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ABSTRACT

Representation learning becomes especially important for complex systems with
multimodal data sources such as cameras or sensors. Recent advances in rein-
forcement learning and optimal control make it possible to design control algo-
rithms on these latent representations, but the field still lacks a large-scale standard
dataset for unified comparison. In this work, we present a large-scale dataset and
evaluation framework for representation learning for the complex task of land-
ing an airplane. We implement and compare several approaches to representation
learning on this dataset in terms of the quality of simple supervised learning tasks
and disentanglement scores. The resulting representations can be used for fur-
ther tasks such as anomaly detection, optimal control, model-based reinforcement
learning, and other applications.

1 INTRODUCTION

In order to act in real world scenarios and control a complex system such as an airplane, car, or in-
dustrial facility, an automated agent needs to process complex high-dimensional data coming from
different domains: video feeds from cameras, LIDAR sensors on a car, altitude and speed sensors
on an airplane, sensors related to the internal state of the system, and so on. An important problem
in this regard would be to map this rich stream of multimodal information into a lower-dimensional
space that compresses all modalities into a uniform latent representation (embedding); the agent
could then use this embedding to learn or otherwise construct control algorithms. Thus, representa-
tion learning lies at the heart of optimal control for complex systems with multimodal features.

Over the last decade, deep neural networks have surpassed other methods in processing nearly all
modalities of high-dimensional unstructured data, including images, natural language texts, sounds,
and time series. One of the most important properties of neural networks that has made the deep
learning revolution possible is their ability to extract meaningful low-dimensional representations of
raw unstructured input data. Representation learning with deep neural networks is a large and well-
established area of research (Kingma & Welling, 2013; Hinton & Salakhutdinov, 2006; Radford
et al., 2015). Latent features learned by deep neural networks find applications in various domains,
including reinforcement learning for complex systems (Zhang et al., 2018; Watter et al., 2015; van
Hoof et al., 2016). In these works, the authors often propose special techniques and architectures
to design the latent space in different ways suitable for further use: make the latent space locally
linear, capture the dynamics, and so on. Designing such feature extractors is a complex task, usually
done by hand. Moreover, it is hard to compare different architectures, to a large extent because it
is far from obvious how to measure the quality of resulting representations. One reason for that is
that the best metric for the quality of learned representations would be the quality of the final task in
question, which is hard to obtain in reinforcement learning due to the sheer scale of this final task.

A common way to deal with such problems is to use a unified dataset and a unified set of benchmarks,
such as, for example, ImageNet and the ILSVRC benchmark in computer vision (Russakovsky et al.,
2015). Such unified datasets might also prove useful for transfer learning tasks. However, the field of
reinforcement learning for complex systems is yet to agree on a common representative large-scale
dataset. In this work, we present such a multimodal dataset for the representation learning problem
together with a unified benchmark framework for feature extractors suitable for a comprehensive
comparative evaluation of different feature extractors. This dataset has been gathered with large-
scale computer simulations based on the X-Plane simulator and consists of data streams from various
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sensors along with images taken from the frontal camera of the plane. We propose and implement
several different metrics for comparison between extracted features. We also survey, implement, and
compare different neural architectures for learning multimodal state representations.

The paper is organized as follows. In Section 2 we survey related work on representation learning
and evaluation of representations. Section 3 presents the X-Plane dataset and explains its charac-
teristic features. In Section 4, we present the various representation learning models that we have
implemented and compared on this dataset. Section 5 shows the evaluation metrics and presents a
large-scale comparison across different models, and Section 6 concludes the paper.

