
Small ReLU networks are powerful memorizers:
a tight analysis of memorization capacity

Chulhee Yun
MIT

Cambridge, MA 02139
chulheey@mit.edu

Suvrit Sra
MIT

Cambridge, MA 02139
suvrit@mit.edu

Ali Jadbabaie
MIT

Cambridge, MA 02139
jadbabai@mit.edu

Abstract

We study finite sample expressivity, i.e., memorization power of ReLU networks.
Recent results require N hidden nodes to memorize/interpolate arbitrary N data
points. In contrast, by exploiting depth, we show that 3-layer ReLU networks with
Ω(
√
N) hidden nodes can perfectly memorize most datasets withN points. We also

prove that width Θ(
√
N) is necessary and sufficient for memorizing N data points,

proving tight bounds on memorization capacity. The sufficiency result can be
extended to deeper networks; we show that an L-layer network with W parameters
in the hidden layers can memorize N data points if W = Ω(N). Combined
with a recent upper bound O(WL logW ) on VC dimension, our construction is
nearly tight for any fixed L. Subsequently, we analyze memorization capacity
of residual networks under a general position assumption; we prove results that
substantially reduce the known requirement of N hidden nodes. Finally, we study
the dynamics of stochastic gradient descent (SGD), and show that when initialized
near a memorizing global minimum of the empirical risk, SGD quickly finds a
nearby point with much smaller empirical risk.

1 Introduction
Recent results in deep learning indicate that over-parameterized neural networks can memorize
arbitrary datasets [2, 53]. This phenomenon is closely related to the expressive power of neural
networks, which have been long studied as universal approximators [12, 18, 21]. These results
suggest that sufficiently large neural networks are expressive enough to fit any dataset perfectly.

With the widespread use of deep networks, recent works have focused on better understanding the
power of depth [13, 17, 30, 33, 37, 38, 44, 45, 49, 50]. However, most existing results consider
expressing functions (i.e., infinitely many points) rather than finite number of observations; thus, they
do not provide a precise understanding the memorization ability of finitely large networks.

When studying finite sample memorization, several questions arise: Is a neural network capable of
memorizing arbitrary datasets of a given size? How large must a neural network be to possess such
capacity? These questions are the focus of this paper, and we answer them by studying universal
finite sample expressivity and memorization capacity; these concepts are formally defined below.

Definition 1.1. We define (universal) finite sample expressivity of a neural network fθ(·)
(parametrized by θ) as the network’s ability to satisfy the following condition:

For all inputs {xi}Ni=1 ∈ Rdx×N and for all {yi}Ni=1 ∈ [−1,+1]dy×N , there
exists a parameter θ such that fθ(xi) = yi for 1 ≤ i ≤ N .

We define memorization capacity of a network to be the maximum value ofN for which the network
has finite sample expressivity when dy = 1.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Memorization capacity is related to, but is different from VC dimension of neural networks [3, 4].
Recall the definition of VC dimension of a neural network fθ(·):

The maximum value N such that there exists a dataset {xi}Ni=1 ∈ Rdx×N such
that for all {yi}Ni=1 ∈ {±1}N there exists θ such that fθ(xi) = yi for 1 ≤ i ≤ N .

Notice that the key difference between memorization capacity and VC dimension is in the quantifiers
in front of the xi’s. Memorization capacity is always less than or equal to VC dimension, which
means that an upper bound on VC dimension is also an upper bound on memorization capacity.

The study of finite sample expressivity and memorization capacity of neural networks has a long
history, dating back to the days of perceptrons [6, 11, 22–24, 26, 36, 42, 48]; however, the older studies
focus on shallow networks with traditional activations such as sigmoids, delivering limited insights for
deep ReLU networks. Since the advent of deep learning, some recent results on modern architectures
appeared, e.g., fully-connected neural networks (FNNs) [53], residual networks (ResNets) [20], and
convolutional neural networks (CNNs) [35]. However, they impose assumptions on architectures that
are neither practical nor realistic. For example, they require a hidden layer as wide as the number of
data points N [35, 53], or as many hidden nodes as N [20], causing their theoretical results to be
applicable only to very large neural networks; this can be unrealistic especially when N is large.

1.1 Summary of our contributions
Before stating our contributions, a brief comment on “network size” is in order. The size of a neural
network can be somewhat vague; it could mean width/depth, the number of edges, or the number of
hidden nodes. We use “size” to refer to the number of hidden nodes in a network. This also applies to
notions related to size; e.g., by a “small network” we mean a network with a small number of hidden
nodes. For other measures of size such as width, we will use the words explicitly.

1. Finite sample expressivity of neural networks. Our first set of results is on the finite sample
expressivity of FNNs (Section 3), under the assumption of distinct data point xi’s. For simplicity, we
only summarize our results for ReLU networks, but they include hard-tanh networks as well.

• Theorem 3.1 shows that any 3-layer (i.e., 2-hidden-layer) ReLU FNN with hidden layer widths
d1 and d2 can fit any arbitrary dataset if d1d2 ≥ 4Ndy, where N is the number of data points
and dy is the output dimension. For scalar outputs, this means d1 = d2 = 2

√
N suffices to fit

arbitrary data. This width requirement is significantly smaller than existing results on ReLU.
• The improvement is more dramatic for classification. If we have dy classes, Proposition 3.2

shows that a 4-layer ReLU FNN with hidden layer widths d1, d2, and d3 can fit any dataset if
d1d2 ≥ 4N and d3 ≥ 4dy. This means that 106 data points in 103 classes (e.g., ImageNet) can
be memorized by a 4-layer FNN with hidden layer widths 2k-2k-4k.

