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José Miguel Hernández-Lobato
Department of Engineering
University of Cambridge,

Microsoft Research,
Alan Turing Institute
jmh233@cam.ac.uk

Abstract

While deep neural networks are a highly successful model class, their large mem-
ory footprint puts considerable strain on energy consumption, communication
bandwidth, and storage requirements. Consequently, model size reduction has be-
come an utmost goal in deep learning. Following the classical bits-back argument,
we encode the network weights using a random sample, requiring only a number
of bits corresponding to the Kullback-Leibler divergence between the sampled
variational distribution and the encoding distribution. By imposing a constraint
on the Kullback-Leibler divergence, we are able to explicitly control the compres-
sion rate, while optimizing the expected loss on the training set. The employed
encoding scheme can be shown to be close to the optimal information-theoretical
lower bound, with respect to the employed variational family. On benchmarks
LeNet-5/MNIST and VGG-16/CIFAR-10, our approach yields the best test per-
formance for a fixed memory budget, and vice versa, it achieves the highest com-
pression rates for a fixed test performance.

1 Introduction

Traditional approaches to model compression usually rely on three main techniques: pruning, quan-
tization and coding. For example, Deep Compression (Han et al., 2016) proposes a pipeline employ-
ing all three of these techniques in a systematic manner. From an information-theoretic perspective,
the central routine is coding, while pruning and quantization can be seen as helper heuristics to
reduce the entropy of the empirical weight-distribution, leading to shorter encoding lengths (Shan-
non, 1948). Also, the recently proposed Bayesian Compression (Louizos et al., 2017) falls into this
scheme, despite being motivated by the so-called bits-back argument (Hinton & Van Camp, 1993)
which theoretically allows for higher compression rates.1 While the bits-back argument certainly
motivated the use of variational inference in Bayesian Compression, the downstream encoding is
still akin to Deep Compression (and other approaches). In particular, the variational distribution is
merely used to derive a deterministic set of weights, which is subsequently encoded with Shannon-
style coding. This approach, however, does not fully exploit the coding efficiency postulated by the
bits-back argument.

1 Recall that the bits-back argument states that, assuming a large dataset and a neural network equipped
with a weight-prior p, the effective coding cost of the network weights is KL(q||p) = Eq[log

q
p
], where q is

a variational posterior. However, in order to realize this effective cost, one needs to encode both the network
weights and the training targets, while it remains unclear whether it can also be achieved for network weights
alone.
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In this paper, we step aside from the pruning-quantization pipeline and propose a novel coding
method which approximately realizes bits-back efficiency. In particular, we refrain from construct-
ing a deterministic weight-set but rather encode a random weight-set from the full variational pos-
terior. This is fundamentally different from first drawing a weight-set and subsequently encoding it
– this would be no more efficient than previous approaches. Rather, the coding scheme developed
here is allowed to pick a random weight-set which can be cheaply encoded. By using results from
Harsha et al. (2010), we show that such a coding scheme always exists and that the bits-back argu-
ment indeed represents a theoretical lower bound for its coding efficiency. Moreover, we propose a
practical scheme which produces an approximate sample from the variational distribution and which
can indeed be encoded with this efficiency. Since our algorithm learns a distribution over weight-
sets and derives a random message from it, while minimizing the resulting code length, we dub it
Minimal Random Code Learning (MIRACLE).

2 Motivation

All preceding works (Han et al., 2015; Louizos et al., 2017; Reagen et al., 2018; Chen et al., 2015)
essentially use the following coding scheme, or a (sometimes sub-optimal) variant of it. After a
deterministic weight-set w∗ has been obtained, involving potential pruning and quantization tech-
niques, one interprets w∗ as a sequence of i.i.d. variables and assumes the coding distribution (i.e. a
dictionary) p′(w) = 1

N

∑N
i=1 δw∗

i
, where δx denotes the Dirac delta at x. According to Shannon’s

source coding theorem (Shannon, 1948), w∗ can be coded with no less thanNH[p′] nats (H denotes
the Shannon entropy), which is asymptotically achieved by Huffman coding (Huffman, 1952), like
in Han et al. (2016). However, note that the Shannon lower bound can also be written as

NH[p′] = −
N∑
i=1

log p′(w∗i ) = − log p′(w∗) =

∫
δw∗(w) log

δw∗(w)

p′(w)
dw = KL(δw∗ ||p′), (1)

where we set p′(w) =
∏
i p
′(wi). Thus, these Shannon-style coding schemes are in some sense op-

timal, when the variational family is restricted to point-measures, i.e. deterministic weights. By ex-
tending the variational family to comprise more general distributions q, the coding length KL(q||p)
could potentially be drastically reduced. In the following, we develop one such method which ex-
ploits the uncertainty represented by q in order to encode a random weight-set with short coding
length.

