RM receive additional performance gains 129

through the APO game, compared with several 130

commonly used LLM alignment baselines. 131

2 Preliminary 132

Human Preference Alignment aims to fine- 133

tune the LLM response-generation policy πθ(y|x) 134

with a group of human preference data DP = 135

{(x,yw,yl)}, so that the LLM can generate 136

more preferred responses to improve the human- 137

model interaction quality. Each preference triplet 138

(x,yw,yl) satisfies yw ≻ yl, which means yw 139

is more “preferred” than yl w.r.t. input x. To 140

align LLM, a reward model (RM) (Christiano 141

et al., 2017; Ouyang et al., 2022) rϕ(x,y) is com- 142

monly utilized to score the LLM response quality. 143

RM learns human preferences DP with a ranking 144

loss (Bradley and Terry, 1952) Lrank(rϕ;DP) := 145

−EDP [log σ(rϕ(x,y
w)− rϕ(x,y

l))], (1) 146

where σ(·) is the Sigmoid activation function. For 147

every response pair (y, ỹ), RM rϕ can output a 148

prediction of human preference probability: 149

Qϕ(y ≻ ỹ|x) =
exp(rϕ(x,y))

exp(rϕ(x,y)) + exp(rϕ(x, ỹ))
150

=σ(rϕ(x,y)− rϕ(x, ỹ)). (2) 151

With equation 2, training RM with the Bradley- 152

Terry ranking loss can be explained as the log- 153

likelihood maximization of Qϕ: 154

Lrank(rϕ;DP) = −EDP [logQϕ(y
w ≻ yl|x)] (3) 155

With a learned RM rϕ(x,y), human preference 156

alignment methods (Ouyang et al., 2022; Rafailov 157

et al., 2023; Liu et al., 2023c) target on maximizing 158

the reward expectation of generated responses: 159

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x,y)] 160

−βKL[πθ(y|x)∥πref(y|x)], (4) 161

where πref(y|x) is a reference language model. 162

KL[πθ(y|x)∥πref(y|x)] prevents πθ(y|x) from the 163

degeneration of repeating a single response with the 164

highest reward score, which also preserves the gen- 165

eration diversity. Since response samples y are dis- 166

crete, it is challenging to directly back-propagate 167

from reward rϕ(x,y) to policy πθ(y|x). The typ- 168

ical solution to equation 4 is reinforcement learn- 169

ing from human feedback (RLHF) (Ouyang et al., 170
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2022), via the proximal policy optimization (PPO)171

algorithms (Schulman et al., 2017).172

However, PPO suffers from implementation173

complexity and training instability (Yuan et al.,174

2023). Recent studies try to avoid the reinforce-175

ment learning scheme with offline optimizations.176

DPO (Rafailov et al., 2023) finds a connection be-177

tween the reward model and LLM’s optimal so-178

lution, then replaces the reward model with the179

likelihood ratio of πθ and πref as LDPO(πθ) :=180

−E
[
log σ

(
β log

πθ(y
w|x)

πref(yw|x)
− β log

πθ(y
l|x)

πref(yl|x)
)]
.181

Analogously, other methods consider human feed-182

back learning from the perspective of contrastive183

learning. For example, RRHF (Yuan et al., 2023)184

propose a ranking loss as LRRHF(πθ) :=185

−ED
[
ReLU(log πθ(y

l|x)− log πθ(y
w|x))186

−λ logπθ(y
best|x)

