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ABSTRACT

While reinforcement learning (RL) shows a lot of promise for natural language
processing—e.g. when fine-tuning natural language systems for optimizing a cer-
tain objective—there has been little investigation into potential language drift:
when an external reward is used to train a system, the agents’ communication
protocol may easily and radically diverge from natural language. By re-casting
translation as a communication game, we show that language drift indeed happens
when pre-trained agents are fine-tuned with policy gradient methods. We contend
that simply adding a “naturalness” constraint to the reward, e.g. by using language
model log likelihood, does not fully address the issue, and argue that (perceptual)
grounding is required. That is, while language model constraints impose syntactic
conformity, they do not lead to semantic correspondence. Our experiments show
that grounded models give the best communication performance, while retaining
English syntax along with the ability to convey the intended semantics.

1 INTRODUCTION

In the summer of 2017, the internet was briefly abuzz with the mistaken viral message that a leading
AI research lab had to “unplug its AI” because it “had gone rogue”. What had in fact happened was
that two chatbots, under certain conditions, had, rather unsurprisingly, started diverging from their
English training data and had instead reverted to their own ungrammatical communication protocol
for solving a negotiation task (Lewis et al., 2017). Instead of saying something like “hats have no
value for me” the system would starting saying things like “hat have zero to me to me to me to me”.
As was soon made clear by the parties involved, this sort of language drift is to be expected if we are
optimizing for an external reward, for example one based on whether or not two agents successfully
accomplish a negotiation.

While language drift is to be expected under external reward, it is natural to ask what we can do
to avoid it. Consider policy gradient methods, for example, and suppose we sample an output se-
quence from an English language decoder for a given task: sampling a non-grammatical sequence
might still be rewarded if we manage to solve the task (e.g., due to some correct words; or because
an interlocutor understood us anyway, or guessed correctly), which would quickly move the decoder
away (drifting) from English. If we were able to keep drift in check, we could maximize reward
while retaining the “Englishness” of the decoder, with obvious benefits for interpretability and in-
teraction with humans. That is, while search space size prohibits the direct usage of policy gradient
methods for training natural language decoders from scratch, we could prevent pre-trained models
from drifting while we optimize for the desired reward using policy gradients.

Thus, the ability to stop policy gradient methods from diverging from natural language enables
interesting long-term possibilities for exploration: imagine e.g. fine-tuning a pre-trained language
model trained on large amounts of data, call it a “language module”, for a given generation task with
limited data. When training chit-chat dialogue agents, for example, we often want to optimize for
some very high-level reward, such as engagingness or consistency, with hardly enough data to learn
simple English grammar. Or consider what might happen when we train agents using self-play to
actively use natural language to change the other agent’s (mental) state, rather than having a model
passively observe language usage in some corpus or dataset, as usually happens.

In this work, we study the question of language drift. Drawing inspiration from Lee et al. (2018), we
re-cast translation as a communication game. Two machine translation (MT) agents—i.e., encoder-
decoder models with attention—are tasked with successfully translating source language sequences
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Agent A

Fr → En

Agent B

En → De
Fr En De

Reward

Figure 1: Diagram of our communication game.

to the target language using a third pivot language as an intermediary. The communication chan-
nel (the output of the first agent’s decoder, which is fed to the second agent’s encoder as input) is
updated via policy gradient methods to optimize for translating into the target language, effectively
fine-tuning two separate pre-trained MT models via a pivot language.

While the subject of communication need not be language (e.g., for Lee et al. (2018), agents learn
to translate by communicating about images), three-way translation via pivot is an excellent way
for studying the current problem: we can check exactly to what extent the communicated sequence
corresponds to both the intended meaning, as well as to the gold standard sequence. We can think
of this setup as an agent aiming to communicate its state to another agent via some protocol—yet in
this case, the mental states and intermediary communication protocol are completely interpretable.

In what follows, we show that language drift happens, and quite dramatically so, when fine-tuning
using policy gradients. We then show that the most intuitive way of solving this problem—adding an
“Englishness” constraint, such as the log-probability assigned by a language model, to the reward
function—does not in fact lead to the desired consequences. Indeed, there is nothing preventing
such models from learning to translate “Two giraffes standing next to a white truck in the savanna”
from French to German via “Democracy is a political system” as the English intermediary.

