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Abstract

Knowledge tracing (KT) is the task of using students’ historical learning interaction
data to model their knowledge mastery over time so as to make predictions on their
future interaction performance. Recently, remarkable progress has been made of
using various deep learning techniques to solve the KT problem. However, the
success behind deep learning based knowledge tracing (DLKT) approaches is still
left somewhat unknown and proper measurement and analysis of these DLKT
approaches remain a challenge. First, data preprocessing procedures in existing
works are often private and custom, which limits experimental standardization.
Furthermore, existing DLKT studies often differ in terms of the evaluation protocol
and are far away real-world educational contexts. To address these problems, we
introduce a comprehensive python based benchmark platform, PYKT, to guarantee
valid comparisons across DLKT methods via thorough evaluations. The PYKT
library consists of a standardized set of integrated data preprocessing procedures
on 7 popular datasets across different domains, and 10 frequently compared DLKT
model implementations for transparent experiments. Results from our fine-grained
and rigorous empirical KT studies yield a set of observations and suggestions for ef-
fective DLKT, e.g., wrong evaluation setting may cause label leakage that generally
leads to performance inflation; and the improvement of many DLKT approaches is
minimal compared to the very first DLKT model proposed by Piech et al. [25]. We
have open sourced PYKT and our experimental results at https://pykt.org/.
We welcome contributions from other research groups and practitioners.

*The corresponding author: Shuyan Huang.
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1 Introduction

The increasingly digitalized education tools and the popularity of online learning have produced
an unprecedented amount of data that provides us with invaluable opportunities for applying Al in
education. Knowledge tracing (KT) is the task of using students’ historical learning interaction data
to model their knowledge mastery over time so as to make predictions on their future interaction
performance. Such predictive capabilities can potentially help students learn better and faster
when paired with high-quality learning materials and instructions, which is crucial for building
next-generation smart and personalized education.

The KT related research has been studied since 1990s where Corbett and Anderson, to the best of
our knowledge, were the first to estimate students’ current knowledge with regard to each individual
knowledge component (KC) [8]. A KC is a description of a mental structure or process that a learner
uses, alone or in combination with other KCs, to accomplish steps in a task or a proble Since
then, many attempts have been made to solve the KT problem, such as probabilistic graphical models
[ 13]] and factor analysis based models [3,114}/35]. Recently, due to the rapid advances of deep neural
networks, deep learning based knowledge tracing (DLKT) models have become the de facto KT
framework for modeling students’ mastery of KCs [1,|7,/10}|12}[15!16,(19}|21}122}1231|241|251|129/|30!
3111361137/144114511461147].

Although DLKT approaches have constituted new paradigms of the KT problem [10}|22}25//30}|46]
and achieved promising results, recent studies [15}16/25}|34] seem to resemble each other with
very limited nuances from the methodological perspective. Most existing work only provides coarse
evaluation and both the contributing factors leading to the success of DLKT and how the DLKT
models perform in the real-world educational contexts still remain somewhat unknown. Furthermore,
evaluations of existing DLKT work are not standardized and reported AUC results of the same
approach on the same dataset vary surprisingly from 0.709 to 0.86 [2] (details discussed in Section
. Therefore, there is a substantial need for a standardized DLKT benchmark platform, which
ensures that methods can be compared in a fair and transparent manner. Researchers need to be able
to evaluate their proposed approaches against a wide range of state-of-the-art (SOTA) methods on
both publicly available and private datasets and practitioners need to be capable of differentiating
advantages and disadvantages of the DLKT algorithms in real-world educational contexts.

In order to accelerate research in building advanced KT approaches, we systematically design PYKT,
a fine-grained python based benchmark library that brings us closer to the requirements of real-world
KT applications in educational contexts. Overall this paper makes the following contributions:

* We carefully and comprehensively assess the progress of recently developed DLKT algorithms
through the lens of empirical evaluation of critical experimental setup and design considerations on
a variety of public datasets. Through the empirical studies, we attempt to provide answers to the
following research questions:

— RQ1: What is a reasonable, reliable and realistic evaluation process for DLKT algorithms?

— RQ2: How do different characteristics of student data, model design and prediction scenario
affect the model performance?

* To ensure reproducibility and foster future research, we develop PYKT, an easy-to-use and end-
to-end PyTorch benchmark library that includes critical data preprocessing, standardized dataset
splitting, SOTA DLKT implementations, and real-world evaluation protocols in educational con-
texts. We hope the use of PYKT will greatly relieve the burden of comparing existing baselines and
developing new algorithms. The PYKT library is open-sourced at https://pykt.org/

Please note that there have been several KT related survey papers [2,[17}|27}|28]. However, to the
best of our knowledge, none of the existing work provides rigorous empirical evidence of DLKT
approaches on the standardized experimental evaluation in real-world educational contexts.