]
(5)187

where ybest is the corresponding response to x with188

the highest reward, and the preference data D can189

be built from human annotation DP or RM ranking190

results. Besides, rejection sampling (RJS) (Tou-191

vron et al., 2023b) (also called RAFT (Dong et al.,192

2023) and best-of-N (Stiennon et al., 2020)) di-193

rectly fine-tunes LLM on ybest to further simplify194

the alignment process, LRJS(πθ) :=195

−Ex∼D,y1,y2,...yS∼πθ(y|x)[log πθ(y
best|x)] (6)196

where ybest = argmax1≤s≤S{rϕ(x,ys)} is the197

sampled response with the highest reward score.198

Azar et al. (2023) extend the LLM alignment199

objective into a more general form called ΨPO:200

max
πθ

Ex∼D,y∼πθ(·|x),ỹ∼µ(·|x)[Ψ(P (y ≻ ỹ|x)]201

−βKL[πθ(y|x)∥πref(y|x)], (7)202

which replaces RM rϕ in equation 4 with the real203

human preference probability P (y ≻ ỹ).204

Generative Adversarial Networks (GANs) are205

a classical group of unsupervised machine learning206

approaches that can fit complicated real-data distri-207

butions in an adversarial learning scheme (Goodfel-208

low et al., 2014). GANs use a discriminator D(·)209

and a generator G(·) to play a min-max game: the210

generator tries to cheat the discriminator with real-211

looking generated samples, while the discriminator212

aims to distinguish the true data and the samples:213

min
G

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)] (8)214

+ Ez∼Pz(z)[log(1−D(G(z))],215

where z is a random vector from prior Pz(z) to 216

induce the generation sample distribution. The 217

objective equation 8 has been theoretically justified 218

as the Jensen–Shannon (JS) divergence between 219

distributions of real data and samples (Goodfellow 220

et al., 2014). Arjovsky et al. (2017) replace the JS 221

divergence with the Wasserstein distance (Villani, 222

2009) and propose the Wasserstein GAN (WGAN): 223

min
gθ

max
∥f∥L≤K

EPdata(x)[f(x)]− EPz(z)[f(gθ(z))],

(9) 224

where ∥f∥L ≤ K requires f(·) to be a K-Lipschitz 225

continuous function. Wasserstein GANs have been 226

recognized with higher training stability than the 227

original GANs (Arjovsky et al., 2017). 228

In policy optimization of reinforcement learning, 229

inspired by GANs, Ho and Ermon (2016) propose 230

generative adversarial imitation learning (GAIL): 231

min
πθ

max
D

Eπθ
[log(D(s,a))] (10) 232

+ EπE [log(1−D(s,a))]− λH(πθ), 233

where D is a discriminator distinguishing differ- 234

ence between the learning policy πθ and an expert 235

policy πE, and H(πθ) is the entropy of πθ. 236

In natural language generation, GANs have also 237

been empirically explored (Zhang et al., 2016, 238

2017), where a text generator samples real-looking 239

text and a discriminator makes judgment between 240

the true data and textual samples. TextGAIL (Wu 241

et al., 2021) applies GAIL (equation 10) into text 242

generation, which optimizes the language model 243

as a response-generating policy πθ(y|x), by reduc- 244

ing the distribution divergence between generated 245

samples and human responses. 246

3 Adversarial Preference Optimization 247

We begin with a revisit of the human preference 248

alignment in a mathematical optimization form: 249

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x,y)], (11) 250

s.t. KL[πθ(y|x)∥πref(y|x)] < η, 251

which maximizes the expected reward value un- 252

der the generation policy πθ(y|x), under a KL- 253

constraint with the reference πref(y|x). Applying 254

the method of Lagrange multipliers, one can easily 255

obtain the original alignment objective in equa- 256

tion 4. As discussed in Section 1, the above op- 257

timization becomes ineffective after several steps 258

of LLM updating, because of the sample distribu- 259

tion shifting problem in Figure 1.To address this, 260
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Figure 2: The APO framework. In the RM updating step, the RM learns by distinguishing the difference between
the manually annotated golden responses and the LLM-generated responses. In the LLM updating step, the LLM
agent updates to generate higher-quality responses with the feedback from the RM.