2 RELATED WORK

Modern agent control methods commonly use techniques based on deep learning as feature ex-
tractors to deal with complex multimodal data, either explicitly (Zhang et al., 2018; Watter et al.,
2015) or implicitly (Mnih et al., 2015). Explicit techniques separate representations of the learning
environment from the agents operating in this enviroment; the environment representation can be
learned either independently (Zhang et al., 2018) or in a common end-to-end architecture (Parisi
et al., 2017). There are several major approaches to constructing such models (Lesort et al., 2018):
(1) autoencoders that reconstruct the input observation data, producing the latent representation be-
tween encoder and decoder; (2) forward models that predict the next state either in the latent space
or in the raw data, basing the prediction on the current latent representation; (3) inverse models that
use two states to predict the actions between them; this approach can be combined with forward
models; (4) models with prior knowledge of the system that impose additional constraints on the la-
tent space according to some fundamental system properties such as causality, temporal continuity,
or some more specific knowledge about the system (Jonschkowski & Brock, 2015); (5) multimodal
temporal fusion models such as the Memory Fusion Network (Zadeh et al., 2018).

If there is no additional data labeling available such as, e.g., a list of factors, the most direct way
to measure the quality of representations would be by evaluating the final quality of solving the
main task that a model can achieve based on this representation. However, in real world cases, in
particular in reinforcement learning, the main task is often hard to solve and unstable to train, so it
cannot be consistently used to evaluate latent representations.

Therefore, many indirect ways have been proposed to measure the quality of representations that
introduce proxies that can be expected to lead to better solutions of the final control problem.
The most common indirect approaches include (see also a comprehensive survey by Lesort et al.
(2018)): (1) task performance, the most intuitive metric, where representation quality is mea-
sured by the quality of performing some other relatively simple task, e.g., by predicting some
available target variables with simple models that take the latent representation as input (Higgins
et al., 2016; van Hoof et al., 2016); (2) KNN-MSE, proposed by Lesort et al. (2017), measures
the degree of preservation of the same neighbors between the latent space and the ground truth:
KNN-MSE(I) = 1

k

∑
I′∈KNN(I,k) ‖φ(I)− φ(I ′)‖ , where I is the initial raw input, I ′ is a neigh-

bour of I , and φ is the feature extractor; KNN-MSE is a good metric in situations where the distance
in the original input space is well-defined but becomes hard to apply for highly variable multimodal
data; (3) a similar approach with humans in the loop is to evaluate whether similar input states ac-
cording to human evaluation do indeed map to close representations in the latent space (Sermanet
et al., 2018); however, for complex multimodal inputs this is again inapplicable since a human
would not have an intuitive notion of similarity between two sets of several hundred sensor read-
ings; (4) disentanglement scores (Eastwood & Williams, 2018; Higgins et al., 2016) measure the
disentanglement (mutual independence) of extracted features; if there are some known generative
factors, these metrics assess whether individual elements of the latent representation capture indi-
vidual generative factors independently; we will consider such metrics in detail in Section 5.1.

As a representative multimodal dataset for a complex system, we have used the X-Plane flight simu-
lator (Laminar Research, 2018), well-known for its faithful simulation of all systems of an aircraft. It
has already been used to solve optimal control problems for aircraft; e.g., Bittar et al. (2014) develop
separate control laws for stable and maneuvering flight, and Garcia & Barnes (2009) use X-Plane to
simulate a system of several unmanned aerial vehicles. However, to the best of our knowledge this
is the first attempt to produce a large-scale dataset for representation learning from X-Plane or any
other flight simulator.
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3 THE X-PLANE DATASET

We present the X-Plane Dataset (Dataset, 2018; Code, 2018) as a benchmark for evaluating the qual-
ity of state representations (embeddings), where the main problem is to encode the state of some
complex system, learn a mapping from high-dimensional multimodal data to a low-dimensional
latent representation. We have used the X-Plane simulation environment because it is extremely
accurate and can produce a lot of useful and different sensor data. In total, we have recorded 8011
landings, with mean duration of a landing of 115 seconds. For every landing, the dataset contains
the readings of 1090 sensors arranged in time series recorded with with a frequency of 5 frames
per second, together with the corresponding image taken from the camera located at the front of the
airplane; the images are recorded at the same frequency. Table 1 summarizes the various groups
of sensors recorded in the dataset, showing the number of sensors in a group together with a brief
description. The total dataset size is 93GB uncompressed; it contains sensor readings and about 7M
256 × 256 images, joined into per-flight videos for better compression. To ensure diversity in the
dataset, we recorded landings with random perturbations and in different environments: with differ-
ent airports and runways, time of day, weather conditions etc. We have used at most 12 perturbations
(abrupt changes in the environment such as, e.g., wind gusts, malfunction of various systems in the
aircraft, and so on) applied during each flight; Table 2 summarizes various failures and perturba-
tions. We have used a custom control unit based on the Boeing 737 guide (Brady, 2014) in order to
make automatic landings stable.