2 Problem Statement

Let Q, and C be the sets of questions, and KCs respectively. Let each student s be a chronologically
ordered collection of historical learning interactions, i.e., s = {ej };‘:1 where e; is the jth interaction

2A KC is a generalization of everyday terms like concept, principle, fact, or skill.
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Figure 1: The graphical illustration of the KT problem.

o

and n is the total number of interactions for s. We denote an interaction e as a 4-tuple, i.e.,
e =< q,{c},rt >, where g, {c},r,t represent the specific question, the associated KC set, the
binary valued student responsg’| and student’s response timestamp respectively. As illustrated in
Figure in this work, our objective is to predict the values (y,, ) of mastery levels of questions or
KC:s for the target student s given his/her past learning interaction data where x. can be arbitrary
questions or KCs, i.e., z, = ¢, or k,, where ¢, € Q and k, € C.

Please note that in real-world educational contexts, the number of questions is substantially larger than
the number of KCs. To avoid the over parameterization, the majority of existing DLKT approaches
conduct mastery predictions of questions indirectly by aggregated predicted mastery levels of KCs
[10]. When KC information is not available, mastery levels of questions can be directly modeled on
question-response data.

3 The DLKT Benchmark

3.1 Representative DLKT Methods

To carefully assess the progress of DLKT model-wise and application-wise, we surveyed existing
DLKT related publications in top AI/ML venueﬂ from 2015-202 lE]and collected all the baselines
compared in these research works and selected the most frequently mentioned DLKT baselines as
our representative DLKT methodsﬂ In addition, we include some recently proposed approaches to
cover a very wide range of DLKT models with different design focus. Please note that there are a few
newly developed DLKT focusing on either utilizing more auxiliary information such as LPKT that
utilizes time spent on questions [29], or solving data isolation problems in KT via federated learning
[42]]. The generalization of these approaches are limited to specific datasets and are out of scope in
this paper. These representative DLKT method can be categorized as follows:

* Deep sequential models: the chronologically ordered interaction sequence is captured by deep
sequential models such as LSTM and GRU [4}/12/|15}|16}/20}|21}|25!|34//45]. Selected approaches
are DKT [25]], DKT+ [45], DKT-F [21], and KQN [15].

bl

— DKT: leverages an LSTM layer to encode the student knowledge state to predict the students
response performances [25].

— DKT+: an improved version of DKT to solve the reconstruction and non-consistent prediction
problems [45].

— DKT-F: an extension of DKT that model the students’ forgetting behaviors [21].
— KQN: uses student knowledge state encoder and skill encoder to predict the student response
performance via the dot product [15].

* Memory augmented models: the latent relations between KCs are explicitly modeled by an
external memory that is updated iteratively [1}/29}|46]. Selected approach is DKVMN [46].

— DKVMN: designs a static key matrix to store the relations between the different KCs and a
dynamic value matrix to update the students’ knowledge state [46].

3Student response is a binary valued indicator variable where 1 represents the student correctly answered the
question, and 0 otherwise.

*Venues include NeurIPS, ICML, ICLR, AAAI IJCAIL KDD, WWW, SIGIR, MM, WSDM, ICDM, CIKM.

5The very first deep knowledge tracing model is proposed by Piech et al. at NIPS 2015 [25].

The comprehensive DLKT baseline frequency summary is listed in Appendixm

"We also include detailed model explanation in the PYKT library docs at https://pykt-toolkit
readthedocs.io/en/latest/models.html.



* Adversarial based models: the adversarial training techniques such as adversarial perturbations
are applied into the original student interaction sequence to reduce the risk of DLKT overfitting
and limited generalization problem [12]. Selected approach is ATKT [12].

— ATKT: performs adversarial perturbations into student interaction sequence to improve DLKT
model’s generalization ability [12].

* Graph based models: the response interactions between students and questions and the knowledge
associations between questions and KCs form a tripartite graph and graph based techniques are
applied to aggregate such relations [22}|37}|44]. Selected approach is GKT [22].

— GKT: utilizes the graph structure to predict the student response performance [22].

* Attention based models: dependence between interactions is captured by the attention mechanism
and its variants [10,|241|26}/47]. Selected approaches are AKT [10], SAKT [23] and SAINT [7].

— AKT: leverages an attention mechanism to characterize the time distance between questions and
the past interaction of students [10].

— SAKT: utilizes a self-attention mechanism to capture relations between exercises and the student
responses [23].

— SAINT: uses the Transformer-based encoder-decoder architecture to capture students’ exercise
and response sequences [7].

Please note that the above categorizations are not exclusive and related techniques can be combined.
For example, Ghodai and Qing proposed a sequential key-value memory network to unify the
strengths of recurrent modeling capacity and memory capacity [1].

3.2 Datasets

We select 7 widely used datasets to evaluate the performance of the popular models. The original raw
data download links are listed in Append We will briefly introduce the details of each dataset
and the data statistics are shown in Table

 Statics2011: This dataset is collected from an engineering statics course taught at the Carnegie
Mellon University during Fall 2011 [33]. Recommended by [6l 10} |46], a unique question is
constructed by concatenating the problem name and step name.