Hence, we contend that what is missing is grounding: while language model constraints impose
syntactic conformity, they do not lead to semantic correspondence. Humans don’t invent unique
idiolects for every individual interlocutor, exactly because they are grounded: we share strong priors,
social and behavioral norms, and a common sensorimotor experience of our physical environment.
Thus, “not going rogue” means not only sticking to the prescribed language, but more importantly
preserving meaning, which means staying grounded.

Our experiments show that fine-tuning the communication channel with visual grounding leads to
the highest communication performance (Fr→En→De) as well as the best retention of original syn-
tax and intended semantics. Our token frequency analysis corroborates our hypothesis, and shows
that grounding is key for preserving the token frequency distribution of the pivot language (English).

2 PRIOR WORK

Our work is inspired by recent work in protocols or languages that emerge from multi-agent inter-
action (Lazaridou et al., 2017; Lee et al., 2018; Andreas et al., 2017; Evtimova et al., 2018; Kottur
et al., 2017; Havrylov & Titov, 2017; Mordatch & Abbeel, 2017). Work on the emergence of lan-
guage in multi-agent settings goes back a long way (Steels, 1997; Nowak & Krakauer, 1999; Kirby,
2001; Briscoe, 2002; Skyrms, 2010). In our case, we are specifically interested in tabula inscripta
agents that are already pre-trained to generate natural language, and we are primarily concerned with
keeping their language natural during further training.

Reinforcement Learning (RL) has been applied to fine-tuning models for various natural language
generation tasks, including summarization (Ranzato et al., 2015; Paulus et al., 2017), information
retrieval (Nogueira & Cho, 2017), MT (Gu et al., 2017; Bahdanau et al., 2016) and dialogue (Li et al.,
2017). Our work can be viewed as fine-tuning MT systems using an intermediary pivot language. In
MT, there is a long line of work of pivot-based approaches, most notably Muraki (1986) and more
recently with neural approaches (Wang et al., 2017; Cheng et al., 2017; Chen et al., 2018). There
has also been work on using visual pivots directly (Hitschler et al., 2016; Nakayama & Nishida,
2017; Lee et al., 2018). Grounded language learning in general has been shown to give significant
practical improvements in various natural language understanding tasks (Gella et al., 2017; Elliott
& Kádár, 2017; Chrupała et al., 2015; Kiela et al., 2017; Kádár et al., 2018). Meanwhile, Bowman
et al. (2016) found a powerful decoder to ignore the latent representation in VAEs for language.
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3 TASK AND MODELS

We recast translation as a communication game involving two MT agents: Fr→En and En→De
(see Figure 1). Our dataset consists of N triples of aligned sentences {Fri,Eni,Dei}Ni=1, where
Eni is only used for evaluation. We first feed the French sentence Fri to Agent A, which generates
an English message Eni as output. Agent B is then trained to maximize the log likelihood of the
ground truth German sentence given the English message, i.e. log p(Dei|Eni). Agent A is trained
using REINFORCE (Williams, 1992) with reward R = log pB(Dei|Eni).1 This encourages Agent
A to develop helpful communication policies for Agent B, and allows Agent B to adapt to Agent A’s
new policies. In other words: communication via the pivot language (English) is a success if we are
able to translate the intended source sequence (French) into the desired target sequence (German).

Both agents are pre-trained individually before communication, meaning that we start off with En-
glish as an intermediate language in the early stages of the game. This work examines what happens
to the intermediate language as we fine-tune the system jointly: will the agents keep communicating
in English, or diverge? And if so, what can we do to prevent that from happening?

3.1 AUXILIARY TASKS

To help reduce the search space of intermediate languages, we use two auxiliary tasks: language
modelling (LM) and image-caption retrieval (henceforth called the grounding model).

Language Model Given a language model pre-trained on a standard English corpus, the log likeli-
hood of the English message informs its general “Englishness”. We incorporate this into the reward
for Agent A, so that it learns to send messages that are plausible English.2 Reward for Agent A is:

RLM = log pB(Dei|Eni) + βLM log pLM (Eni).