• For dy = 1, note that Theorem 3.1 shows a lower bound of Ω(d1d2) on memorization capacity.
We prove a matching upper bound in Theorem 3.3: we show that for shallow neural networks (2
or 3 layers), lower bounds on memorization capacity are tight.

• Proposition 3.4 extends Theorem 3.1 to deeper and/or narrower networks, and shows that if the
sum of the number of edges between pairs of adjacent layers satisfies dl1dl1+1+· · ·+dlmdlm+1 =
Ω(Ndy), then universal finite sample expressivity holds. This gives a lower bound Ω(W ) on
memorization capacity, where W is the number of edges in the network. Due to an upper bound
O(WL logW ) (L is depth) on VC dimension [4], our lower bound is almost tight for fixed L.

Next, in Section 4, we focus on classification using ResNets; here dx denotes the input dimension
and dy the number of classes. We assume here that data lies in general position.

• Theorem 4.1 proves that deep ResNets with 4N
dx

+ 6dy ReLU hidden nodes can memorize
arbitrary datasets. Using the same proof technique, we also show in Corollary 4.2 that a 2-layer
ReLU FNN can memorize arbitrary classification datasets if d1 ≥ 4N

dx
+ 4dy. With the general

position assumption, we can reduce the existing requirements of N to a more realistic number.

2. Trajectory of SGD near memorizing global minima. Finally, in Section 5 we study the
behavior of stochastic gradient descent (SGD) on the empirical risk of universally expressive FNNs.

• Theorem 5.1 shows that for any differentiable global minimum that memorizes, SGD initialized
close enough (say ε away) to the minimum, quickly finds a point that has empirical risk O(ε4)

2



and is at most 2ε far from the minimum. We emphasize that this theorem holds not only for
memorizers explicitly constructed in Sections 3 and 4, but for all global minima that memorize.
We note that we analyze without replacement SGD that is closer to practice than the simpler with-
replacement version [19, 40]; thus, our analysis may be of independent interest in optimization.

1.2 Related work

Universal finite sample expressivity of neural networks. Literature on finite sample expressivity
and memorization capacity of neural networks dates back to the 1960s. Earlier results [6, 11, 26, 36,
42] study memorization capacity of linear threshold networks.

Later, results on 2-layer FNNs with sigmoids [24] and other bounded activations [23] show that N
hidden nodes are sufficient to memorize N data points. It was later shown that the requirement of
N hidden nodes can be improved by exploiting depth [22, 48]. Since these two works are highly
relevant to our own results, we defer a detailed discussion/comparison until we present the precise
theorems (see Sections 3.2 and 3.3).

With the advent of deep learning, there have been new results on modern activation functions and
architectures. Zhang et al. [53] prove that one-hidden-layer ReLU FNNs with N hidden nodes can
memorize N real-valued data points. Hardt and Ma [20] show that deep ResNets with N + dy hidden
nodes can memorize arbitrary dy-class classification datasets. Nguyen and Hein [35] show that deep
CNNs with one of the hidden layers as wide as N can memorize N real-valued data points.

Soudry and Carmon [43] show that under a dropout noise setting, the training error is zero at every
differentiable local minimum, for almost every dataset and dropout-like noise realization. However,
this result is not comparable to ours because they assume that there is a multiplicative “dropout noise”
at each hidden node and each data point. At i-th node of l-th layer, the slope of the activation function
for the j-th data point is either ε(j)i,l · 1 (if input is positive) or ε(j)i,l · s (if input is negative, s 6= 0),

where ε(j)i,l is the multiplicative random (e.g., Gaussian) dropout noise. Their theorem statements hold
for all realizations of these dropout noise factors except a set of measure zero. In contrast, our setting
is free of these noise terms, and hence corresponds to a specific realization of such ε(n)i,l ’s.

Convergence to global minima. There exist numerous papers that study convergence of gradient
descent or SGD to global optima of neural networks. Many previous results [9, 14, 29, 41, 46, 54, 55]
study settings where data points are sampled from a distribution (e.g., Gaussian), and labels are
generated from a “teacher network” that has the same architecture as the one being trained (i.e.,
realizability). Here, the goal of training is to recover the unknown (but fixed) true parameters. In
comparison, we consider arbitrary datasets and networks, under a mild assumption (especially for
overparametrized networks) that the network can memorize the data; the results are not directly
comparable. Others [10, 47] study SGD on hinge loss under a bit strong assumption that the data is
linearly separable.

Other recent results [1, 15, 16, 28, 58] focus on over-parameterized neural networks. In these papers,
the widths of hidden layers are assumed to be huge, of polynomial order inN , such as Ω(N4), Ω(N6)
or even greater. Although these works provide insights on how GD/SGD finds global minima easily,
their width requirement is still far from being realistic.