During dataset collection, for every landing we chose a random airport and a random runway and
spawned a plane in a random position, usually at a distance of 3-5 miles from the runway. There
are, in total, 114 different runways in 70 airports used in the dataset. Then we applied different
landing conditions—landing speed, flaps position, time of day, visibility, precipitation and so on—
and enabled the autopilot that lowered the plane on the glide slope path. To achieve a better landing,
we disable the autopilot before touchdown, increase the pitch of the plane, and after touchdown
we decrease the pitch and enable reverse thrust. At the end of the flight, there are three possible
situations: successful landing, aircraft crash, or time limit reached. We set a strict time limit of 160
seconds for every flight. We have also done an airport-stratified split of the dataset into 4 parts:
training set for feature extractors, validation set used for early stopping, training set for benchmark
supervised learning models, and test set for scoring the benchmark models. We have made the
dataset available at (Dataset, 2018).

4 MODELS

For experimental evaluation of different representation learning models, we used a wide variety
of different models, from basic autoencoders to dynamic actions-aware encoders. In this section,
we present these models, from simple to more complex ones. Our models were constructed with
four core building blocks: standard recurrent LSTM cell (Hochreiter & Schmidhuber, 1997), one-
dimensional convolutions (Conv1D), ConvLSTM (Shi et al., 2015), and an attention cell (Bahdanau
et al., 2014). The attention cell A(x) operates as follows (see Fig. 2):

vi = ReLU(Wxi + b), s = softmax(c>V + b), a = Vs, Out = (x,a),

where x is the input, W is a d × N matrix for embedding size d and input dimension N , V is the
matrix with columns vi, c is a vector of size d, s are attention weights. We considered the following
specific models (Table 4 lists all models with brief descriptions and numerical results).

One-dimensional autoencoders. A simple autoencoder that trains to reconstruct a given set of
timesteps (Fig. 2a). We used four types of autoencoders (AE) in the comparison: autoencoder with
1-layer LSTM cells for encoder and decoder, with 2-layer LSTM cells, with a 6-layer convolutional
autoencoder with kernel size 7. In LSTM autoencoders, after the encoder block we used simple
averaging of vectors from all timestamps in the time series, using the result as embedding. In
Conv1D, after the encoder block we used max-pooling to get a single vector from the time series;
in the decoder, it is copied the necessary number of times and fed to another Conv1D block. In our
experiments, we used 6 layers of Conv1D with kernel size 7.

Image Autoencoders. We trained two image autoencoders for reconstructing individual pictures
from the flight time series. The first autoencoder uses a PCA encoder and a PCA decoder. To obtain
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Group Description #
EFIS Data taken from the Electronic Flight Instrument System (EFIS) 10
annunciators Signals from annunciator panel: oil/fuel pressure, fuel quantity etc. 51
autopilot Autopilot information: autopilot state, heading, airspeed etc. 46
clock timer Various date and time info 9
controls Interactions with controls 11
electrical State of electrical systems: no. of batteries, bus voltage/load, lights etc. 141
engine Engine info: fuel flow, oil quantity, prop speed etc. 85
fuel Fuel-related sensors: fuel level, states of tanks etc. 11
gauges Gauges info: rate-of-turn, height, roll etc. 53
gps GPS course and the index of the navigation aid (NAVAID) 2
gyros Data from gyroscopes: indicated pitch, magnetic heading, roll etc. 52
hydraulics Hydraulic fluid quantity 4
ice De-icer state 5
pressure Various pressure-based metrics such as desired attitude and bleeding air 13
radios Parameters of interaction with beacons and airports over the radio 469
switches Current state of various switches 48
tcas Position of other planes 9
temperature Outside air temperature 6
transmissions Transmission oil pressure and temperature 2
warnings Various warnings 49
other — 13

Table 1: Groups of sensors represented in the X-Plane dataset.