3 Minimal Random Code Learning

Consider the scenario where we want to train a neural network but our memory budget is constrained.
As illustrated in the previous section, a variational approach offers – in principle – a simple and
elegant solution. Now, similar to Louizos et al. (2017), we first fix a suitable network architecture,
select an encoding distribution p and a parameterized variational family qφ for the network weights
w. We consider, however, a slightly different variational objective related to the β-VAE (Higgins
et al., 2017) in order to be able to constrain the compression size using the penalty factor β:

L(φ) = Eqφ [log p(D|w)]︸ ︷︷ ︸
negative loss

−β KL(qφ||p)︸ ︷︷ ︸
model complexity

. (2)

This objective directly reflects our goal of achieving both a good training performance (loss term)
and being able to represent our model with a short code (model complexity), at least according to
the bits-back argument. After obtaining qφ by maximizing (2), a weight-set drawn from qφ will
perform comparable to a deterministically trained network, since the variance of the negative loss
term will be comparatively small to the mean. , and since the KL term regularizes the model. Thus,
our declared goal is to draw a sample from qφ such that this sample can be encoded as efficiently
as possible. It turns out that the expected message length E[|M |] that allows for sampling qφ is
bounded by the mutual information between the data D and the weights w (Harsha et al., 2010;
Havasi et al., 2018):

ED[|M |] ≥ H[M ] ≥ I[D :M ] ≥ I[D : w] = ED[KL(qφ||p)] . (3)

Harsha et al. (2010) provide a constructive proof that this lower-bound can be well approximated
using a variant of rejection sampling. However, this algorithm is in fact intractable, because it
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(a) LeNet-5 on MNIST
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Figure 1: The error rate and the compression size for various compression methods. The Pareto-
frontier is denoted for MIRACLE (This work). Lower left is better.

requires keeping track of the acceptance probabilities over the whole sample domain. We propose
a method to produce an approximate sample from qφ that can be cheaply encoded. First, K =
exp(KL(qφ||p)) samples are drawn from p, using the shared random generator. Subsequently, we
craft a discrete proxy distribution q̃, which has support only on these K samples, and where the
probability mass for each sample is proportional to the importance weights ak =

qφ(wk)
p(wk)

. Finally,
we draw a sample from q̃ and return its index k∗. Since any number 0 ≤ k∗ < K can be easily
encoded with KL(qφ||p) nats, we achieve our aimed coding efficiency. Decoding the sample is easy:
simply draw the k∗th sample wk∗ from the shared random generator (e.g. by resetting the random
seed). While this algorithm is remarkably simple and easy to implement, it can be shown that it
produces a close-to unbiased sample from qφ (Chatterjee & Diaconis, 2018; Havasi et al., 2018).

Furthermore, an immediate caveat is that the number K of required samples grows exponentially
in KL(qφ||p), which is clearly infeasible for encoding a practical neural network. To deal with this
issue, the weights are randomly split into groups each with a small, fixed allowance of nats such that
drawing exp(KL(qφblock ||pblock)) ≈ 106 samples can be done efficiently.

4 Experimental Results

The experiments2 were conducted on two common benchmarks, LeNet-5 on MNIST and VGG-
16 on CIFAR-10, using a Gaussian distribution with diagonal covariance matrix for qφ. As base-
lines, we used three recent state-of-the-art methods, namely Deep Compression (Han et al., 2016),
Weightless encoding (Reagen et al., 2018) and Bayesian Compression (Louizos et al., 2017). The
performance of the baseline methods are quoted from their respective source materials.

We see that MIRACLE is Pareto-better than the competitors: for a given test error rate, we achieve
better compression, while for a given model size we achieve lower test error (Figure 1).

5 Conclusion and Future Work

In this paper we followed through the philosophy of the bits-back argument for the goal of coding
model parameters. Our algorithm is backed by solid recent information-theoretic insights, yet it is
simple to implement. We demonstrated that it outperforms the previous state-of-the-art.

An important question remaining for future work is how efficient MIRACLE can be made in terms
of memory accesses and consequently for energy consumption and inference time. There lies clear
potential in this direction, as any single weight can be recovered by its group-index and relative
index within each group. By smartly keeping track of these addresses, and using pseudo-random
generators as algorithmic lookup-tables, we could design an inference machine which is able to
directly run our compressed models, which might lead to considerable savings in memory accesses.

2 The code is publicly available at https://github.com/cambridge-mlg/miracle
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