A recent work [57] provides a mixture of observation and theory about convergence to global minima.
The authors assume that networks can memorize the data, and that SGD follows a star-convex path
to global minima, which they validate through experiments. Under these assumptions, they prove
convergence of SGD to global minimizers. We believe our result is complementary: we provide
sufficient conditions for networks to memorize the data, and our result does not assume anything
about SGD’s path but proves that SGD can find a point close to the global minimum.

Remarks on generalization. The ability of neural networks to memorize and generalize at the
same time has been one of the biggest mysteries of deep learning [53]. Recent results on interpolation
and “double descent” phenomenon indicate that memorization may not necessarily mean lack of
generalization [5, 7, 8, 31, 32, 34]. We note that our paper focuses mainly on the ability of neural
networks to memorize the training dataset, and that our results are separate from the discussion of
generalization.

3



2 Problem setting and notation
In this section, we introduce the notation used throughout the paper. For integers a and b, a < b, we
denote [a] := {1, . . . , a} and [a : b] := {a, a+ 1, . . . , b}. We denote {(xi, yi)}Ni=1 the set of training
data points, and our goal is to choose the network parameters θ so that the network output fθ(xi) is
equal to yi, for all i ∈ [n]. Let dx and dy denote input and output dimensions, respectively. Given
input x ∈ Rdx , an L-layer fully-connected neural network computes output fθ(x) as follows:

a0(x) = x,

zl(x) = W lal−1(x) + bl, al(x) = σ(zl(x)), for l ∈ [L− 1],

fθ(x) = WLaL−1(x) + bL.

Let dl (for l ∈ [L− 1]) denote the width of l-th hidden layer. For convenience, we write d0 := dx
and dL := dy . Here, zl ∈ Rdl and al ∈ Rdl denote the input and output (a for activation) of the l-th
hidden layer, respectively. The output of a hidden layer is the entry-wise map of the input by the
activation function σ. The bold-cased symbols denote parameters: W l ∈ Rdl×dl−1 is the weight
matrix, and bl ∈ Rdl is the bias vector. We define θ := (W l, bl)Ll=1 to be the collection of all
parameters. We write the network output as fθ(·) to emphasize that it depends on parameters θ.

Our results in this paper consider piecewise linear activation functions. Among them, Sections 3 and
4 consider ReLU-like (σR) and hard-tanh (σH) activations, defined as follows:

σR(t) :=

{
s+t t ≥ 0,

s−t t < 0,
σH(t) :=


−1 t ≤ −1,

t t ∈ (−1, 1],

1 t > 1,

=
σR(t+ 1)− σR(t− 1)− s+ − s−

s+ − s−
,

where s+ > s− ≥ 0. Note that σR includes ReLU and Leaky ReLU. Hard-tanh activation (σH) is a
piecewise linear approximation of tanh. Since σH can be represented with two σR, any results on
hard-tanh networks can be extended to ReLU-like networks with twice the width.

3 Finite sample expressivity of FNNs
In this section, we study universal finite sample expressivity of FNNs. For the training dataset, we
make the following mild assumption that ensures consistent labels:
Assumption 3.1. In the dataset {(xi, yi)}Ni=1 assume that all xi’s are distinct and all yi ∈ [−1, 1]dy .

3.1 Main results
We first state the main theorems on shallow FNNs showing tight lower and upper bounds on memo-
rization capacity. Detailed discussion will follow in the next subsection.
Theorem 3.1. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 3.1. If

• a 3-layer hard-tanh FNN fθ satisfies 4bd1/2cbd2/(2dy)c ≥ N ; or

• a 3-layer ReLU-like FNN fθ satisfies 4bd1/4cbd2/(4dy)c ≥ N ,

then there exists a parameter θ such that yi = fθ(xi) for all i ∈ [N ].

Theorem 3.1 shows that if d1d2 = Ω(Ndy) then we can memorize arbitrary datasets; this means
that Ω(

√
Ndy) hidden nodes are sufficient for memorization, in contrary to Ω(Ndy) requirements

of recent results. By adding one more hidden layer, the next theorem shows that we can perfectly
memorize any classification dataset using Ω(

√
N + dy) hidden nodes.

Proposition 3.2. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 3.1. Assume that
yi ∈ {0, 1}dy is the one-hot encoding of dy classes. Suppose one of the following holds:

• a 4-layer hard-tanh FNN fθ satisfies 4bd1/2cbd2/2c ≥ N , and d3 ≥ 2dy; or

• a 4-layer ReLU-like FNN fθ satisfies 4bd1/4cbd2/4c ≥ N , and d3 ≥ 4dy .

Then, there exists a parameter θ such that yi = fθ(xi) for all i ∈ [N ].

Notice that for scalar regression (dy = 1), Theorem 3.1 proves a lower bound on memorization
capacity of 3-layer neural networks: Ω(d1d2). The next theorem shows that this bound is in fact tight.

4



Theorem 3.3. Consider FNNs with dy = 1 and piecewise linear activation σ with p pieces. If

• a 2-layer FNN fθ satisfies (p− 1)d1 + 2 < N ; or

• a 3-layer FNN fθ satisfies p(p− 1)d1d2 + (p− 1)d2 + 2 < N ,

then there exists a dataset {(xi, yi)}Ni=1 satisfying Assumption 3.1 such that for all θ, there exists
i ∈ [N ] such that yi 6= fθ(xi).