DataRef name Description #
rel engfir0 Engine 1 is on fire 1181
rel engfir1 Engine 2 is on fire 1199
rel gls Autopilot has lost the Glide Slope 1006
rel bird strike Bird has hit the plane 449
rel rwy lites Runway lights inoperative 1790
frm ice Left wing is covered with ice (fraction of icing on wings/airframe) 553
frm ice2 Right wing is covered with ice (fraction of icing on wings/airframe) 583
rel servo ailn Ailerons servos failed 976
rel servo elev Elevators servos failed 1026
rel servo thro Throttles servos failed 993
rel engfai0 Engine 1 has lost power without smoke 638
rel engfai1 Engine 2 has lost power without smoke 2183
turbulence Turbulence factor 3296
wind speed kt Effective wind speed, knots 1499

Table 2: Different kinds of failures (top) and perturbations (bottom) in the X-Plane dataset.

Table 3: Sample images from the dataset.

Figure 1: Attention cell architecture.
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Figure 2: Three main ideas used to construct baseline models: (a) autoencoder for the state vectors,
(b) context prediction model, (c) autoregression (forward) model.

Figure 3: The Multimodal Temporal Encoder. Figure 4: The Dynamics Model.

the features from a flight sample, we apply the encoder for each image in the sequence and compute
the average of all resulting feature vectors. The second architecture is a bit more complicated: its
encoder contains the ResNet34 (He et al., 2016) architecture with an additional fully connected
layer whose size varies depending on the embedding size d, and whose decoder contains fifteen
two-dimensional convolutional layers. In contrast to the PCA model, instead of averaging the feature
vectors for each flight we used the standard deviation (this class of models worked better empirically
in our experiments).

Autoregression Models. These models are trained to predict a state at time t + k given some
subset of states up to time t. In our experiments, we trained autoregression models to predict with
k = 1 (next time step) and k = 30. In this task, as an encoder we have compared LSTM, Conv1D,
ConvLSTM, and attention-based architectures, with a simple linear layer after each.

Context Models. These models employ ideas similar to the word2vec CBOW model (Mikolov
et al., 2013). Given a short sequence of timesteps, the model trains to predict several timesteps
before and after the sequence; in our experiments, we used window size of 10 before and 10 after
given states. To train context models, we have used LSTM, attention cells, and Conv1D blocks.
After an encoder block, we repeated an embedding 2C times, where C is the context size, and then
applied a simple linear layer to each vector with different weights for each of the C timestamps.

Multimodal Temporal Encoder. The multimodal temporal encoder (MTE), introduced by Yang
et al. (2017), is a state of the art model intended to fuse inputs from different modalities (see
Fig. 3). MTE uses an LSTM unit for each modality and shares hidden states across these
units. By doing this, MTE forces the model to learn a fused representation across modalities;
formally, it adds a correlation loss that computes the correlation between projections of differ-

ent modalities Lcorr(H
1
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2
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L =
∑M

i=1 Lrecon,i − λLcorr, where M is the batch size, hjt is the representation of modality j
at timestep t, Hj

t = {hjti}Mi=1, H
j

t = 1
M

∑M
i hjti, λ is a constant hyperparameter, and ht is the

final embedding (see Fig. 3). The sensors data is encoded with a three-layer fully connected neural
network with dropout and ReLU activations, and a pretrained ResNet18 architecture for the images.