Grounding Model Let us assume we have access to a set of images {Imgi} associated with each
triple {Fri,Eni,Dei}. Given a pre-trained image-caption retrieval model, such as VSE++ (Faghri
et al., 2018), the log likelihood of the image given the English message (and vice versa) informs
how much the English message is grounded in the original semantic content (Kiela et al., 2017). We
incorporate the ranking loss into Agent A’s reward.

RG = log pB(Dei|Eni) + βG log pG(Imgi|Eni).

Note that βLM , βG are hyperparameters.

3.2 TRAINING OBJECTIVE

For brevity the t-th token in the i-th English sentence Eni;t is abbreviated to Ent, and Eni to En.

Policy Gradient Training At decoding timestep t, Agent A takes an action (outputs token Ent)
given an environment (previous hidden states and previous token Ent−1). It receives reward R at
the end of the sequence, from which we subtract a state-dependent baseline Rt to reduce variance.
Therefore, we maximize (R −Rt) log p(Ent|En<t,Fr). In addition, we employ entropy regulariza-
tion on Agent A’s decoder to encourage exploration. Hence, Agent A’s overall objective function is
given as:

LA = αpg(R−Rt) log p(Ent|En<t,Fr) + αentrH(p(Ent|En<t,Fr))− αbMSE(R,Rt),

where H and MSE denote entropy and mean squared error losses.

Cross Entropy Training Agent B is trained using standard cross entropy loss, i.e.
LB = log p(Det|De<t,En).

We jointly train both agents by maximizing L = LA + LB .
1We use subscript B to denote that the probability is computed with Agent B.
2We also experimented with a dense LM reward on the word-level, but found this to lead to worse perfor-

mance. We hypothesize that the model might be focusing too much on the dense LM reward, ignoring the
sparse reward for the communication task and leading to poor performance.
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4 EXPERIMENTAL SETTINGS

In this section we provide the details of our experimental setup: a Fr→X→De translation task
where the intermediate language X is initialized as English, and subsequently fine-tuned with policy
gradient. On a trilingual corpus consisting of three languages (Fr, En and De), we can measure
communication success with Fr→De BLEU (Papineni et al., 2002), while Fr→En BLEU informs
how closely the intermediate language resembles English, at any given point during fine-tuning.

Datasets Agents are initially pre-trained on IWSLT Fr→En and En→De. Fine-tuning is per-
formed on Multi30k Task 1(Elliott et al., 2016). That is, importantly, there is no overlap in the
pre-training data and the fine-tuning data. Multi30k Task 1 consists of 30k images and one caption
per image in English, French, German and Czech (of which we only use the first three). For the En-
glish language model, we compare four different datasets: WikiText103, MS COCO and Flickr30k.
The image-caption retrieval model is trained on Flickr30k: the same set of 30k images as Multi30k
but containing 5 English captions per image. Following Faghri et al. (2018), we randomly crop
training images at every epoch. We use 2048-dimensional final-layer features from a pretrained and
fixed ResNet-152 (He et al., 2016).

Preprocessing The same tokenization and vocabulary are used across different tasks and datasets.
We lowercase and tokenize our corpora with Moses (Koehn et al., 2007) and use subword tokeniza-
tion with Byte Pair Encoding (BPE) (Sennrich et al., 2016) with 10k merge operations. This allows
us to use the same vocabulary across different models seamlessly (translation, language model,
image-caption ranker model).

Controlling the English message length When fine-tuning the agents, we observe that the length
of English messages becomes excessively long. As Agent A has no explicit incentive to output the
〈EOS〉 symbol, it tends to keep transmitting the same token repeatedly. Excessively long messages
obscure evaluation of the communication protocol. For instance, BLEU score quickly deteriorates
as the message length becomes longer, as it is a precision metric. When the message length is fixed,
a drop in BLEU score will by necessity mean that the intermediate language has drifted away more.
For this reason, we constrain the length of English messages to be no longer than the length of their
French source sentence, or shorter if the model outputs the 〈EOS〉 symbol early. Recall that Agent
B is supervised to predict the 〈EOS〉 symbol, so does not suffer from this issue.