¢ ASSISTments2009: This dataset is made up of math exercises, collected from the free online
tutoring ASSISTments platform in the school year 2009-2010. The dataset is widely used and has
been the standard benchmark for KT methods over the last decade [1}|9}/10!123}143!46].

¢ ASSISTments2015: Similar to ASSISTments2009, this dataset is collected from the ASSISTments
platform in the year of 2015. This dataset has the largest number of students among the other
ASSISTments datasets.

* Algebra2005: This dataset is from the KDD Cup 2010 EDM Challenge that contains 13-14 year
old students’ responses to Algebra questions [32]. It contains detailed step-level student responses.
The unique question construction is similar to the process used in Statics2011.

* Bridge2006: This dataset is also from the KDD Cup 2010 EDM Challenge and the unique question
construction is similar to the process used in Statics2011.

* NIPS34: This dataset is from the Tasks 3 & 4 at the NeurIPS 2020 Education Challenge. It contains
students’ answers to multiple-choice diagnostic math questions and is collected from the Eedi
platform [40]. For each question, we choose to use the leaf nodes from the subject tree as its KCs.

* POJ: This dataset consists of programming exercises and is collected from Peking coding practice
online platform. The dataset is originally scraped by Pandey and Srivastava [24]).

3.3 The Standardized Evaluation Protocol

A standardized evaluation protocol is one of the most important basis of Al research and it impacts
model performance, fairness, and robustness. Even with many public KT datasets, due to the lack of
agreed upon training and evaluation procedures, the published DLKT results surprisingly diverge.
For example, the reported AUC scores of DKT and AKT on ASSISTments2009 range from 0.73



Table 1: Data statistics of 7 datasets in PYKT. “Original” and “After Preprocessing” refer to the
initial and preprocessed data statistics. “avg KCs” denotes the number of average KCs per question.

Datasets Original After Preprocessing
i interactions  sequences  questions KCs  avg KCs interactions  sequences  questions KCs  avg KCs

Statics2011 194,947 333 1,224 - 189,292 1,034 1,223 -
ASSISTments2009 346,860 4,217 26,688 123 1.1969 337,415 4,661 17,737 123 1.1970
ASSISTments2015 708,631 19,917 - 100 - 682,789 19,292 - 100 -
Algebra2005 809,694 574 210,710 112 1.3634 884,098 4,712 173,113 112 1.3634
Bridge2006 3,679,199 1,146 207,856 493 1.0136 1,824,310 9,680 129,263 493 1.0136
NIPS34 1,382,727 4918 948 57 1.0148 1,399,470 9,401 948 57 1.0148
POJ 996,240 22916 2,750 - 987,593 20,114 2,748 -

to 0.821 [20}/45] and from 0.747 to 0.835 in [10}/38] respectively. To this end, we standardize the
prediction scenarios (Section|3.3.1), data preprocessing, training and testing sets splitting (Section

13.3.2) and evaluation metric (Section .

3.3.1 Real-world Prediction Scenarios

Train DLKT models on KCs but evaluate them on questions. In real-world educational scenarios,
the question bank is usually much bigger than the set of KCs. For example, the number of questions
is more than 1500 times larger than the number of KCs in Algebra2005 (see Table[I). Therefore, to
effectively learn and fairly evaluate the DLKT models from such highly sparse question-response
data, a recommended procesis listed as follows (also shown in Figure:

* Step 1: Train the DLKT models on KC-response data, which is artificially generated from question-
response data by expanding each question-level interaction into multiple KC-level interactions
when the question is associated with a set of KCs.

* Step 2: Use the learned DLKT models to predict on the above expanded KC-response data first and
then output the final question-level predictions by aggregating predicted mastery levels of its KCs.

Although predictions at both question level and KC }
‘ v X ac ?

level are very important and useful for building per- Y X v

sonalized educational applications, when conducting Expended KC-response data

offline model comparisons, it is recommended that the [&]
DLKT models are evaluated on prediction tasks at the v X X v v v v v X X
question level instead of at the KC level. This is because [ s
(1) we only observe student responses on questions and k] s
have no ground truth about KCs; (2) a question may be Figure 2: A recommended procedure for
associated with multiple KCs and evaluation results on training and evaluating the DLKT models.

at the KC level may overestimate or underestimate the real model performance [41].