The Dynamics Model. This approach, proposed by Zhang et al. (2018), introduces a way
to decouple the training process (for a reinforcement learning task) into learning the dynamics
model and the reward model. The dynamics model (shown in Fig. 4) is trained using a com-
bination of four loss functions: reconstruction loss Lt,recon(θenc, θdec) = (st − ŝt)

2, state loss
Lt,state(θfor, θdec) = (st+1 − ŝt+1)

2, forward loss Lt,for(θfor, θenc) = (zt+1 − ẑt+1)
2, and in-

verse loss (with a trainable LSTM unit) Lt,inv(θinv) = (at − ât)
2. The final loss is computed

as L(θdynamics) =
∑T

t=0(λdec(Lt,recon + Lt,state) + λforLt,for + λinvLt,inv), where ẑt+1, ht =
ffor(zt, at, ht−1; θfor), ât = finv(zt, zt+1; θinv), ŝt+1 = fdec(ẑt+1; θdec), st is the state at time t,
at is the action at time t, ht is the hidden state, and zt is the latent representation at time t; λdec,
λfor, and λinv are (constant) hyperparameters. If the dynamics change, we need only to re-train
the LSTM unit and can keep the encoder and decoder unchanged, with the assumption that already
learned representation contains all the necessary information about the new dynamics. Since the
original approach was presented only for inputs with a single modality, we expanded this idea for
the multimodal case. To encode data from the sensors, we used a three-layer fully connected neural
network with dropouts and ReLU activations. For the images, we used a pretrained ResNet18 archi-
tecture. After that, a linear layer was used to concatenate outputs of encoders for each modality into
the embeddings, and the final embedding results by averaging over the time steps.

5 EXPERIMENTAL EVALUATION

5.1 EVALUATION FRAMEWORK

As part of the dataset package, we have implemented and made available the framework which is
designed to make a comprehensive evaluation of learned representation based on a number of fixed
predefined tests. The main idea behind our framework is to combine the two main approaches to
measuring representation quality. First, we measure quality of representations by using them as fea-
tures for a number of simple tasks. This approach was used, in particular, in the Black Box Learning
Challenge (Goodfellow et al., 2013) and Unsupervised and Transfer Learning Challenge (Guyon
et al., 2011), whose main objective was to learn a good representation from rich unlabeled data, and
representations were evaluated on supervised learning tasks that were not known to the participants.

The second approach is to evaluate the disentanglement in representations. For this we use a QEDR
(Quantitative Evaluation of Disentangled Representations) framework proposed by Eastwood &
Williams (2018). The idea is that the ideal representation of data is a vector of separated and in-
dependent generative factors for the data (perhaps scaled and permuted). The matrix R, where Rij

is the relative importance of code (representation) variable ci in predicting generative factor zj , is
used to compute three evaluation metrics for the quality of a representation. Disentanglement is a
measure of the degree to which a representation factorizes the factors of variation in original data;
for a code variable ci it is defined as Di = 1 −H(Pi.) where H(Pi.) is the entropy of the pseudo-
distribution Pi.; Pij = Rij/

∑
k Rik denotes the “probability” of ci being important for predicting

generative factor zj , and total disentanglement is computed as the weighted average
∑

i ρiDi, where
ρi =

∑
j Rij/

∑
kj Rkj is the relative code variable importance. Completeness is a measure of the

degree to which a factor of variation in the original data is captured by a single code variable; for a
factor zj it is defined asCj = 1−H(P̃.j) whereH(P̃.j) is the entropy of the pseudo-distribution P̃.j ;
total completeness is the average of Cj . Informativeness measures the amount of information that
a representation captures about the underlying factors of variation; following Eastwood & Williams
(2018), we use normalised root-mean-square (NRMSE) as the informativeness metric. We use
failure scores as generative factors since we know the ground truth for them and they are mutually
independent. We define Rij = |Wij |, where W is the weight matrix of lasso regression learned on
the representation vector to predict the vector of factors.