Model Architecture and Pretraining Our MT agents are standard sequence-to-sequence models
with attention (Bahdanau et al., 2015) with unidirectional, 1-layer GRU with 256 hidden units and
256-dimensional embeddings. During initial pre-training on IWSLT, we early-stop based on BLEU
score on the development set (tst2013). The best checkpoints give 34.05 BLEU and 21.94 BLEU
on IWSLT Fr→En and En→De development sets with greedy decoding. For our value function, we
use a 2-layer MLP with a ReLU nonlinearity.

The language model is a 1-layer recurrent language model with 512 LSTM hidden units. The image-
caption retrieval model is a recently proposed VSE++ model (Faghri et al., 2018), with unidirec-
tional 1-layer GRU with 512 hidden units and a single fully connected layer from 2048-dimensional
ResNet features to 512-dimensional GRU hidden states. We report the performance of the pretrained
models used in our experiments in Tables 1, 2 and 3.

IWSLT Multi30k

Fr→En 34.05 26.80
En→De 21.94 18.56

Table 1: Translation performance
of our pre-trained agents (BLEU)

WikiText103 3.51
MS COCO 2.66

Flickr30k 2.85

Table 2: Development NLL of
pretrained language models

R@1 R@5 R@10

Caption 50.1 76.3 84.6
Image 35.7 65.3 75.9

Table 3: Retrieval results for our
VSE++ model on Flickr30k test set.

Training Details When fine-tuning our agents, we perform learning rate annealing and early
stopping based on Fr→De BLEU (communication performance) on the Multi30k development
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set. We use Adam (Kingma & Ba, 2014) with initial learning rate of 0.001 and dropout (Srivas-
tava et al., 2014) rate of 0.1. We grid search over learning rate schedule and reward coefficients
(αpg, αentr, αb, βLM , βG).

For our joint systems with policy gradient fine-tuning, we run every model three times with different
random seeds and report averaged results (see Table 4).

Baseline and Upper Bound Our main quantitative experiment has three baselines:

• Pretrained checkpoints (on IWSLT).

• Ensembling : Given Fr, we let Agent A generate K English hypotheses with beam search,
{Enj}Kj=1. Then, we let Agent B generate the German translation De using an ensemble of
K source sentences (Firat et al., 2016; Zoph & Knight, 2016).

• Fr→En fixed : We fix Agent A and only fine-tune Agent B using LB .

Meanwhile, we also train an NMT model of the same architecture and size directly on the Fr→De
task in Multi30k Task 1. This serves as an upper bound on the Fr→De performance achievable with
available data.

5 QUANTITATIVE RESULTS

LM Ranker Fr→En Fr→En→De

Pretrained 27.18 16.30
Ensembling 16.95
Fr→En fixed 27.18 22.37

PG No LM 12.38 (0.67) 24.51 (1.48)

PG+LM
WikiText103 21.63 (1.25) 26.88 (0.12)
MS COCO 25.05 (1.40) 27.66 (0.34)
Flickr30k 24.85 (1.14) 27.60 (0.27)
All 23.60 (1.05) 27.67 (0.39)

PG+LM+G

No LM " 14.20 (1.58) 26.23 (1.08)
WikiText103 " 23.65 (1.91) 27.87 (0.15)
MS COCO " 26.24 (0.28) 27.86 (0.24)
Flickr30k " 25.99 (1.62) 27.82 (0.41)
All " 24.75 (0.40) 28.08 (0.73)

Fr→De 30.73

Table 4: Results in BLEU score on Multi30k Task 1. For our models using policy gradient fine-tuning, we
report results averaged over three runs and provide standard deviations in brackets. PG: trained with vanilla
policy gradient fine-tuning. PG+LM: trained with the “Englishness” constraint in reward. For MS COCO
and Flickr30k, the LM was trained directly on image captions. PG+LM+G: trained with grounding loss as
well as the LM loss. Fr→En: degree of intermediate language drift from English; lower indicates more drift.
Fr→En→De: metric for communication accuracy; higher is better. All: LM was trained on all three datasets
combined. Improvements of PG+LM+G over PG+LM were found to be significant in all cases, using the
approximate randomization test for significance testing (Riezler & Maxwell III, 2005).

In Table 4, the top three rows are our baselines. The pretrained model performs relatively poorly on
Fr→De, conceivably because it was pretrained on a different corpus, and Agent B was was given
Agent A’s output as source. Ensembling multiple English hypotheses for Agent B (row 2) gives
negligible increase in Fr→De performance. When only Agent B is fine-tuned, we observe 6 BLEU
score increase in Fr→De.