Theorems 3.1 and 3.3 together show tight lower and upper bounds Θ(d1d2) on memorization capacity
of 3-layer FNNs, which differ only in constant factors. Theorem 3.3 and the existing result on 2-layer
FNNs [53, Theorem 1] also show that the memorization capacity of 2-layer FNNs is Θ(d1).

Proof ideas. The proof of Theorem 3.1 is based on an intricate construction of parameters. Roughly
speaking, we construct parameters that make each data point have its unique activation pattern in
the hidden layers; more details are in Appendix B. The proof of Proposition 3.2 is largely based on
Theorem 3.1. By assigning each class j a unique real number ρj (which is similar to the trick in
Hardt and Ma [20]), we modify the dataset into a 1-D regression dataset; we then fit this dataset using
the techniques in Theorem 3.1, and use the extra layer to recover the one-hot representation of the
original yi. Please see Appendix C for the full proof. The main proof idea of Theorem 3.3 is based
on counting the number of “pieces” in the network output fθ(x) (as a function of x), inspired by
Telgarsky [44]. For the proof, please see Appendix D.

3.2 Discussion
Depth-width tradeoffs for finite samples. Theorem 3.1 shows that if the two ReLU hidden layers
satisfy d1 = d2 = 2

√
Ndy, then the network can fit a given dataset perfectly. Proposition 3.2 is an

improvement for classification, which shows that a 4-layer ReLU FNN can memorize any dy-class
classification data if d1 = d2 = 2

√
N and d3 = 4dy .

As in other expressivity results, our results show that there are depth-width tradeoffs in the finite
sample setting. For ReLU FNNs it is known that one hidden layer with N nodes can memorize
any scalar regression (dy = 1) dataset with N points [53]. By adding a hidden layer, the hidden
node requirement is reduced to 4

√
N , and Theorem 3.3 also shows that Θ(

√
N) hidden nodes are

necessary and sufficient. Ability to memorize N data points with N nodes is perhaps not surprising,
because weights of each hidden node can be tuned to memorize a single data point. In contrast, the
fact that width-2

√
N networks can memorize is far from obvious; each hidden node must handle√

N/2 data points on average, thus a more elaborate construction is required.

For dy-class classification, by adding one more hidden layer, the requirement is improved from
4
√
Ndy to 4

√
N + 4dy nodes. This again highlights the power of depth in expressive power.

Proposition 3.2 tells us that we can fit ImageNet1 (N ≈ 106, dy = 103) with three ReLU hidden
layers, using only 2k-2k-4k nodes. This “sufficient” size for memorization is surprisingly smaller
(disregarding optimization aspects) than practical networks.

Implications for ERM. It is widely observed in experiments that deep neural networks can achieve
zero empirical risk, but a concrete understanding of this phenomenon is still elusive. It is known that
all local minima are global minima for empirical risk of linear neural networks [25, 27, 51, 52, 56],
but this property fails to extend to nonlinear neural networks [39, 52]. This suggests that studying
the gap between local minima and global minima could provide explanations for the success of deep
neural networks. In order to study the gap, however, we have to know the risk value attained by global
minima, which is already non-trivial even for shallow neural networks. In this regard, our theorems
provide theoretical guarantees that even a shallow and narrow network can have zero empirical risk
at global minima, regardless of data and loss functions—e.g., in a regression setting, for a 3-layer
ReLU FNN with d1 = d2 = 2

√
Ndy there exists a global minimum that has zero empirical risk.

The number of edges. We note that our results do not contradict the common “insight” that at least
N edges are required to memorize N data points. Our “small” network means a small number of
hidden nodes, and it still has more than N edges. The existing result [53] requires (dx + 2)N edges,
while our construction for ReLU requires 4N + (2dx + 6)

√
N + 1 edges, which is much fewer.

1after omitting the inconsistently labeled items

5



Relevant work on sigmoid. Huang [22] proves that a 2-hidden-layer sigmoid FNNs with d1 =
N/K + 2K and d2 = K, where K is a positive integer, can approximate N arbitrary distinct data
points. The author first partitions N data points into K groups of size N/K each. Then, from the
fact that the sigmoid function is strictly increasing and non-polynomial, it is shown that if the weights
between input and first hidden layer is sampled randomly, then the output matrix of first hidden
layer for each group is full rank with probability one. This is not the case for ReLU or hard-tanh,
because they have “flat” regions in which rank could be lost. In addition, Huang [22] requires extra
2K hidden nodes in d1 that serve as “filters” which let only certain groups of data points pass through.
Our construction is not an extension of this result because we take a different strategy (Appendix B);
we carefully choose parameters (instead of sampling) that achieve memorization with d1 = N/K
and d2 = K (in hard-tanh case) without the need of extra 2K nodes, which enjoys a smaller width
requirement and allows for more flexibility in the architecture. Moreover, we provide a converse
result (Theorem 3.3) showing that our construction is rate-optimal in the number of hidden nodes.

3.3 Extension to deeper and/or narrower networks

What if the network is deeper than three layers and/or narrower than
√
N? Our next theorem shows

that universal finite sample expressivity is not limited to 3-layer neural networks, and still achievable
by exploiting depth even for narrower networks.