Our evaluation framework is shown in Fig. 5. We assume that a feature extractor constructs a single
vector representation for a time series of sensor readings. We have implemented disentanglement,
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Figure 5: Evaluation pipeline.

completeness, and informativeness scores computed on 12 failures scores as generative factors and
5 supervised learning targets, including: wind speed, turbulence power, vertical acceleration at the
time of landing (a quality of touchdown), autoregression (given t states, predict state t+ 1), failure
classification (in dataset generation we randomly applied various failures to the airplane, and the task
is to find out whether a failure is present in a given time series). To evaluate supervised learning,
we first apply the provided feature extractors for every training example, then train simple models
(namely, a three-layer fully connected neural network with ReLU activations) on these features for
each target, and finally compute the accuracy on the hold-out set; these accuracies are the final
performance metrics. We have made the code for the evaluation pipeline available at (Code, 2018).

5.2 EVALUATION RESULTS

Table 4 shows the main results of our evaluation study; in this section we interpret these quantitative
results. The models were trained on the X-Plane dataset with regression tasks evaluated on a hold-
out set; time series lengths varied from 25 to 75 during training. To establish a simple baseline for
our models we use the mean target value over the training set as a prediction. In Table 4, the “MEAN
baseline” row shows the absolute MSE values for MEAN and the other rows are normalized to the
MEAN baseline. First, we see that different regression tasks have very different models doing
well on them; e.g., most models cannot outperform even the mean baseline for wind regression, and
models that show good results on wind regression perform poorly on auto regression and vice versa.
The effect of images on the results is contradictory: we have trained TS Regression and Dynamics
models on three types of data (sensors, images, and both) each, and for TS Regression adding
images improves scores on benchmarks, while for the Dynamics model the results deteriorate. The
results show that embedding size d needs to be tuned for each model separately; some models even
“explode” and give unstable results (very large errors) for some values of d; there is no general
correlation between d and benchmark scores. It appears that the Dynamics model trained on sensors
only is the best tradeoff between efficiency and quality since it is by far the fastest model. Both
disentanglement and completeness scores are small, perhaps because we used only a small subset of
generative factors to compute them. The disentanglement score is better for smaller d, which shows
that information is packed more efficiently in this case. Performance of the models that use images
strongly depends on the quality of the images themselves. For example, if the horizon and runway
are clearly visible (as in Table 5a), models with images outperform models that do not use them
(Table 5), while on night-time noisy images (Table 5b) models that use images lose.

6 CONCLUSION

In this work, we have presented the dataset for learning state representation and a unified evalu-
ation framework to measure the quality of multimodal joint representations produced by different
encoders, through both secondary supervised learning tasks and quantitative metrics of disentangle-
ment and informativeness quality. This work represents an attempt to help advance the research in
model-based reinforcement learning and state representation learning by providing a unified. At the
same time, the large-scale comparison between baseline and state of the art models that we perform
in this work has produced some interesting results by itself. In general, we believe that this dataset
can become the new standard for evaluation in representation learning for complex systems, and we
hope it will inspire many novel techniques to advance the state of the art that we have attempted to
establish and quantify in our practical evaluation.
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Model Img d MSE for regression tasks QEDR Scores
Wind Turb. Land Auto Fail Overall Inform. Disent. Compl.

MEAN Baseline — 0.969 1.036 2.936 2.039 0.961 7.940 — — —
LSTM Autoencoder 32 1.014 0.985 0.976 0.953 0.788 0.953 0.912 0.095 0.107
1 layer encoder, 64 1.017 0.970 0.986 0.795 0.763 0.912 0.893 0.099 0.126
1 layer decoder 128 1.096 0.954 0.934 0.786 0.724 0.893 0.885 0.067 0.121

256 1.076 1.012 8.770 0.777 0.941 3.820 0.897 0.054 0.112
LSTM Autoencoder 32 1.013 0.956 0.925 0.933 0.949 0.945 0.892 0.135 0.153
2 layers bidir. encoder 64 1.024 0.967 1.075 0.807 0.783 0.951 0.892 0.089 0.131
2 layers bidir. decoder 128 1.062 0.978 0.958 0.832 0.797 0.921 0.889 0.070 0.124