When the joint system is fine-tuned on German log likelihood with policy gradients (PG), we observe
a large, 8 BLEU increase increase in Fr→De at the cost of a substanstial, 15 BLEU score drop in
Fr→En. This clearly shows that optimizing on some external reward causes a drastic language drift.
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Figure 2: Learning curves for PG, PG+LM and PG+LM+G. En LM NLL curves show the NLL of English
messages, computed by a language model trained on WikiText103. Lower En BLEU indicates more language
drift, and higher En LM NLL indicates more language drift.

When the agent is trained with the “Englishness” constraint (PG+LM), we notice a significant im-
provement in Fr→En BLEU. When the LM is trained on WikiText103, a widely used language
modelling dataset, we observe improvement of 9 BLEU scores. When the training corpus is closer
to the target domain, such as MS COCO or Flickr30k, we see more than 10 BLEU score increase.
Fr→De translation also improves by 2–3 BLEU scores.

However, we see the biggest improvements in performance when agents are trained using visual
grounding feedback. This is particularly pronounced with the LM trained on WikiText103: intro-
ducing visual grounding leads to more than 2 BLEU score improvement in Fr→En, and 1 BLEU
score improvement in Fr→De. We hypothesize that the “Englishness” constraint forces agents to
communicate with correct syntax and fluency, while the image-caption retrieval model restricts the
search space of languages to ones that are grounded by visual semantics. To see if grounding is
really necessary, we train a stronger LM on all three datasets combined, but find this still leads to
more language drift than using visual grounding: the PG+LM+G model with the LM trained on MS
COCO outperforms this by 3 BLEU scores on Fr→En.

In Figure 2, we observe that vanilla PG fine-tuning quickly leads to highly “un-English” commu-
nication, as can be seen from a distinct increase in LM NLL. It is also worth noting that while
PG+LM achieves better LM NLL than PG+LM+G, it gives much lower Fr→En BLEU score than
the grounded model (PG+LM+G). This is another indication that simply encouraging naturalness is
not enough; grounding is key.

A close investigation into the token statistics of each communication strategy reveals that PG fine-
tuning causes the word frequency distribution to be flatter. The PG model has negative frequency dif-
ference values for the most frequent tokens, indicating that PG downweighs frequent words severely.
On the other hand, PG+LM gives highly positive frequency differences, meaning that language
modelling alone disproportionately emphasizes frequent tokens. Visual grounding keeps the token
frequency distribution close to the original pretrained regimes. Analyzing the top-k most frequent

Figure 3: Token frequency analysis on three different models (PG, PG+LM, PG+LM+G) as well as the pre-
trained model before any fine-tuning (Pretrained). We show the word frequency curves (sorted in decreasing
order) for each model, after subtracting the reference English frequency statistics (also sorted). Positive y values
indicate higher frequency values than the English reference, and negative y values indicate lower frequency
values than English. Note that y-axis is the frequency difference in thousands, and x-axis shows the vocabulary
index (sorted with frequency) in log scale.
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words shows that PG+LM disproportionately favors quotation marks, which are very common to-
kens in many language modelling datasets but occur rarely in Multi30k (see also Appendix A).

IWSLT Multi30k
unique /sent /all unique /sent /all

Reference 5,303 19.7 0.86 3,046 11.9 0.91
Pretrained 4,657 17.9 0.85 2,867 12.0 0.87

PG 4,933 13.6 0.56 3,197 9.2 0.65
PG+LM 3,819 14.6 0.61 2,438 10.9 0.78
PG+LM+G 4,327 15.7 0.74 2,550 10.7 0.84

Table 5: Additional token frequency analysis. unique: the number of unique English tokens used in the whole
development set. /sent: the number of unique English tokens used per sentence. /all: (the number of unique
English tokens / the number of all English tokens.)

Table 5 reinforces the finding that vanilla PG fine-tuning leads to flatter token frequency distri-
butions, as the number of unique tokens used by PG is greater than that of the pretrained model.
Meanwhile, PG+LM uses fewer tokens overall, signifying that it uses a relatively small set of tokens
frequently.