Proposition 3.4. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 3.1. For an L-layer
FNN with hard-tanh activation (σH), assume that there exist indices l1, . . . , lm ∈ [L− 2] that satisfy

• lj + 1 < lj+1 for j ∈ [m− 1],

• 4
∑m
j=1

⌊
dlj−rj

2

⌋ ⌊
dlj+1−rj

2dy

⌋
≥ N , where rj = dy1 {j > 1}+ 1 {j < m}, for j ∈ [m],

• dk ≥ dy + 1 for all k ∈
⋃
j∈[m−1][lj + 2 : lj+1 − 1].

• dk ≥ dy for all k ∈ [lm + 2 : L− 1],

where 1 {·} is 0-1 indicator function. Then, there exists θ such that yi = fθ(xi) for all i ∈ [N ].

As a special case, note that for L = 3 (hence m = 1), the conditions boil down to that of Theorem 3.1.
An immediate corollary of this fact is that the same result holds for ReLU(-like) networks with twice
the width. Moreover, using the same proof technique as Proposition 3.2, this theorem can also be
improved for classification datasets, by inserting one additional hidden layer between layer lm + 1
and the output layer. Due to space limits, we defer the statement of these corollaries to Appendix A.

The proof of Proposition 3.4 is in Appendix E. We use Theorem 3.1 as a building block and construct a
network (see Figure 2 in appendix) that fits a subset of dataset at each pair of hidden layers lj–(lj +1).

If any two adjacent hidden layers satisfy dldl+1 = Ω(Ndy), this network can fit N data points
(m = 1), even when all the other hidden layers have only one hidden node. Even with networks
narrower than

√
Ndy (thus m > 1), we can still achieve universal finite sample expressivity as long

as there are Ω(Ndy) edges between disjoint pairs of adjacent layers. However, we have the “cost”
rj in the width of hidden layers; this is because we fit subsets of the dataset using multiple pairs of
layers. To do this, we need rj extra nodes to propagate input and output information to the subsequent
layers. For more details, please refer to the proof.

Proposition 3.4 gives a lower bound Ω(
∑L−2
l=1 dldl+1) on memorization capacity forL-layer networks.

For fixed input/output dimensions, this is indeed Ω(W ), where W is the number of edges in the
network. On the other hand, Bartlett et al. [4] showed an upper bound O(WL logW ) on VC
dimension, which is also an upper bound on memorization capacity. Thus, for any fixed L, our lower
bound is nearly tight. We conjecture that, as we have proved in 2- and 3-layer cases, the memorization
capacity is Θ(W ), independent of L; we leave closing this gap for future work.

For sigmoid FNNs, Yamasaki [48] claimed that a scalar regression dataset can be memorized if
dxdd12 e+ bd12 cd

d2
2 − 1e+ · · ·+ bdL−2

2 cd
dL−1

2 − 1e ≥ N . However, this claim was made under the
stronger assumption of data lying in general position (see Assumption 4.1). Unfortunately, Yamasaki
[48] does not provide a full proof of their claim, making it impossible to validate veracity of their
construction (and we could not find their extended manuscript elsewhere).

6



4 Classification under the general position assumption
This section presents some results specialized in multi-class classification task under a slightly stronger
assumption, namely the general position assumption. Since we are only considering classification in
this section, we also assume that yi ∈ {0, 1}dy is the one-hot encoding of dy classes.

Assumption 4.1. For a finite dataset {(xi, yi)}Ni=1, assume that no dx + 1 data points lie on the
same affine hyperplane. In other words, the data point xi’s are in general position.

We consider residual networks (ResNets), defined by the following architecture:

h0(x) = x,

hl(x) = hl−1(x) + V lσ(U lhl−1(x) + bl) + cl, l ∈ [L− 1],

gθ(x) = V Lσ(ULhL−1(x) + bL) + cL,

which is similar to the previous work by Hardt and Ma [20], except for extra bias parameters cl. In
this model, we denote the number hidden nodes in the l-th residual layer as dl; e.g., U l ∈ Rdl×dx .

We now present a theorem showing that any dataset can be memorized with small ResNets.
Theorem 4.1. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 4.1. Assume also that
dx ≥ dy . Suppose one of the following holds:

• a hard-tanh ResNet gθ satisfies
∑L−1
l=1 dl ≥ 2N

dx
+ 2dy and dL ≥ dy; or

• a ReLU-like ResNet gθ satisfies
∑L−1
l=1 dl ≥ 4N

dx
+ 4dy and dL ≥ 2dy .

Then, there exists θ such that yi = gθ(xi) for all i ∈ [N ].

The previous work by Hardt and Ma [20] proves universal finite sample expressivity using N + dy
hidden nodes (i.e.,

∑L−1
l=1 dl ≥ N and dL ≥ dy) for ReLU activation, under the assumption that xi’s

are distinct unit vectors. Note that neither this assumption nor Assumption 4.1 implies the other;
however, our assumption is quite mild in the sense that for any given dataset, adding small random
Gaussian noise to xi’s makes the dataset satisfy the assumption, with probability 1.

The main idea for the proof is that under the general position assumption, for any choice of dx points
there exists an affine hyperplane that contains only these dx points. Each hidden node can choose dx
data points and “push” them to the right direction, making perfect classification possible. We defer
the details to Appendix F.1. Using the same technique, we can also prove an improved result for
2-layer (1-hidden-layer) FNNs. The proof of the following corollary can be found in Appendix F.2.
Corollary 4.2. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 4.1. Suppose one of the
following holds:

• a 2-layer hard-tanh FNN fθ satisfies d1 ≥ 2N
dx

+ 2dy; or

• a 2-layer ReLU-like FNN fθ satisfies d1 ≥ 4N
dx

+ 4dy .