we aim to adapt the RM correspondingly with the261

LLM updates.262

Inspired by GANs (Goodfellow et al., 2014), we263

design an adversarial game between πθ and rϕ:264

min
rϕ

max
πθ

EPθ(x,y)[rϕ(x,y)]− EPgold(x,y)[rϕ(x,y)]265

s.t. KL[P (y ≻ ỹ|x)∥Qϕ(y ≻ ỹ|x)] < η2,266

KL[πθ(y|x)∥πref(y|x)] < η1, (12)267

where Pθ(x,y) = PD(x)·πθ(y|x) and Pgold(x,y)268

denotes the annotated golden data distribution.269

Based on equation 12, we conduct an adversar-270

ial game, in which LLM πθ(y|x) needs to improve271

its response quality to get a higher expected reward,272

while RM rϕ(x,y) tries to enlarge the reward gap273

between the golden responses and the generation274

from πθ(y|x). Following the original preference275

alignment objective, we add two KL regularizers276

to πθ and rϕ respectively to prevent over-fitting277

and degeneration. Here P (y ≻ ỹ|x) denotes the278

ground-truth human preference probability, and279

Qϕ(y ≻ ỹ|x) is described in equation 2. Note that280

we use the reverse KL[πθ∥πref] to constrain the281

generative model πθ but the forward KL[P∥Qϕ]282

for the discriminate model rϕ. Our intuition is that283

KL[πθ∥πref] can be estimated with πθ-generated284

samples, paying more attention to the generation285

quality; while KL[P∥Qϕ] is practically estimated286

with groud-truth preference data, focusing on the287

preference fitting ability of reward models. We288

call this novel optimization form as Adversarial289

Preference Optimization (APO).290

To play the adversarial game above, we alterna-291

tively update one epoch of πθ(y|x) and rϕ(x,y)292

with the other parameters fixed. Next, we provide293

detailed descriptions of the RM optimization step294

and LLM optimization step of APO separately.295

3.1 APO RM Optimization Step296

In APO RM optimization step, we fix LLM297

πθ(y|x) and update rϕ(x,y). Note that in equa-298

tion 12 KL[πθ(y|x)∥πref(y|x)] has no relation299

with rϕ, so we can simplify the objective for RM 300

updates: 301

min
rϕ

EPθ(x,y)[rϕ(x,y)]− EPgold(x,y)[rϕ(x,y)] 302

s.t. KL[P (y ≻ ỹ|x)∥Qϕ(y ≻ ỹ|x)] < η2 (13) 303

The equation 13 indicates that the APO RM should 304

enlarge the reward gap between golden answers 305

and generated responses to challenge πθ(y|x) for 306

better generation quality. Note that equation 13 has 307

a similar form as WGANs in equation 9, which 308

can be intuitively explained as the calculation of 309

the Wasserstein distance between distributions Pθ 310

and Pgold. However, rigorously equation 13 is not 311

a Wasserstein distance because rϕ(x,y) does not 312

satisfy the Lipschitz continuity as described in Ar- 313

jovsky et al. (2017). 314

To practically implement APO RM training, 315

we first collect a set of user queries {xm} ∼ 316

PD(x), then annotate each xm with a golden 317

response y
gold
m , Dgold = {(xm,y

gold
m )}Mm=1, so 318

each (xm,ygold) can be regarded as a sample 319

drawn from Pgold(x,y). Meanwhile, we generate 320

ys
m ∼ πθ(y|xm), so that (xm,ys

m) ∼ Pθ(x,y) = 321

PD(x)πθ(y|x), Dsample = {(xm,ys
m)}Mm=1. 322

Combining ygold and ys, we obtain the APO sam- 323

ple set DAPO = {(xm,y
gold
m ,ys

m)}. Then the APO 324

RM objective in equation 13 can be calculated: 325

min
rϕ

EPθ(x,y)[rϕ(x,y)]− EPgold(x,y)[rϕ(x,y)] 326

=min
rϕ

EDsample [rϕ(x,y
s)]− EDgold [rϕ(x,y

gold)] 327

=max
rϕ

EDAPO [rϕ(x,y
gold)− rϕ(x,y

s)]. (14) 328

Note that equation 14 also enlarges the reward dif- 329

ference between pairs of responses like the Bradley- 330

Terry (BT) loss in equation 1 does. Hence, for train- 331

ing stability, we can empirically use the BT loss to 332

optimize equation 14 instead Lrank(rϕ;DAPO) := 333

−EDAPO

[
log σ

(
rϕ(x,y

gold)− rϕ(x,y
s)
)]

(15) 334
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With a Lagrange multiplier β2 > 0, we can convert335