Also note that PG, despite using a more diverse set of tokens, uses the smallest number of unique
symbols per sentence (/sent) and overall (/all). This implies that PG communication is often repeti-
tive. Introducing extra tasks seems to mitigate this, and the grounded model (PG+LM+G) learns a
frequency distribution that most closely resembles the original distribution.

To gain further insight into the agents’ communication protocols, we compare the degree of drift by
part-of-speech. Table 6 shows that PG tends to ignore function words, such as periods and infinitives.
Models trained with LM and grounding losses retain function words with much higher accuracy. PG
fares relatively better with content words (nouns and verbs), but adding LM and grounding losses
still outperform PG. Grounding leads to overall improvements in recall, particularly with content
words.

Conceivably, when optimizing Agent A’s policy on the communication task alone, it is more crucial
to relay content information to Agent B, and this might cause agents to ignore syntactic confor-
mity in the original intermediate language. We argue that LM and grounding reduces the space of
intermediate languages to a much reasonable language space, facilitating learning.

6 QUALITATIVE RESULTS

In the first example of Table 7, it is clear that PG’s English message has significantly diverged from
English: it is highly repetitive (“table table table table table”) and is missing some key content
words such as “man” and “jacket”. However, Agent B still generates the German word for ‘man’.
The grounded model’s message (PG+LM+G) is distinctly the most fluent and semantically correct.

In the second example, observe that the PG Agent B misinterprets “talking talking a coach a coach”
into “spricht mit einem spieler” (talking to a player). The PG+LM+G model again generates a
flawless English sentence. Also note that it communicates both colors (red and white) successfully
from French to German, while the other two models fail to do so.

Function words Content words
TO . DT Noun Verb Adj Adv

PG 0.22 0.36 0.57 0.38 0.17 0.32 0.26
PG+LM 0.55 0.84 0.72 0.39 0.18 0.21 0.25
PG+LM+G 0.62 0.88 0.74 0.43 0.26 0.33 0.29

Table 6: Exact-match word recall by POS-tag on IWSLT development set: when the English reference contains
a word of a certain POS tag, how often does the agent correctly produces that word. TO: infinitive to, (.):
period, DT: determiner, Noun: (NN, NNS, NNP, NNPS), Verb: (VB, VBD, VBG, VBN, VBP, VBZ), Adj:
adjective (JJ, JJR, JJS), Adv: adverb (RB, RBR, RBS)
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Ref
Fr un vieil homme vêtu d’une veste noire regarde sur la table
De ein alter mann in einer schwarzen jacke blickt auf den tisch
En an old man wearing a black jacket is looking on the table

En
PG a old teaching black watching on the table table table table table table
+LM a old man in a jacket looking on the table . ” ”
+G an old man in a black jacket looking on the table .

De
PG ein älterer mann in einem schwarzen hemd schaut auf den tisch .
+LM ein alter mann in einer jacke beobachtet einen tisch .
+G ein älterer mann in einer schwarzen jacke schaut auf den tisch .

Ref
Fr un joueur de football américain en blanc et rouge parle à un entraı̂neur .
De ein rot-weiß gekleideter footballspieler spricht mit einem trainer .
En a football player in red and white is talking to a coach .

En
PG a player football american football american and red talking talking a coach
+LM a player of white and red talking to a coach . ” ” ”
+G a football player in white and red talking to a coach .

De
PG ein footballspieler spricht mit einem spieler in einem roten trikot .
+LM ein weiß gekleideter fußballspieler spricht zu einem trainer .
+G ein fußballspieler in einem rot-weißen trikot spricht mit einem trainer .

Table 7: Two random examples from Multi30k development set with different models (PG, PG+LM,
PG+LM+G). The top three rows list the ground truth sentences, the middle three rows are the English mes-
sages sent by the Fr→En agent, and the bottom three rows show the German output from the En→De agent.
We also show the corresponding images, which were only used to train the image-caption retrieval modal.

Fr src un enfant assis sur un rocher.
En ref a child sitting on a rock formation.
En hyp a punk sitting sitting on on a broken
De ref ein kind sitzt auf einem felsen .
De hyp ein kind sitzt auf einem felsen .