Then, there exists θ such that yi = fθ(xi) for all i ∈ [N ].

Our results show that under the general position assumption, perfect memorization is possible with
only Ω(N/dx+dy) hidden nodes rather than N , in both ResNets and 2-layer FNNs. Considering that
dx is typically in the order of hundreds or thousands, our results reduce the hidden node requirements
down to more realistic network sizes. For example, consider CIFAR-10 dataset: N = 50, 000,
dx = 3, 072, and dy = 10. Previous results require at least 50k ReLUs to memorize this dataset,
while our results require 126 ReLUs for ResNets and 106 ReLUs for 2-layer FNNs.

5 Trajectory of SGD near memorizing global minima
In this section, we study the behavior of without-replacement SGD near memorizing global minima.

We restrict dy = 1 for simplicity. We use the same notation as defined in Section 2, and introduce
here some additional definitions. We assume that each activation function σ is piecewise linear with
at least two pieces (e.g., ReLU or hard-tanh). Throughout this section, we slightly abuse the notation
θ to denote the concatenation of vectorizations of all the parameters (W l, bl)Ll=1.

7



We are interested in minimizing the empirical risk R(θ), defined as the following:

R(θ) := 1
N

∑N

i=1
`(fθ(xi); yi),

where `(z; y) : R 7→ R is the loss function parametrized by y. We assume the following:
Assumption 5.1. The loss function `(z; y) is a strictly convex and three times differentiable function
of z. Also, for any y, there exists z ∈ R such that z is a global minimum of `(z; y).

Assumption 5.1 on ` is satisfied by standard losses such as squared error loss. Note that logistic loss
does not satisfy Assumption 5.1 because the global minimum is not attained by any finite z.

Given the assumption on `, we now formally define the memorizing global minimum.
Definition 5.1. A point θ∗ is a memorizing global minimum of R(·) if `′(fθ∗(xi); yi) = 0, ∀i ∈ [N ].

By convexity, `′(fθ∗(xi); yi) = 0 for all i implies that R(θ) is (globally) minimized at θ∗. Also,
existence of a memorizing global minimum of R implies that all global minima are memorizing.

Although ` is a differentiable function of z, the empirical risk R(θ) is not necessarily differentiable
in θ because we are using piecewise linear activations. In this paper, we only consider differentiable
points of R(·); since nondifferentiable points lie in a set of measure zero and SGD never reaches
such points in reality, this is a reasonable assumption.

We consider minimizing the empirical risk R(θ) using without-replacement mini-batch SGD. We
use B as mini-batch size, so it takes E := N/B steps to go over N data points in the dataset.
For simplicity we assume that N is a multiple of B. At iteration t = kE, it partitions the dataset
at random, into E sets of cardinality B: B(kE), B(kE+1), . . . , B(kE+E−1), and uses these sets to
estimate gradients. After each epoch (one pass through the dataset), the data is “reshuffled” and
a new partition is used. Without-replacement SGD is known to be more difficult to analyze than
with-replacement SGD (see [19, 40] and references therein), although more widely used in practice.

More concretely, our SGD algorithm uses the update rule θ(t+1) ← θ(t) − ηg(t), where we fix the
step size η to be a constant throughout the entire run and g(t) is the gradient estimate

g(t) = 1
B

∑
i∈B(t)

`′(fθ(t)(xi); yi)∇θfθ(t)(xi).

For each k,
⋃kE+E−1
t=kE B(t) = [N ]. Note also that if B = N , we recover vanilla gradient descent.

Now consider a memorizing global minimum θ∗. We define vectors νi := ∇θfθ∗(xi) for all
i ∈ [N ]. We can then express any iterate θ(t) of SGD as θ(t) = θ∗ + ξ(t), and then further
decompose the “perturbation” ξ(t) as the sum of two orthogonal components ξ(t)‖ and ξ(t)⊥ , where

ξ
(t)
‖ ∈ span({νi}Ni=1) and ξ(t)⊥ ∈ span({νi}Ni=1)⊥. Also, for a vector v, let ‖v‖ denote its `2 norm.

5.1 Main results and discussion
We now state the main theorem of the section. For the proof, please refer to Appendix G.
Theorem 5.1. Suppose a memorizing global minimum θ∗ of R(θ) is given, and that R(·) is dif-
ferentiable at θ∗. Then, there exist positive constants ρ, γ, λ, and τ satisfying the following: if
initialization θ(0) satisfies ‖ξ(0)‖ ≤ ρ, then

R(θ(0))−R(θ∗) = O(‖ξ(0)‖2),

and SGD with step size η < γ satisfies

‖ξ(kE+E)
‖ ‖ ≤ (1− ηλ)‖ξ(kE)

‖ ‖, and ‖ξ(kE+E)‖ ≤ ‖ξ(kE)‖+ ηλ‖ξ(kE)
‖ ‖,

as long as ‖ξ(t)‖ ‖ ≥ τ‖ξ(t)‖2 holds for all t ∈ [kE, kE + E − 1]. As a consequence, at the first

iterate t∗ ≥ 0 where the condition ‖ξ(t)‖ ‖ ≥ τ‖ξ
(t)‖2 is violated, we have

‖ξ(t
∗)‖ ≤ 2‖ξ(0)‖, and R(θ(t

∗))−R(θ∗) ≤ C‖ξ(0)‖4,

for some positive constant C.