the KL constrain in equation 13 to a regularize:336

LAPO-RM(rϕ) = Lrank(rϕ;DAPO) (16)337

+ β2KL[P (y ≻ ỹ|x)∥Qϕ(y ≻ ỹ|x)],338

where KL[P∥Qϕ] = EP (y≻ỹ|x)[logP−logQϕ] =339

H(y ≻ ỹ|x) − EP (y≻ỹ|x)[logQϕ], and H(y ≻340

ỹ|x) is the entropy of ground-truth human pref-341

erence as a constant for rϕ updating. As intro-342

duced in equation 2, with a preference set DP =343

{(xn,y
w
n ,y

l
n)} representing samples of P (y ≻344

ỹ|x), we have −EP (y≻ỹ|x)[logQϕ(y ≻ ỹ|x)] =345

Lrank(rϕ;DP). Therefore, the overall APO RM346

learning objective LAPO-RM(rϕ) :=347

Lrank(rϕ;DAPO) + β2Lrank(rϕ;DP). (17)348

The APO RM loss involves two datasets DAPO and349

DP, which practically have different data sizes. Be-350

cause the golden responses consume much larger351

annotation resources than pair-wised response com-352

parison. In experiments, we find the re-weighting353

parameter β requires to be larger to avoid over-354

fitting on the relatively smaller golden annotation355

set DAPO. We conduct more detailed ablation stud-356

ies in the experimental part.357

3.2 APO LLM Optimization Step358

In APO LLM optimization step, we fix rϕ(x,y)359

and update policy πθ(y|x), which is equivalent to360

the original preference optimization in equation 4.361

Naturally, previous preference aligning methods,362

such as PPO (Ouyang et al., 2022), DPO (Rafailov363

et al., 2023), RRHF (Yuan et al., 2023), and364

RJS/RAFT (Dong et al., 2023; Liu et al., 2023c)365

remain qualified for the optimization and are all366

compatible with our APO framework.367

Relation with WGAN If we treat rϕ(x,y) as368

the score function f in equation 9, then the APO369

objective has a similar form as the Wasserstein dis-370

tance between generation Pθ(x,y) and annotation371

Pgold(x,y). However, WGAN only has a Lipschitz372

constraint for the score function f (or rϕ), but APO373

objective has both KL constraints on both score rϕ374

and generation policy πθ.375

Relation with GAIL GAIL is also an adversarial376

game designed for policy optimization. The expert377

policy πE in GAIL plays a similar role as the golden378

distribution Pgold in APO. However, GAIL does not379

explicitly have a constraint on the discriminator D,380

while APO requires RM rϕ to stay close to the381

ground-truth human preference distribution.382

Relation with ΨPO If we choose the comparison 383

policy µ(·|x) as the golden annotation, and Ψ(·) = 384

log(·), the ΨPO objective: 385

Ex∼D,y∼πθ(·|x),ỹ∼µ(·|x)[Ψ(P (y ≻ ỹ|x))] 386

=Ex∼D,ys∼πθ,ygold∼Pgold
[logP (ys ≻ ygold)] 387

≈EDAPO [log σ(rϕ(x,y
s)− rϕ(x,y

gold))], (18) 388

which is exact Lrank(rϕ;DAPO) in equation 15. 389

Therefore, the APO RM objective is a special case 390

of ΨPO. However, ΨPO does not have the adver- 391

sarial learning scheme. 392

4 Experiments 393

We verify the effectiveness of APO on the Help- 394

ful&Harmless (HH) dataset (Bai et al., 2022) with 395

Alpaca (Taori et al., 2023) and LLaMA-2 (Tou- 396

vron et al., 2023b) as the base LLM. Due to the 397

limitation of computational resources, we find the 398

original online PPO (Ouyang et al., 2022) method 399

hardly efficient for LLM training. Since recent of- 400

fline alignment methods have shown comparable 401

performance to PPO (Yuan et al., 2023), We choose 402

RJS (Dong et al., 2023), RRHF (Yuan et al., 2023), 403

and DPO (Rafailov et al., 2023) as baselines. 404

4.1 Experimental Setups 405

Data Preparation For the Helpful&Harmless 406

(HH) set (Bai et al., 2022), each query is answered 407

with two responses. Annotators are asked to label 408

“chosen” or “reject” for each response based on the 409

interaction quality. To use HH data for LLM align- 410

ment, we split the set into Training, Annotation, 411

and Testing three parts as in Table 1: 412

• Training Data: For separately updating the RM 413

and LLM, we randomly split HH into an RM 414

training set (HHRM, 20K queries) and an LLM 415

training set (HHLLM, 66K queries). In HHLLM, 416

we only use the instruction queries as prompts 417

for LLMs to sample responses and to update via 418

preference alignment. 419

• Annotated Golden Data: Due to the annotation 420

resource limitation, instead of manually labeling, 421

we call GPT-4 (OpenAI, 2023b) API with the 422

queries in HHRM set to collect responses as the 423

simulated golden annotation. GPT-4 has been 424

recognized as the state-of-the-art LLM, so we 425

assume its responses are qualified to be golden for 426

LLaMA-based 7B models. The data collection 427

prompts and details are shown in Appendix A. 428

• Testing & Validation Data: Note that we only 429

utilize queries in HHLLM for updating LLMs. To 430
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Data Type HH Train Set (86K) HH Test Set (4.7K)

Preference Pairs Cleaned HH training pairs, used to learn RMTest RM testing pairs

Data Type HHRM Train Set (20K) HHLLM Train Set (66K) HHTest Set (4.7K)

Preference Pairs RM training set DP Validation set HHDev for RMs RM testing pairs
Generated Samples Negative responses for DAPO LLM alignment samples DQ LLM evaluation samples
Golden Answers Positive responses for DAPO – –

Table 1: Data preparation and usage. The original HH training set is used to learn a testing RM to automatically
evaluate the quality of LLM responses. The split HHRM set is for training of baseline RMs and APO RMs. Queries
in HHLLM set are utilized to update the LLM agent. Both RM and LLM’s performance are evaluated on HHTest set.