256 1.521 4.236 0.958 0.846 1.797 1.527 0.941 0.059 0.122
Conv1D AutoEncoder 32 1.008 0.994 1.068 0.893 0.992 0.997 0.924 0.086 0.111
6-layer 1D convolutional 64 1.002 0.982 0.960 0.862 0.894 0.935 0.924 0.078 0.126
autoencoder with 128 1.002 0.975 0.979 0.867 0.901 0.943 0.912 0.070 0.128
kernel size 7× 7 256 1.000 0.978 1.009 0.893 0.955 0.968 0.922 0.059 0.123
PCA Autoencoder X 32 0.999 0.961 0.901 0.862 0.861 0.906 0.921 0.084 0.111
1 layer decoder 64 1.000 0.997 1.000 0.997 0.999 0.999 0.917 0.075 0.119
256× 256× 3 images 128 1.000 1.000 0.999 0.997 0.998 0.999 0.917 0.064 0.119
mean features over time series 256 1.000 0.998 1.000 0.999 0.999 0.999 1.000 0.067 0.132
ResNet34 Autoencoder X 32 0.988 0.960 0.853 0.927 0.942 0.913 0.924 0.137 0.157
ResNet34 encoder with 1 FC layer 64 1.006 0.958 0.898 0.913 0.916 0.925 0.931 0.080 0.136
15 layer conv2d decoder 128 0.994 0.972 0.910 0.908 0.927 0.930 0.940 0.068 0.127
images only 256 0.992 0.963 0.901 0.916 0.935 0.928 0.978 0.071 0.130
TS Regression LSTM 32 1.010 0.950 1.037 0.816 0.948 0.955 0.925 0.081 0.108
2-layer bidir. LSTM 64 1.002 1.211 1.122 1.436 5.566 1.738 0.920 0.066 0.106
trained to predict 128 1.035 1.119 0.872 0.886 1.558 1.011 0.921 0.062 0.116
state at t + 30 256 1.074 1.084 0.952 0.888 1.034 0.978 0.925 0.058 0.109
TS Regression Attention 32 1.020 0.985 0.999 0.940 0.948 0.978 0.920 0.084 0.115
3-layer attention encoder 64 1.004 1.036 1.039 1.464 1.005 1.139 0.923 0.072 0.115
trained to predict 128 1.136 0.962 0.869 1.241 0.788 0.999 0.922 0.059 0.108
state at t + 1 256 1.039 1.174 0.991 1.363 1.887 1.225 0.923 0.054 0.114
TS Regr. ConvLSTM+LSTM X 32 1.028 0.969 0.961 0.846 0.870 0.930 0.922 0.083 0.115
5-layer conv. LSTM with 3× 3 kernel 64 1.034 1.004 0.949 0.813 0.929 0.929 0.923 0.077 0.116
for images and 1-layer LSTM for sensors, 128 1.007 1.009 1.009 1.043 1.070 1.025 0.922 0.064 0.117
trained to predict state at t + 30 256 1.018 0.977 0.970 0.791 0.857 0.917 0.915 0.055 0.114
TS Regr. ConvLSTM X 32 1.000 0.998 0.999 0.996 0.999 0.998 0.917 0.084 0.109
5-layer conv. LSTM with 64 1.000 0.999 0.999 0.996 0.999 0.998 0.921 0.072 0.113
3× 3 kernel for images, 128 1.000 0.998 1.000 0.999 0.998 0.999 0.921 0.062 0.112
trained to predict state at t + 30 256 1.000 0.998 1.000 1.000 0.999 1.000 0.923 0.059 0.120
Context LSTM Regressor 32 1.011 1.079 1.206 0.931 1.005 1.071 0.923 0.089 0.122
2-layer bidir. LSTM 64 1.003 0.993 1.023 0.834 0.855 0.948 0.924 0.073 0.116
trained to predict states 128 1.271 1.059 1.262 1.045 0.906 1.138 0.922 0.059 0.110
[t− 11, t− 1] and [t + 1, t + 11] 256 1.114 1.259 1.325 1.067 0.876 1.170 0.916 0.052 0.110