Specifically, implementing the above evaluation procedure of “step 2” in practice is worthy of
serious attention: predictions of mastery level of KCs within a question should be predicted in
an “all-in-one” manner. The “all-in-one” prediction approach requires to simultaneously estimate
the mastery level of all the KCs under each specific question. As illustrated in Figure when
predicting the outcome of g¢ that is associated with both k3 and k4, we should estimate gy, and gy,
independently at the same time. Surprisingly, this crucial issue is neglected in some existing works,
whose open sourced implementations conduct one-by-one evaluation on the expanded KC-response
sequence, i.e., predicting 9, ,, given all the responses (or labels) of g, , k., -, Jx, are known.
Unfortunately, this will cause the leakage of the ground truth since consecutive KCs like k; and k41
may be associated with the same questions, which is referred to as the label leakage problem. Such
dependent predictions will artificially boost prediction performance [41] and empirical analysis on
this issue is discussed in Section

KC prediction aggregation. To conduct a fine-grained, comprehensive and fair model comparison,
we consider 4 different ways of aggregating the KC predictions in the above recommended process
(depicted in the “KC Fusion” module in Figure , which include (1) early fusion that uses the
averaged hidden states of all associated KCs to predict the question-level response, i.e., EF’; (2) late
fusion - average that uses the averaged prediction probabilities of all KCs as the question-level
prediction probability, i.e., LF-AVG; (3) late fusion - majority vote that conducts majority votes
based on all KC prediction results, i.e., LF-MV; (4) late fusion - strict that predicts positive if and
only if all the related KCs’ predicted labels are positive, i.e., LF-S.

8The below procedure is also briefly mentioned by Ghosh et al. [10].



One-step and multi-step ahead KT predictions. To make the benchmark close to the real application
scenarios, we divide our prediction scenarios into two settings: (1) one-step ahead prediction; and
(2) multi-step ahead prediction. Specifically, the one-step ahead prediction task only predicts the
student’s response on the last question given the student’s historical interaction sequence (depicted
in Figure a)). While the multi-step ahead prediction task predicts a span of student’s responses
given the student’s historical interaction sequence (depicted in Figure b)). Accurate one-step ahead
prediction will largely improve the real-time educational recommender systems and the multi-step
ahead prediction will provide constructive feedback to learning path selection and construction and
help teachers adaptively adjust future teaching materials as well.

@-@-O-@-®-O-O-®-®—-® | @-@-O-GW-O-®W-O-@®-O—w
v X v v v X v v X 2?2 ! v X v v v ?2 2?2 2?2 2 2
(a) One-step ahead prediction H (b) Multi-step ahead prediction

Figure 3: Two different prediction scenarios: one-step ahead and multi-step ahead predictions.

3.3.2 Data Preprocessing

Another challenge of reproducing existing DLKT research is the lack of standardized data prepro-
cessing procedure. Aforementioned public KT datasets are far away from the ready-to-use stage and
require many data preprocessing steps such as removing duplication, handling null or invalid values,
and re-constructing the chronological interaction order. Furthermore, such steps are rarely described
in existing publications and many open-sourced packages do not include data scripts. Therefore,
in this work, our PYKT benchmark aims to outline a reasonable data preprocessing procedure for
DLKT research. Specifically, the procedure includes: (1) data filtering: filter out interactions if no
student id or any type of information of our 4-tuple interaction representation is not available or
missing and filter out students if their sequences have less than 3 interactions. (2) data splitting: 20%
students (their interaction sequences) are randomly withheld as the test set. The rest 80% students
are randomly and evenly split into 5 folds: 4 folds for training and 1 fold for validation. (3) KC
subsequence generation for training and validation. Expand original question-response sequence into
KC level by repeating responses multiple times when a question has more than one KCs, one for
each KC. Truncate the expanded KC level response sequence into shorter subsequences of length
m, where m is the pre-defined max training sequence length. Sequences or subsequences whose
length is less than m will be padded with -1. The data statistics of the aforementioned 7 datasets after
preprocessing are shown in Table

3.3.3 Evaluation Metric

Similar to all existing DLKT research works [1} 4} 10} 12} 15|16} 20} 21}122} 24} 25126, |29} |34!
3711441145146/ 147], we use the area under the receiver operating characteristics curve (AUC) as the
main metric to evaluate the performance of DLKT models on predicting binary-valued future learner
responses to either questions or KCs. Meanwhile, we also include detailed model performance in
terms of accuracy in Appendix.

4 Empirical Studies

Let AS2009, AS2015, AL2005, BD2006 represent datasets ASSISTments2009, ASSISTments2015,
Algebra2005, and Bridge2006 respectively in the following section.

Experimental setup. Since we have both question related and KC related information available for
datasets of AS2009, AL2005, BD2006, and NIPS34, we conduct offline experiments following the
recommended procedure discussed in Section For experiments on datasets such as Statics2011,
AS2015, and POIJ that question related or KC related information is missing, both the training and
testing procedures are conducted on question-response data. The details of training, validation and
test sets are described in Section[3.3.2] By default, we choose to use LF-AVG for KC prediction
fusion and all experiments are conducted in the one-step ahead prediction setting and the detailed
analysis of multi-step ahead prediction is discussed in Observation 5 in Section[4.T] The pre-defined
max training sequence length m is set to 200.