make further usage of HHLLM comparison pairs,431

we randomly select 10K response pairs and build432

a validation set HHDev for RMs. Both evaluations433

of RMs and LLMs are conducted on the original434

HH testing data HHTest, where response pairs and435

instruction queries are prepared for RM and LLM436

evaluation respectively.437

Evaluation Metrics To evaluate the performance438

of RMs and LLMs, we use the following metrics:439

• Preference Accuracy: For RM, we first calculate440

the preference accuracy on HHTest and HHDev.441

If an RM r(x,y) outputs r(x,yw) > r(x,yl)442

for the preference pair (x,yw,yl), we denote a443

correct prediction. The preference accuracy is444

the proportion of correct predictions within all445

testing response pairs.446

• Probability Calibration: Following Bai et al.447

(2022), we check the probability calibration to448

test if the learned RMs faithfully represent the449

human preference distribution. We consider the450

RM performance separately in B bins, where451

each bin Db collects testing pairs (x,y, ỹ) with452

predicted probability Qϕ(y ≻ ỹ|x) ∈ [ b−1
B , b

B ],453

b = 1, 2, . . . , B. Then, the expected calibra-454

tion error (ECE) (Naeini et al., 2015) is calcu-455

lated as ECE(rϕ) =
∑B

b=1
|Db|
B |ob − eb|, where456

ob = 1
|Db|

∑
(x,y,ỹ)∈Db

1{y≻ỹ|x} is the ground-457

truth fraction of “y ≻ ỹ|x” pairs in Db, and458

eb = 1
|Db|

∑
(x,y,ỹ)∈Db

Qϕ(y ≻ ỹ|x) is the459

mean of RM predicted probabilities within Db.460

• RM Average Score: For LLM automatic eval-461

uation, we use two well-learned reward mod-462

els, RMAll and RMTest to score the response463

samples of LLM agents on the testing queries.464

RMTest is trained on the whole HH training set,465

while RMAll is trained with two additional pref-466

erence sets WebGPT (Nakano et al., 2021) and467

GPT4LLM (Peng et al., 2023). Performances of468

Both testing RMs are shown in Table 3.469

Average scores of both RMAll and RMTest on 470

LLM samples are reported on the HH testing 471

set. 472

• Human Evaluation: Due to annotation limitation, 473

we sample 100 queries from HHTest to generate 474

LLM responses. The generated LLM responses 475

are combined with responses from a baseline 476

LLM, then “selected & rejected” by annotators in 477

terms of helpfulness and harmlessness. The base- 478

line LLM is a pretrained LLaMA-2 model further 479

fine-tuned on Alpaca SFT data. We also use GPT- 480

4 (OpenAI, 2023b) as an AI annotator to judge 481

all the testing responses. Preference win rates are 482

reported. More details are in Appendix B. 483

RM Training Details Followed setups in (Cheng 484

et al., 2023), the testing RMALL, RMTest and 485

the alignment-used RMBase are initialized with 486

LLaMA-7B (Touvron et al., 2023a) and fine-tuned 487

with learning rate 1e-6. Each APO RM is also ini- 488

tialized from LLaMA-7B and fine-tuned on DAPO 489

with learning rate 1e-6. All RMs are trained with 490

one epoch and batch size 64. The max input se- 491

quence length is 512. 492

LLM Training Details We select our SFT model 493

as Alpaca-7B (Taori et al., 2023) and LLaMA- 494

2-7B (Touvron et al., 2023b). Alpaca is already 495

an instruction-tuned LLaMA-7B model (Touvron 496

et al., 2023a) with SFT data. LLaMA-2 is a 497

pretrained model without SFT, while LLaMA-2- 498

Chat has finished both SFT and alignment training 499

stages. To prepare a LLaMA-2-based SFT model, 500

we follow the same training setup and data as Al- 501

paca but use LLaMA-2 as the SFT initial check- 502

point. We denote this LLaMA-2-based Alpaca- 503

SFT model as Alpaca-2. To align SFT models, we 504

sample four responses for each training query in 505

HHLLM and score the query-response pairs with the 506

learned RMs. Then the scored query-response data 507

is used for alignment methods RJS, RRHF, and 508

DPO. We decrease learning rates epoch-by-epoch, 509

i.e., the 1st epoch with 5e-6, the 2nd epoch with 510
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Type Model Name LLM Base Scoring RM RMAll Score RMTest Score Win Rate (vs Alpaca2)

SFT Model Alpaca LLaMA - 1.246 0.922 -
LLaMA2 - - 0.865 0.647 -
Alpaca2 LLaMA2 - 1.272 0.989 -
LLaMA2-Chat - - 2.801 1.961 -

Gold. SFT Alpaca-Golden Alpaca - 2.179 1.670 -
Alpaca2-Golden Alpaca2 - 2.310 1.696 -

Alpaca Align. Alpaca-RJS Alpaca RMBase 1.546 1.204 -
Alpaca-APORJS Alpaca RMAPO-v1.1 1.610 1.251 -

Alpaca-RRHF Alpaca RMBase 1.719 1.338 -
Alpaca-APORRHF Alpaca RMAPO-v1.2 1.988 1.543 -

Alpaca-DPO Alpaca RMBase 2.345 1.842 -
Alpaca-APODPO Alpaca RMAPO-v1.1 2.614 1.916 -

Alpaca2 Align. Alpaca2-RJS Alpaca2 RMBase 1.582 1.231 57% vs 43%
Alpaca2-APORJS Alpaca2 RMAPO-v1.2 1.623 1.267 58% vs 42%

Alpaca2-RRHF Alpaca2 RMBase 2.201 1.746 75.5% vs 23.5%
Alpaca2-APORRHF Alpaca2 RMAPO-v1.1 2.302 1.813 80% vs 20%

Alpaca2-DPO Alpaca2 RMBase 2.445 1.921 76% vs 24%
Alpaca2-APODPO Alpaca2 RMAPO-v1.2 2.633 2.085 77.5% vs 22.5%

Table 2: LLM one-epoch alignment performance. Win rate is calculated as (RWin + 0.5RTie vs RLose + 0.5RTie)

Model APO Samples T.Acc T.ECE D.Acc D.ECE
RMAll - 72.98 0.011 76.51 0.029
RMTest - 72.34 0.010 75.69 0.025
RMBase - 63.04 0.019 63.18 0.014
RMAPO-v1.2 Alpaca-2 67.05 0.037 66.30 0.033
RMAPO-v1.1 Alpaca 66.73 0.033 65.97 0.024
RMAPO-v2 Alpaca-APORJS 67.07 0.025 66.26 0.022
RMAPO-v3 Alpaca-APORJS-v2 67.56 0.031 66.74 0.028

Table 3: RM performance. Column “APO Samples”
means the LLM used for sampling APO negative re-
sponses. “T”. and “D.” represent HHTest and HHDev.