Context Attention Regressor 32 1.148 0.950 0.931 1.103 0.820 0.991 0.924 0.079 0.107
3-layer attention net, 64 1.041 0.922 0.868 1.012 0.691 0.912 0.921 0.069 0.109
trained to predict states 128 1.021 1.026 1.243 1.153 0.762 1.106 0.922 0.059 0.110
[t− 11, t− 1] and [t + 1, t + 11] 256 1.098 0.961 0.919 1.542 0.751 1.086 0.924 0.053 0.112
Context Conv1D Regressor 32 1.001 0.979 0.977 0.858 0.893 0.940 0.921 0.087 0.121
6-layer 1D convolutional 64 1.002 0.978 1.000 0.842 0.863 0.940 0.923 0.071 0.116
network trained to predict states 128 1.002 0.970 0.978 0.829 0.883 0.930 0.923 0.062 0.115
[t− 11, t− 1] and [t + 1, t + 11] 256 1.002 0.974 0.979 0.836 0.890 0.934 0.923 0.059 0.122
Multimodal Temporal Encoder X 32 1.002 0.976 0.999 0.814 0.913 0.938 0.923 0.088 0.115
LSTM with shared weights 64 1.001 0.962 0.999 0.804 0.884 0.931 0.922 0.067 0.105
between inputs, 128 1.010 0.982 1.000 0.816 0.903 0.940 0.920 0.060 0.108
ResNet18 256 1.003 0.988 0.998 0.847 0.949 0.953 0.920 0.055 0.114
The Dynamics Model (X) 32 1.000 0.998 0.999 0.950 0.981 0.984 0.922 0.095 0.124
Decouple dynamics with ResNet18, 64 1.000 0.984 1.000 0.951 0.968 0.981 0.910 0.073 0.115
embedding is the mean of 128 1.001 0.971 0.925 0.890 0.836 0.920 0.923 0.063 0.114
embs. over time series 256 1.000 1.000 1.000 1.000 0.998 1.000 0.923 0.061 0.127
The Dynamics Model (Img) X 32 1.000 0.998 0.999 0.929 0.998 0.981 0.924 0.097 0.126
Decouple dynamics with ResNet18, 64 1.000 0.998 0.999 0.996 0.998 0.998 0.923 0.074 0.119
embedding is the mean of 128 1.000 0.999 1.000 0.986 0.999 0.996 0.924 0.068 0.123
embs. over time series 256 1.000 0.998 0.949 0.897 0.881 0.940 0.925 0.060 0.124
The Dynamics Model (Img+X) X 32 1.000 0.998 0.998 0.996 0.998 0.998 0.926 0.082 0.108
Decouple dynamics with ResNet18, 64 1.000 0.998 1.000 0.998 0.999 0.999 0.923 0.075 0.122
embedding is the mean of 128 1.000 0.998 1.000 0.929 0.998 0.981 0.921 0.067 0.126
embs. over time series 256 1.000 0.999 1.000 0.943 0.998 0.985 0.912 0.060 0.126

Table 4: Evaluation results; left to right: model name and description, whether it uses images, latent
dimension d, mean inference time t (s), MSE for regression tasks normalized to the MEAN baseline
(lower is better), QEDR scores (Section 5.1).

(a) (b) (c)
LSTM AE Dynamics Model (Img) TS Regr. Attention Context LSTM Regressor Dynamics Model (Img+X)

(a) 0.163 0.123 0.207 4.488 0.121
(b) 1.698 1.812 1.274 1.060 1.805
(c) 1.106 1.080 0.978 1.187 1.076

Table 5: Images for qualitative evaluation of the models and regression errors; d = 128 in all models.
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