8



The full description of constants ρ, γ, λ, τ , and C can be found in Appendix G. They are dependent
on a number of terms, such as N , B, the Taylor expansions of loss `(fθ∗(xi); yi) and network
output fθ∗(xi) around the memorizing global minimum θ∗, maximum and minimum strictly positive
eigenvalues of H =

∑N
i=1 `

′′(fθ∗(xi); yi)νiν
T
i . The constant ρ must be small enough so that as long

as ‖ξ‖ ≤ ρ, the slopes of piecewise linear activation functions evaluated for data points xi do not
change from θ∗ to θ∗ + ξ.

Notice that for small perturbation ξ, the Taylor expansion of network output fθ∗(xi) is written as
fθ∗+ξ(xi) = fθ∗(xi) + νTi ξ‖ + O(‖ξ‖2), because νi ⊥ ξ⊥ by definition. From this perspective,
Theorem 5.1 shows that if initialized near global minima, the component in the perturbation ξ that
induces first-order perturbation of fθ∗(xi), namely ξ‖, decays exponentially fast until SGD finds a
nearby point that has much smaller risk (O(‖ξ(0)‖4)) than the initialization (O(‖ξ(0)‖2)). Note also
that our result is completely deterministic, and independent of the partitions of the dataset taken by
the algorithm; the theorem holds true even if the algorithm is not “stochastic” and just cycles through
the dataset in a fixed order without reshuffling.

We would like to emphasize that Theorem 5.1 holds for any memorizing global minima of FNNs, not
only for the ones explicitly constructed in Sections 3 and 4. Moreover, the result is not dependent on
the network size or data distribution. As long as the global minimum memorizes the data, our theorem
holds without any depth/width requirements or distributional assumptions, which is a noteworthy
difference that makes our result hold in more realistic settings than existing ones.

The remaining question is: what happens after t∗? Unfortunately, if ‖ξ(t)‖ ‖ ≤ τ‖ξ
(t)‖2, we cannot

ensure exponential decay of ‖ξ(t)‖ ‖, especially if it is small. Without exponential decay, one cannot

show an upper bound on ‖ξ(t)‖ either. This means that after t∗, SGD may even diverge or oscillate
near global minimum. Fully understanding the behavior of SGD after t∗ seems to be a more difficult
problem, which we leave for future work.

6 Conclusion and future work
In this paper, we show that fully-connected neural networks (FNNs) with Ω(

√
N) nodes are expressive

enough to perfectly memorize N arbitrary data points, which is a significant improvement over the
recent results in the literature. We also prove the converse stating that at least Θ(

√
N) nodes are

necessary; these two results together provide tight bounds on memorization capacity of neural
networks. We further extend our expressivity results to deeper and/or narrower networks, providing
a nearly tight bound on memorization capacity for these networks as well. Under an assumption
that data points are in general position, we prove that classification datasets can be memorized
with Ω(N/dx + dy) hidden nodes in deep residual networks and one-hidden-layer FNNs, reducing
the existing requirement of Ω(N). Finally, we study the dynamics of stochastic gradient descent
(SGD) on empirical risk, and showed that if SGD is initialized near a global minimum that perfectly
memorizes the data, it quickly finds a nearby point with small empirical risk. Several future topics
are open; e.g., 1) tight bounds on memorization capacity for deep FNNs and other architectures, 2)
deeper understanding of SGD dynamics in the presence of memorizing global minima.

Acknowledgments

We thank Alexander Rakhlin for helpful discussion. All the authors acknowledge support from
DARPA Lagrange. Chulhee Yun also thanks Korea Foundation for Advanced Studies for their
support. Suvrit Sra also acknowledges support from an NSF-CAREER grant and an Amazon
Research Award.

References
[1] Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-

parameterization. arXiv preprint arXiv:1811.03962, 2018.

[2] D. Arpit, S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj, A. Fischer,
A. Courville, Y. Bengio, et al. A closer look at memorization in deep networks. In International
Conference on Machine Learning, pages 233–242, 2017.

9



[3] P. L. Bartlett, V. Maiorov, and R. Meir. Almost linear VC dimension bounds for piecewise
polynomial networks. In Advances in Neural Information Processing Systems, pages 190–196,
1999.

[4] P. L. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian. Nearly-tight VC-dimension and pseudodi-
mension bounds for piecewise linear neural networks. Journal of Machine Learning Research,
20(63):1–17, 2019. URL http://jmlr.org/papers/v20/17-612.html.

[5] P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler. Benign overfitting in linear regression.
arXiv preprint arXiv:1906.11300, 2019.

[6] E. B. Baum. On the capabilities of multilayer perceptrons. Journal of complexity, 4(3):193–215,
1988.

[7] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine learning and the
bias-variance trade-off. arXiv preprint arXiv:1812.11118, 2018.

[8] M. Belkin, A. Rakhlin, and A. B. Tsybakov. Does data interpolation contradict statistical
optimality? arXiv preprint arXiv:1806.09471, 2018.