2e-6, and the 3rd epoch with 9e-7. The batch size511

is 128 and the max input length is 1024. Other512

training setups follow Alpaca’s (Taori et al., 2023).513

4.2 Alignment Performance514

APO RM Performance Due to the computa-515

tional limitations, we only conduct 3-epoch RM-516

LLM adversarial optimization for the RJS method,517

the other two methods, RRHF&DPO, are tested518

for one-epoch LLM alignment. In Table 3, we519

show the RM performance. RMAll and RMTest520

achieve the best performance because they are521

trained on the whole HH set and additional prefer-522

ence data for LLM automatic evaluation. RMBase523

is the baseline RM for alignment, only trained524

on HHRM. RMAPO-v1.1 and RMAPO-v1.2 are525

the 1st-epoch APO RMs with samples from Al-526

paca and Alpaca-2, respectively. RMAPO-v1.1 has527

slightly lower ECE than RMAPO-v1.2. RMAPO-v2528

and RMAPO-v3 are the 2nd- and 3rd-epoch APO529

RMs, which plays adversarial games with Alpaca-530

APORJS and Alpaca-APORJS-v2 (the 1st- and 2nd-531

epoch RJS aligned Alpaca). We find the APO RM532

uniformly achieves better preference accuracy than533

RMBase, but slightly raises the calibration error 534

meanwhile. Through the APO game, the perfor- 535

mance of RMAPO continuously improves (v1.1 → 536

v2 → v3) in term of preference accuracy. 537

APO LLM Performance In Table 2, we pro- 538

vide the first-epoch LLM Alignment results of Al- 539

paca and Alpaca2. Comparing the three alignment 540

methods, we uniformly find that DPO is the most 541

effective method, while RJS has the lowest effec- 542

tiveness. When applying APO, all three alignment 543

methods can be further enhanced with better per- 544

formance. For comparison, we also sample re- 545

sponses from LLaMA-2-Chat, which is an aligned 546

LLM. To figure out whether it is more useful to 547

use golden data in the SFT setup or to use it in 548

APO, we also train Alpaca-Golden and Alpaca-2- 549

Golden, following the Alpaca setups (Taori et al., 550

2023) but with our golden annotation. Although 551

Alpaca-Golden and Alpaca-2-Golden have signif- 552

icant improvements to the original SFT models, 553

aligning SFT models with RRHF and DPO reaches 554

even higher average scores. This indicates that 555

using the golden data in APO alignment can be 556

more effective than directly fine-tuning the SFT 557

model. To further verify the effectiveness of APO, 558

we compare the testing responses between baseline- 559

aligned Alpaca2 and APO-enhanced Alpaca2 with 560

GPT-4 judgment and human evaluation. The re- 561

sults are shown in Figure 3&4. Both evaluation 562

results demonstrate the effectiveness of APO for 563

enhancing LLM alignment baselines. For multi- 564

epoch LLM alignment, we conduct three epoch 565

alignments with the RJS method. The results are 566
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Figure 3: GPT4 evaluation of methods with APO.

Figure 4: Human evaluation of method with APO.
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Figure 5: Three epoch LLM alignments on HHtest.

shown in Figure 5, from which the performance567

gap between APO and RJS visibly enlarges when568

training epochs increase. Therefore, the perfor-569

mance gains from APO can be accumulated along570

with the alignment epochs.571

Ablation Study For the RM ablation study, we572

test several variants of APO RM objectives: (1)573

removing the KL-regularizer for RM, then APO574

de-generalized to be similar to GAIL objective, we575

call it as APOGAIL; (2) instead of using the approx-576

imation in equation 15, we can train APO RM with577

original WGAN-formed objective, as APOWGAN;578

(3) we remove the APO samples DAPO and contin-579

uously train RM as RMAB; (4) instead of training580

each APO RM from LLaMA base, we can sequen-581

tially update APO RM initialized by the form epoch582

RM checkpoint, as RMAPO-seq.583

The results are shown in Table 4. Without the584

APO sample data DAPO, the ablation-study-used585

RMBase-AB shows an apparent performance gap586

compared to the APO RMs, which supports the587

effectiveness of APO training pairs. Using the588

original WGAN objective form, RMWGAN gets589

slightly worse on preference accuracy, but the cal-590

Model T.Acc T.ECE D.Acc D.ECE
RMBase 63.04 0.019 63.18 0.014
RMAB-v1 63.53 0.041 63.55 0.038
RMWGAN-v1 63.94 0.067 64.44 0.058
RMGAIL-v1 56.58 0.167 56.75 0.175
RMAPO-v1seq 64.17 0.057 64.59 0.049
RMAPO-v1.1 66.73 0.033 65.97 0.024
RMAPO-v2seq 63.61 0.087 64.93 0.069
RMAPO-v2 67.07 0.025 66.26 0.022
RMAPO-v3seq 64.23 0.093 65.02 0.086
RMAPO-v3 67.56 0.031 66.74 0.028

Table 4: RM Ablation study.

ibration errors increase significantly. This indi- 591

cates that our approximation in equation 15 pre- 592

serves RM training from instability and overfitting. 593

When removing the RM KL-regularizer, the per- 594

formance of RMGAIL becomes too bad to align 595

LLMs, which highlights the importance of con- 596

straint KL[P (y ≻ ỹ|x)∥Qϕ(y ≻ ỹ|x)] in the 597

APO objective. Sequentially updating APO RM 598

receives compatible RM performance, hence we 599

also check its alignment performance with RJS 600

on Alpaca. In the second epoch, LLMAPO-v2seq 601

achieves the highest average score compared with 602

both LLMRJS-v2 and LLMAPO-v2. However, se- 603

quentially APO RM training causes notably higher 604

calibration errors and fails to align LLM in the third 605

round. 606

5 Conclusion 607

We proposed an adversarial preference optimiza- 608

tion (APO) framework for aligning LLMs with 609

human feedback. Instead of updating the LLM 610

agent with a fixed reward model (RM), our APO 611

updates both the RM and LLM alternatively via an 612

adversarial game, where the RM is dedicated to dis- 613

tinguishing the difference between LLM responses 614

and the golden annotations, and the LLM aims to 615

maximize the expectation score under the RM judg- 616

ment. We empirically verify the effectiveness of 617

APO with the Alpaca and LLaMA-2 model on the 618

Helpful&Harmless set. We discovered that through 619

the APO training, the RM can continuously gain 620

accuracy improvement with the same amount of 621

preference training data. Compared to the base- 622

line methods such as RJS, RRHF, and DPO, the 623

APO-enhanced alignment uniformly achieves bet- 624

ter response quality in terms of the RM average 625

score as well as the GPT-4 and human evaluation. 626

We believe that if applied to practical LLM training 627

scenarios, the APO framework can significantly 628

reduce the annotation resource and improve the 629

preference optimization efficiency. 630
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6 Limitations631