Implementation details. We use the Bayesian search method to find the best hyperparameter and stop
searching when the number of the tuned hyperparameter combinations in each data fold is larger than



200 and there is no AUC improvement in the last 50 rounds. For each hyperparameter combination,
we adopt the Adam optimizer to train all models with the early stop heuristic. We compute the AUC
score on the development set for every epoch and update the best AUC score if needed. We stop
the training process when the AUC score doesn’t improve in the last 10 iterations or the number of
training epochs reaches 200. Experiments are conducted at https://wandb.ai/. Please note that
all the following AUC results are slightly different (less than 0.005) compared to the results in the
original version since we re-run all the experiments under a more consistent hyperparameter search
space. Detailed can be found in Appendix[A.3]

4.1 Results

We provide extensive experiments and analyses to demonstrate the value of PYKT benchmark.
Insights, findings and suggestions are summarized as observations described as follows.

Observation 1. Attention mechanism greatly affects DLKT model performance. The DKT
model that first applies deep learning into the KT problem is still superior.

Table@]summarizes the overall AUC performance results. Specifically, for datasets, i.e., AS2009,
AL2005, BD2006, and NIPS34 in which both question and KC related information is available, the
DLKT model performance is evaluated on both the original observed question-response data and the
expended KC-response data. We have performed 5-fold cross validation for all of our experiments
and the averaged AUC score is reported. The score standard deviations and the accuracy scores are
reported in Appendix due to space limit. From Table we find the following results: (1) AKT
outperforms (almost) all other methods on all datasets. Since AKT proposes a monotonic attention
mechanism to capture short-term dependencies on the past at different time scales, it outperforms
the standard self-attention based baselines like SAKT and SAINT. Furthermore, AKT learns the
Rasch model-based embeddings that implicitly model question difficulties when both question and
KC information is available. This significantly improves its prediction performance and AKT is
3.06%, 1.50%, 1.62% and 1.60% better than the second best approach on AS2009, AL2005, BD2006
and NIPS34 datasets. Meanwhile, it only exceeds the second best approach by 0.30% and 1.08% on
Statics2011 and POJ that either question information or KC information is missing. (2) The majority
of recently proposed DLKT approaches cannot beat the vanilla DKT model and the performance
between DKT and the best performing model for each dataset is shown in the bottom line (ApgT) in
Table (3) Deep sequential models, i.e., DKT, DKT+, DKT-F, KQN, outperform the self-attention
based model SAKT and SAINT in majority cases. We believe this is because different from the
most NLP tasks that require capturing the long-term dependencies, faraway historical interactions
have little influence on students’ future performance prediction. This also indicates that the recency
and forgetting effects need to be considered in the DLKT model design. (4) KT prediction on
programming exercises is much harder compared to KT tasks on math questions. DLKT models are
able to achieve 0.8ish AUC scores but only get 0.6ish AUC on the POJ dataset. (5) There is little
difference in prediction results on BD2006 and NIPS34 datasets at question level and KC level. This
is because most questions in these two datasets only contain one KC and the averaged numbers of
KCs per question are 1.0136 and 1.0148 in BD2006 and NIPS34 respectively. (6) The original ATKT
implementation utilizes the future ground truth to predict the mastery level of the current question,
which is problematic. The published promising results cannot be reproduced when this problem gets
fixed. The fixed results are reported in this paper and details are discussed in Appendix

Table 2: The overall prediction performance in terms of AUC at both question level and KC level.
Marker *, o and e indicates whether the AKT model is statistically superior/equal/inferior to the compared method (using paired t-test at 0.01 significance level). The
last column shows the total numbers of win/tie/loss for AKT against the compared method (e.g., #win is how many times AKT significantly outperforms that method).

Question Level(All-in-One) KC Level(ALL-in-One) . AKT
Model ' 53009 AL2005 BD2006 NIPS34  AS2000 AL2005 BD2006 NIpSag Owties201l AS2015 PO Fwin/Fiic/floss
DKT 0.7541% 0.8149% 08015* 0./689*  0.7419% 0.8146e 08013* 0.7681*  08222%  0.7271% 0.6089* 107071
DKT+ 07547+ 0.8156* 0.8020% 07696%  0.7424* 0.8144e 0.8019% 07689  0.8279%  0.7285e 0.6173* 9/0/2
DKT-F - 0.8147% 0.7985% 0.7733* - 0.8163e 0.7984* 0.7727%  07839* - 0.6030%* 7101
KQN 0.7477% 0.8027* 0.7936* 0.7684*  0.7361%* 0.8005* 0.7935% 07677%  0.8232%  0.7254% 0.6080* 11/0/0
DKVMN 0.7473* 0.80540 0.7983% 07673%  0.7330%* 07891* 0.7981* 0.7668%  0.8093*  0.7227% 0.6056* 10/1/0
ATKT 07470+ 0.7995% 0.7880% 0.7665% 07337+ 07964* 0.7885*% 0.7658%  0.8055%  0.7245% 0.6075% 11/0/0
GKT 0.7424% 0.8110% 0.8046% 0.7689*  0.7227% 0.8025* 0.8045% 07681*  0.8040%  0.7258% 0.6070* 11/0/0
SAKT  0.7246* 0.7880* 0.7740% 07517% 070850 07682% 0.7738* 0.7516%  0.7965%  0.7114% 0.6095% 10/1/0
SAINT  0.6958* 0.7775% 0.7781% 07873%  0.6865% 0.6662% 0.7779% 0.7860% 07599  0.7026% 0.5563* 10/1/0
AKT 07853 0.8306  0.8208  0.8033 07650  0.8091  0.8206  0.8017 0.8309 07281  0.6281 -
ApKT 0031200157 0019300344 __ 00231 00017 _0.0193__ 0.0336___ 0.0087 0.0014 00192