Fr src un petit enfant est assis à une table, en train de manger un goûter.
En ref a toddler is sitting at a table eating a snack .
En hyp a punk sits sitting sitting next next a airline
De ref ein kleines kind sitzt an einem tisch und isst einen snack .
De hyp ein kind sitzt an einem tisch und liest ein buch .

Table 8: Evidence of token flipping in the PG model.

We observe some instances of token flipping with the PG model. For example, one particular PG
model uses “punk” to describe “child” (see Table 8). As no occurrence of “punk” in any training
data is associated with “child”, the agents must have acquired this new meaning assignment during
fine-tuning. Among 35 examples in Multi30k development set where the English reference contains
“child”, the model uses “punk” 15 times, indicating this is no random phenomenon. We show
similar examples from the PG+LM model in Appendix B. We did not observe such examples with
the PG+LM+G model.

7 CONCLUSION

In this paper, we show that language drift happens when fine-tuning natural language agents with
some external (non-linguistic) reward using policy gradients, and propose a few approaches to avoid
this. Most importantly, we find that simply encouraging “naturalness”, e.g. via adding a language
model log likelihood to the reward, does not lead to the desired consequences. Instead, we contend
that grounding is what we need to avoid language drift. Our empirical results show that grounding
leads to best communication performance (highest Fr→De BLEU), while also showing least signs
of language drift (highest Fr→En BLEU). Analyzing token frequencies in exchanged messages
reveals that pure PG finetuning tends to learn flatter token distributions, and encouraging naturalness
disproportionately emphasizes frequent tokens, while the grounded model best retains the original
token frequencies.
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A FREQUENCY ANALYSIS

Figure 4: Token frequency analysis similar to Figure 3, but with the x-axis fixed to the token indices sorted
with respect to English reference, in decreasing order.

In Figure 4, where the x-axis is fixed to the token indices sorted with respect to the English refer-
ence, we observe that the PG+LM model does indeed favor one word particularly strongly. From
investigating top-k most frequent tokens in each model, we find that quotation mark is the most com-
mon token for PG+LM in both datasets we experimented with. It is plausible that quotation marks
occur with high frequency in language modelling datasets, causing them to be disproportionately
overweighed during fine-tuning.

IWSLT

Reference , . the and to of a that i in is it you we &apos;s this &quot;
Pretrained , the . to of and a i that in it we you &apos;s is this &quot; was
PG a the and , . in i &quot; this of to is we you ? that not for
PG+LM &quot; the , of . and in a to this is i es you for we that with
PG+LM+G the , . of a and to in is i this es we for that you at what

Multi30k

Reference a . in the on of with and is man two woman to are people at an
Pretrained a . the in of on with and , man @-@ is to woman two people at white
PG a in the on and with . man water red two woman street blue city its people white
PG+LM &quot; a the . in of on with and man , to two woman his people es young
PG+LM+G a the . in of on with and man at es to , woman two his people is

Table 9: Top 20 most frequent tokens in English reference (Reference) or the output from Fr→En models.

Figure 5: Token frequency curves (before subtracting the reference frequencies). Both x (vocabulary index)
and y (frequency) axes are in log scale.

In Figure 5, we show the token frequency curves before subtracting the reference frequencies. Sim-
ilarly to Figure 4, we observe that the PG model discourages frequent (mostly functional) words,
while the PG+LM model excessively prefers frequent words.
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B EVIDENCE OF TOKEN FLIPPING IN THE PG+LM MODEL

Fr src un caniche noir joue avec un autre chien sur un terrain sec.
En ref a black poodle plays with another dog in a dry field .
En hyp a canblack on a day , a day , a day , a day ,
De ref ein schwarzer pudel spielt mit einem anderen hund auf einem ausgedörrten spielfeld .
De hyp ein schwarzer pudel spielt auf einer bühne mit einem roten ball .

Fr src deux caniches courent dans la neige .
En ref two poodles are running through the snow .
En hyp two canin the two , a couple , a
De ref zwei pudel rennen durch den schnee .
De hyp zwei pudel in einem blauen trikot .

Table 10: Evidence of token flipping in the PG+LM model.

Similar to Table 8, we find evidence of token flipping for the PG+LM model, where the agents use
“can@@” (@@ is a subword BPE token marker) to mean “poodle”. This shows that language drift
still happens even when a language model is used.
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