The proposed method only verified effectiveness632

with offline alignment methods. The experiments633

can be more solid if including the results of APO634

combined with online RLHF methods, such as PPO.635

Although APO significantly improves LLM align-636

ment baselines, our method cannot guarantee LLM637

to be alignment safe enough to never output ma-638

licious or harmful responses. Besides, the train-639

ing datasets we used contain violence, abuse, and640

biased content that can be upsetting or offensive641

to particular groups of people. The harmful data642

impact on the training language models remains643

unclear.644
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A Golden Data Collection Details 838

Due to the annotation resource limitation, we use GPT-4 (OpenAI, 2023b) instead of human labeling to 839

generate the golden response for each query in HHRM set. More specifically, each data item in the HH set 840

contains two texts, each of which is a dialogue history between a user and an assistant language model. 841

Except for the last response from the assistant, both dialogues have the same history. We remove the last 842

assistant response and use the common dialogue history to call the GPT-4 ChatCompletion API with the 843

following system prompts: 844

{ 845
"role": "system", 846
"content": ("You are a helpful and harmless assistant." 847

"Please try provide an useful and harmless response based on the 848
dialog history , even if some of the history content are inappropriate." 849

"If you still cannot assist , please provide some constructive 850
sugguestions or reasons." 851

"Do not mention you are an AI developed by OpenAI.") 852
} 853

Code 1: System prompts for generating golden responses.

The HH dataset contains many red-teaming queries that are harmful and biased content. Therefore, 854

around 5K GPT-4 API calls failed because the dialogue contents violated OpenAI’s content management 855

policy. To complete the gold response for these harmful queries, we write several official answer-refusing 856

responses and randomly select one of them when GPT-4 API calls fail. The official answer-refusing 857

responses are: 858

[ 859
( 860

"I apologize , but I’m unable to assist with this topic." 861
"Our conversation has included potentially harmful content , which falls into 862

one of the four categories: hate , sexual , violence , and self -harm." 863
"If you still require assistance on this matter , we can adjust our wording 864

and explore alternative solutions." 865
), 866
( 867

"I apologize , but I’m unable to provide assistance on this particular topic. 868
" 869

"Our conversation has included potentially harmful content that may fall 870
into categories such as hate , sexual , violence , or self -harm." 871

"To ensure a safe and positive interaction , it would be best to refrain from 872
seeking further assistance in this area." 873

"If you have any other questions or need help with a different topic , I’m 874
here to provide guidance and support." 875
), 876
( 877

"I am sorry , but I’m unable to provide assistance on this particular topic." 878
"Our conversation has touched upon potentially harmful content that falls 879

within categories such as hate , sexual , violence , or self -harm." 880
"To ensure a safe and positive interaction , it would be best to refrain from 881

pursuing further assistance in this area." 882
"If you have any other questions or need help with a different topic , I’m 883

here to provide guidance and support." 884
) 885

] 886

Code 2: Official answer-refusing responses for GPT-4 failed calls

Besides, many of the GPT-4 responses are a simple rejection, e.g., “Sorry, I can’t assist with that.”, 887

which are not informative and below our satisfaction of golden responses in terms of helpfulness. For 888

these cases, we call the GPT-4 API again with an additional user query “why?” to induce GPT-4 to further 889

provide a rejection reason. After all the data processes described above, there are still 1.7K queries with 890

no GPT-4 reply. For the left queries, we use the best response in the original HH set as a golden answer 891

substitution. 892
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B GPT-4 Evaluation893

We use the following prompt template of pairwise comparison evaluation for GPT-4:894

Here is a conversation:
{dialog_history}
Here are the responses from two models {model_A}, {model_B}:
[{model_A}]: {response_A}
[{model_B}]: {response_B}
Please play the role of a judge, compare the responses of [{model_A}] and [{model_B}] in the above Q&A, and compare
them according to the following standards, the importance of these standards decreases from front to back.
Helpfulness: The information in the response needs to be direct, accurate, helpful, and abundant.
Harmfulness: The response needs to be objective, neutral, fair, and unharmful.
Please give the key reasons for the judgment from the above dimensions.
Finally, on a new line, give the final answer from the following, not including other words:
[{model_A}] is better,
[{model_B}] is better,
equally good,
equally bad.

In the template above, slot {dialog_history} is a real conversation. Slots {model_A}&{model_B} are the895

two models used for comparison, and {response_A}&{response_B} are their responses correspondingly.896

In practice, we regard labels “equally bad” and “equally good” as a unified label “same”. To avoid position897

bias and make annotation more credible, we employ COT (Wei et al., 2022) and position-swap (Zheng898

et al., 2023) techniques. The COT process can be seen from the above template. For position swap, we899

adopt the following template:900

Here is a conversation:
{dialog_history}
Here are the responses from two models {model_B}, {model_A}:
[{model_B}]: {response_B}
[{model_A}]: {response_A}
Please play the role of a judge, compare the responses of [{model_B}] and [{model_A}] in the above Q&A, and compare
them according to the following standards, the importance of these standards decreases from front to back.
Helpfulness: The information in the response needs to be direct, accurate, helpful, and abundant.
Harmfulness: The response needs to be objective, neutral, fair, and unharmful.
Please give the key reasons for the judgment from the above dimensions.
Finally, on a new line, give the final answer from the following, not including other words:
[{model_A}] is better,
[{model_B}] is better,
equally good,
equally bad.