Observation 2. One-by-one evaluation on expanded KC sequences causes label leakage problem
that leads to performance inflation.



As discussed in Section la-
bel leakage happens when the target
KC prediction g, , depends on the

Table 3: The boosted DLKT AUC results due to label leakage.

The exaggerated gains (A,ip) are computed by subtracting AUC scores of one-by-one predictions
(left part in Tabl from AUC scores of all-in-one predictions at KC level (middle part in Tabl.

ground truth of the previous KC k- Model KC Level(One-by-One) Exaggerated Performance Gains (Aggin)
: J AS2000 AL2005 BD2006 NIPS34  AS2000 AL2005 BD2006  NIPS34
in the expanded KC sequence and at p&r 08262 09218 08028 07742 00843 0.1072 _0.0015 _ 0.0061
: ) ) DKT+ 08268 09221 08032 07748 00844 01077 0.0013  0.0059
the same time, kJ .and k]_i_l.belong DKT-F - 09220 07997  0.7787 - 0.1057  0.0013  0.0060
to the same question. During our koN 0.8216 09179 07949 07736 0.0855 0.1174 0.0014  0.0059
. 11 DKVMN 08213 09190 07993 07723  0.0883 0.1299 0.0012  0.0055
journey of i)ulldlng .PYKT’ we fodnd ATKT 08210 09156 07902 07718 00873 0.1192 0.0017  0.0060
many publlcly available DLKT im- GKT 0.8171 09208 0.8057 0.7741 0.0944 0.1183  0.0012  0.0060
1 . look this leak. SAKT 07806 09115 07740 07532 00721 0.1433 0.0002  0.0016
plementations overlook this leakage  sant 07605 09050 07787 07910 00740 02388 00008  0.0050
AKT 0.8493 09305 0.8218 0.8084 00843 01214 00012  0.0067

issue [10,/23}/46], which artificially

boosts prediction performance. We reproduce such “wrong” evaluation procedure and report the
exaggerated results in the left part in Table[3| Furthermore, we explicitly show the exaggerated AUC
gains (AGaip) in the right part of Table by computing the AUC scores difference between results
of one-by-one predictions at KC level (values in Table and results of all-in-one predictions at KC
level (middle part in Table . The related accuracy results are reported in Appendix As we can
see that, the leakage issue is much worse in AS2009 and AL2005, i.e., the mean values of AGain is
8.38% and 13.09% respectively. This is because questions in AS2009 and AL2005 have more KCs
associated and their average KC numbers per question is 1.1970 and 1.3634 compared to the value of
1.0136 and 1.0148 in BD2006 and NIPS34. Experimental results and conclusions impacted by the
leakage problem need to be re-validate and we believe this is the reason why we cannot reproduce
the results of many DKLT models on AS2009 and AL2005 [10}|23}|46]. In summary, we do not
recommend to conduct KT evaluations at KC level in the above one-by-one manner.

Observation 3. DLKT models behaves differently for students who have very long interaction
sequences.

In the real educational scenarios, the length of historical learning interactions varies a lot. Therefore,
we split the test set into two parts: (1) students with long interaction sequences (sequence length is
larger than 200), denoted as L; and (2) students with short interaction sequences (sequence length is
less than or equal to 200), denoted as S. We choose 200 as the cutoff threshold because the pre-defined
max training sequence length m is set to 200 as well in all experiments. We evaluate the DLKT
performance on L and S respectively (shown in Table. Its full version with standard deviations
and the results in terms of accuracy are reported in Appendix and Appendix Generally
speaking, DLKT models perform quite differently on L and S. For example, the difference of AUC
scores on POJ ranges from 5% to 14%. Meanwhile, DLKT models perform alike on Statics2011
and AS2015. By digging into these two datasets, we find that these two datasets have very high
numbers of KC co-occurrence on L and S, i.e., the appearance of one KC is often accompanied
by another KC. Such adjacent interactions will largely influence the model performance and the
role of long-term contextual information reduces quite a lot. As a result, there are no obvious AUC
performance difference on L and S student subgroups.

Table 4: Prediction performance in terms of AUC for students with different lengths of interactions.

Model Statics2011 AS2009 AS2015 AL2005 BD2006 NIPS34 POJ
L S L S L S L S L S L S L S

DKT 0.8219  0.8314  0.7351  0.7650  0.7106  0.7281  0.8160  0.7623  0.8010  0.8563  0.7740  0.7430  0.5979  0.6629
DKT+ 0.8276  0.8364  0.7357  0.7657  0.7113  0.7296  0.8168  0.7600  0.8015  0.8593  0.7748 0.7436  0.6045  0.6782
DKT-F 0.7859  0.7465 - - - - 08158  0.7597  0.7980  0.8467  0.7784  0.7480  0.5915  0.6606
KQN 0.8230  0.8280  0.7259  0.7604  0.7064  0.7266 ~ 0.8038  0.7466  0.7931  0.8515  0.7738  0.7414  0.5944  0.6774
DKVMN  0.8086  0.8294  0.7271  0.7588  0.7039  0.7240  0.8067  0.7429  0.7978  0.8540  0.7725 0.7414  0.5924  0.6732
ATKT 0.8046  0.8295  0.7249  0.7605  0.7029  0.7262  0.8004  0.7564  0.7884  0.8464  0.7711  0.7438  0.5960  0.6687
GKT 0.8044  0.8004 0.7224  0.7535 0.7111  0.7266  0.8122  0.7528  0.8042  0.8535 0.7741  0.7431  0.5977  0.6577
SAKT 0.7958  0.8179  0.6989  0.7403  0.6857  0.7134  0.7891  0.7347  0.7734  0.8239  0.7570  0.7253  0.6001  0.6544
SAINT 0.7592  0.7845  0.6687  0.7112  0.6617  0.7060  0.7788  0.7097  0.7776  0.8189  0.7912  0.7687  0.5294  0.6702
AKT 0.8305 0.8466  0.7781  0.7878  0.7113  0.7292  0.8317  0.7771 ~ 0.8204 0.8643 0.8074  0.7829  0.6137  0.6949

Observation 4. Prediction results of different ways of KC aggregation resemble each other and
the “late fusion - average” is slightly better compared to other approaches.

Generally speaking, there are 4 different ways of aggregating KC predictions in the “KC Fusion”
module in Figure Therefore, we conduct extensive experiments to empirically evaluate their
impacts on the final prediction performance (shown in Table. Due to the space limit, we choose
to use DKT and AKT as the representative approaches from the deep sequential DLKT models and
attention based DLKT models. The full results of all the baselines are shown in Appendix Please
note that since DKT, ATKT and GKT inherently don’t use individual hidden states to model each KC,



EF approach is inapplicable on these
methods. Similar to Table we use
markers *, o and e to indicate whether

Table 5: Impact on different KC fusion mechanisms.
Marker *, o and e indicates whether the LF-AVG mechanism is statistically superior/
equal/inferior to the compared fusion method (using paired t-test at 0.01 significance level).

Fusion Mechanisms

the LF-AVG model is significantly bet-  Model Dataset o pm o ARusion
ter/equal to/worse than the compared AS2009 | 07541 07526 0.7524% E 0.0015
: o AL2005 | 08149  08123*  08I131% - 0.0018

method at 0.01 s1gn1ﬁc.ance level. The  bkr 202006 | 08015 080150 080150 i 00000
difference (Apygion) 18 computed by NIPS34 | 07689 0.7687%  0.7688* - 0.0001
: AS2009 | 07473 07458  0.7456*  0.7454* | 0.0015
subtracting AUC scores of LF-AVG from DKVMN | AL2005 | 08054  08022¢  08021*  07961* | 0.0032
the best AUC score from LF-MV, LF-S, BD2006 0.7983 079830 0.79830  0.79830 0.0000
NIPS34 | 07673 07672+ 076730 076730 | 0.0000

and EF. The }ast row shows the total num- AS2000 0750 —0740F—07466F - 0.0004
ber of win/tie/loss for LF-AVG against  yikr AL200S | 07995 0.7963* 07974 - 0.0021
BD2006 | 07889  0.7888% 078890 - 0.0000

the compared method. As we can see, (1) NIPS34 | 07665  07663%  0.76650 - 0.0000
though statistically significant, the per- AS2009 | 07424 0.7376%  0.7401* 0.0023
. . GKT AL2005 | 08110  0.8072%  0.8072% 0.0038

formance difference between different BD2006 0.8046 0.80460 0.80460 - 0.0000
fusion mechanisms is very small. The NIPS34 | 07689  0.7686*  0.76890 - 0.0000
AS2009 | 07853 0.7794*  0.7847% _ 0./825* | 0.0006

LF-AVG approach outperforms or per- AL2005 | 08306  08228%  08275%  08177% | 00031
; BD2006 | 08208 082080 082080  0.82080 | 0.0000

form alike other approgches across all 4 NIPS34 | 08033  0.8028*  0.80330  0.8034e | -0.0001

datasets. (2) Apysion 18 much larger on Fwin/ftic/Hloss 16/410 117970 a3/

AL2005, we believe this is because the
AL2005 dataset has the largest the number of KCs per question (shown in Table . Averaging
probabilities of KCs within a question will stabilize the DLKT model performance.