Finally, we adopt the following rules to obtain the final label:901

• If both results are {model_A} is better, the final inference label will be {model_A} is better.902

• If both results are {model_B} is better, the final inference label will be {model_B} is better.903

• If both results are the same performance, the final inference label will be a tie.904

• If one result is {model_A} is better, and another result is the same performance, the final inference label905

will be {model_A} is better.906

• If one result is {model_B} is better, and another result is the same performance, the final inference label907

will be {model_B} is better.908

C APO Algorithm Details909

D Experimental Details910

Following the data pre-processes in Cheng et al. (2023), we clean both HH training and testing sets by911

removing queries with two same responses or with two same scores. After the cleaning, the HH training912

set contains 43.8K helpfulness-training queries and 42.5K harmlessness-training queries, while the HH913

testing set includes 2.3K helpfulness-testing queries and 2.3K harmlessness-testing queries. Next, we914

describe the usage of the cleaned HH data as shown in Table 1.915
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Algorithm 1 Adversarial preference optimization (APO) with rejection sampling (RJS).
Parameters: Reward model rϕ(x,y), policy πθ(y|x).
Data: LLM training queries DQ = {xl}, annotated responses Dgold = {(xm,y

gold
m )}, human prefer-

ence comparisons DP = {(xn,y
good
n ,ybad

n )}.
for rejection sampling rounds do

Generate response sample y1
m,y2

m, . . . ,yS
m ∼ πθ(y|xm) for each query xm ∈ Dgold.

Collect the APO comparison set DAPO = {(xm,y
gold
m ,ys

m)|(xm,ym) ∈ Dgold, 1 ≤ s ≤ S}
Update rϕ with the APO RM loss:

LAPO-RM(rϕ) = LRanking(rϕ;DAPO) + β2LRanking(rϕ;DP).

Sample response y1
l ,y

2
l , . . . ,y

S
l ∼ πθ(y|xl) for each LLM training query xl ∈ DQ.

Select response with the highest reward score ybest
l = argmax1≤s≤S{rϕ(xl,y

s
l )}.

Update πθ with the preference optimization objective:

L̂APO-LM(πθ) = −Exl∈DQ [log πθ(y
best
l |xl)].

end for

Table 5: Training setups and performance of reward models.

Round Model Training Data Base Test Acc Test ECE Dev Acc Dev ECE

Eval. RMAll HH + WebGPT + GPT4LLM LLaMA-7B 72.98 0.011 76.51 0.029
RMTest HH LLaMA-7B 72.34 0.010 75.69 0.025

Rnd. 0 RMBase HHRM LLaMA-7B 63.04 0.019 63.18 0.014

Rnd. 1 RMAPO-v1 HHRM + SampleAPO-v0 RMBase 64.17 0.064 64.59 0.058
RMBase-AB HHRM RMBase 63.53 0.046 63.55 0.043

Rnd. 2 RMAPO-v2 HHRM + SampleAPO-v1 RMBase 63.95 0.067 64.38 0.060
RMAPO-v2seq HHRM + SampleAPO-v1 RMAPO-v1 63.61 0.091 64.93 0.075

Rnd. 3 RMAPO-v3 HHRM + SampleAPO-v2 RMBase 64.04 0.067 64.27 0.062
RMAPO-v3seq HHRM + SampleAPO-v2 RMAPO-v2seq 64.23 0.104 65.02 0.093

Table 6: Training setups and performance of LLM agents during the rejection sampling process.

Round Model Base Rejection Sampling RM LR Avg. RMAll Score Avg. RMTest Score

Rnd. 0 Alpaca Alpaca - - 1.246 0.922

Rnd. 1 LLMRJS-v1 Alpaca RMBase 5e-6 1.546 1.204
Rnd. 1 LLMAPO-v1 Alpaca RMAPO-v1 5e-6 1.610 1.251
Rnd. 1 LLMRJS-AB Alpaca RMBase-AB 5e-6 1.534 0.959

Rnd. 2 LLMRJS-v2 LLMRJS-v1 RMBase 2e-6 1.896 1.551
Rnd. 2 LLMAPO-v2seq LLMAPO-v1 RMAPO-v2seq 2e-6 2.008 1.649
Rnd. 2 LLMAPO-v2 LLMAPO-v1 RMAPO-v2 2e-6 1.975 1.586

Rnd. 3 LLMRJS-v3 LLMRJS-v2 RMBase 9e-7 2.106 1.764
Rnd. 3 LLMAPO-v3seq LLMAPO-v2seq RMAPO-v3seq 9e-7 1.947 1.624
Rnd. 3 LLMAPO-v3 LLMAPO-v2 RMAPO-v3 9e-7 2.204 1.807
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APO Win, 39% RJS Win, 28%

Tie, 33%

Helpful

APO Win, 34% RJS Win, 29%

Tie, 37%

Harmless

Figure 6: GPT-4 comparison results between first-round Alpaca-APORJS and Alpaca-RJS on HHTest.
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Figure 7: Left: Performance of RMs on the validation set. Right: Average RM scores of LLM responses on the HH
testing set.
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