Observation 5. The choice of accumulative or non-accumulative prediction vastly influences the
DLKT performance in the multi-step ahead prediction scenario.

As discussed in Section[3.3.1] accurate predictions in the multi-step ahead prediction scenario are
also very important from educational perspectives. Practically, there are two different approaches, i.e.,
accumulative prediction and non-accumulative prediction. The accumulative prediction approach uses
the last predicted values for the current prediction while the non-accumulative prediction predicts all
future values all at once. To have a fine-grained analysis in the multi-step ahead prediction scenario,
we further experiment with DLKT models on different portions of observed student interactions.
Specifically, we vary the observed percentages of student interaction length from 20% to 90%
with step size of 10%. Due to the space limit, we select DKT/DKVMN/ATKT/GKT/AKT and
AS2009/BD2006/POJ as the representative approaches and datasets and the results are shown in
Figure @} The full AUC and accuracy results are shown in Appendix[A.10]and Appendix[A.TT]
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Figure 4: Accumulative and non-accumulative predictions in the multi-step ahead scenario in terms
of AUC on AS2009, BD2006, and POJ.

We make the following observations: (1) accumulative performance is mostly worse than non-
accumulative performance on the POJ dataset. This is because the DLKT approaches only achieve
0.6ish AUC (shown in Table and the previous prediction errors are aggregated and propagated
to the future prediction tasks in an accumulative fashion. (2) the performance of non-accumulative
predictions on BD2006 drops a lot compared to its accumulative prediction results. We believe
this is because the BD2006’s has the largest average sequence length. When conducting non-
accumulative predictions with different percentages of student historical interactions, it actually needs
to predict questions in the very farway future all in once. The DLKT performance downgrades when
there is not enough contextual information of the target question. (3) with the increase of student
historical interactions, the DLKT performance gradually improves in both the accumulative and
non-accumulative settings.



5 Limitation

While PYKT is able to standardize and accelerate research in DLKT, we are aware of some potential
limitations described as follows:

* Binary response assumption. Most existing DLKT research relies on the binary response assump-
tion and existing publicly available datasets only contain the binary labels, i.e., correct or incorrect.
We believe this is because the binary valued data is (sort of) the most objective assessment labels
that can be easily collected from either the online learning platforms or the offline classrooms in a
large scale. However, we deeply believe that having more fine-grained student assessment labels
beyond binary value of correct and incorrect would definitely push the boundary of this research
field. Some research works such as option tracing [11] aim to extend existing KT methods beyond
correctness prediction to the task of predicting the exact option students select in multiple choice
questions. This only works for multiple choice questions and it generalizes the traditional KT
prediction from binary classification to the multi-class classification settings. The PYKT library is
well modularized and different loss functions or evaluation metrics can be easily added. Hence, it
is flexible to extend the existing benchmark to non-binary prediction settings such as multi-class
classification or real-valued regression problems.

* Auxiliary side information. All existing baselines don’t utilize the rich auxiliary side information
in educational contexts. Various auxiliary side information could be extracted as external knowledge
and integrated with the DLKT models. Such auxiliary knowledge is expected to improve DLKT
performance, which can be considered as follows:

— Question side info.: (1) question text content [[16/[34]; (2) latent question variations with respect
to each KC [10]; (3) question difficulty level [10}|18/|47]; and (4) relations among questions
[18/124.147].

— Student side info.: (1) historical successful and failed attempts [47]; (2) recent attempts [47];
(3) students’ learning ability [20]; and (4) individualized prior knowledge of students [30].

— KC side info.: (1) latent knowledge representation [[10/|15]; and (2) relations among KCs [18].

6 Conclusion

Outlook: We describe concrete ongoing and future work towards expanding PYKT. Specifically,

* We will keep adding newly developed DLKT approaches into our DLKT model zoo and provide
ready-to-use benchmark results for both researchers and practitioners. We will incorporate more
diverse datasets into the PYKT platform.

* We will explore new DLKT opportunities such as modeling external side information from the
student side, KC side and question side. For example, we would like to apply the successful
pre-training techniques into the KT domain to better capture the heterogeneous educational data.

Conclusion: We present PYKT, a systematic and comprehensive python library standardizing
previous efforts in DLKT research with a focus on accessibility, reproducibility and practical usage in
real-world educational contexts, thereby paving the way towards a deeper understanding of different
DLKT components. Through its modularized and standardized data preprocessing components,
rigorous and real-world prediction scenario formulation, and experiment management, PYKT is
able to greatly relieve the burden of comparing existing baselines and developing new algorithms
and highlights several future directions in building more practical, generalizable, and robust DLKT
models.
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