[9] A. Brutzkus and A. Globerson. Globally optimal gradient descent for a ConvNet with Gaussian
inputs. In International Conference on Machine Learning, pages 605–614, 2017.

[10] A. Brutzkus, A. Globerson, E. Malach, and S. Shalev-Shwartz. SGD learns over-parameterized
networks that provably generalize on linearly separable data. In International Conference on
Learning Representations, 2018.

[11] T. M. Cover. Geometrical and statistical properties of systems of linear inequalities with
applications in pattern recognition. IEEE transactions on electronic computers, (3):326–334,
1965.

[12] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

[13] O. Delalleau and Y. Bengio. Shallow vs. deep sum-product networks. In Advances in Neural
Information Processing Systems, pages 666–674, 2011.

[14] S. S. Du, J. D. Lee, Y. Tian, B. Poczos, and A. Singh. Gradient descent learns one-hidden-layer
CNN: Don’t be afraid of spurious local minima. arXiv preprint arXiv:1712.00779, 2017.

[15] S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep
neural networks. arXiv preprint arXiv:1811.03804, 2018.

[16] S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-
parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

[17] R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In Conference
on Learning Theory, pages 907–940, 2016.

[18] K.-I. Funahashi. On the approximate realization of continuous mappings by neural networks.
Neural networks, 2(3):183–192, 1989.

[19] J. Z. HaoChen and S. Sra. Random shuffling beats SGD after finite epochs. arXiv preprint
arXiv:1806.10077, 2018.

[20] M. Hardt and T. Ma. Identity matters in deep learning. In International Conference on Learning
Representations, 2017.

[21] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

[22] G.-B. Huang. Learning capability and storage capacity of two-hidden-layer feedforward
networks. IEEE Transactions on Neural Networks, 14(2):274–281, 2003.

10

http://jmlr.org/papers/v20/17-612.html


[23] G.-B. Huang and H. A. Babri. Upper bounds on the number of hidden neurons in feedforward
networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural
Networks, 9(1):224–229, 1998.

[24] S.-C. Huang and Y.-F. Huang. Bounds on the number of hidden neurons in multilayer percep-
trons. IEEE transactions on neural networks, 2(1):47–55, 1991.

[25] K. Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, pages 586–594, 2016.

[26] A. Kowalczyk. Estimates of storage capacity of multilayer perceptron with threshold logic
hidden units. Neural networks, 10(8):1417–1433, 1997.

[27] T. Laurent and J. Brecht. Deep linear networks with arbitrary loss: All local minima are global.
In International Conference on Machine Learning, pages 2908–2913, 2018.

[28] Y. Li and Y. Liang. Learning overparameterized neural networks via stochastic gradient descent
on structured data. In Advances in Neural Information Processing Systems, pages 8168–8177,
2018.

[29] Y. Li and Y. Yuan. Convergence analysis of two-layer neural networks with ReLU activation.
In Advances in Neural Information Processing Systems, pages 597–607, 2017.

[30] S. Liang and R. Srikant. Why deep neural networks for function approximation? In International
Conference on Learning Representations, 2017.

[31] T. Liang and A. Rakhlin. Just Interpolate: Kernel “Ridgeless” Regression Can Generalize.
arXiv preprint arXiv:1808.00387, 2018.

[32] T. Liang, A. Rakhlin, and X. Zhai. On the risk of minimum-norm interpolants and restricted
lower isometry of kernels. arXiv preprint arXiv:1908.10292, 2019.

[33] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural networks: A view
from the width. In Advances in Neural Information Processing Systems, pages 6231–6239,
2017.

[34] S. Mei and A. Montanari. The generalization error of random features regression: Precise
asymptotics and double descent curve. arXiv preprint arXiv:1908.05355, 2019.

[35] Q. Nguyen and M. Hein. Optimization landscape and expressivity of deep CNNs. arXiv preprint
arXiv:1710.10928, 2017.

[36] N. J. Nilsson. Learning machines. 1965.

[37] D. Rolnick and M. Tegmark. The power of deeper networks for expressing natural functions. In
International Conference on Learning Representations, 2018.

[38] I. Safran and O. Shamir. Depth-width tradeoffs in approximating natural functions with neural
networks. In International Conference on Machine Learning, pages 2979–2987, 2017.

[39] I. Safran and O. Shamir. Spurious local minima are common in two-layer ReLU neural networks.
arXiv preprint arXiv:1712.08968, 2017.

[40] O. Shamir. Without-replacement sampling for stochastic gradient methods. In Advances in
neural information processing systems, pages 46–54, 2016.

[41] M. Soltanolkotabi. Learning ReLUs via gradient descent. In Advances in Neural Information
Processing Systems, pages 2007–2017, 2017.

[42] E. D. Sontag. Shattering all sets of ‘k’ points in “general position” requires (k—1)/2 parameters.
Neural Computation, 9(2):337–348, 1997.

[43] D. Soudry and Y. Carmon. No bad local minima: Data independent training error guarantees
for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

11



[44] M. Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint
arXiv:1509.08101, 2015.

[45] M. Telgarsky. Benefits of depth in neural networks. In Conference on Learning Theory, pages
1517–1539, 2016.

[46] Y. Tian. An analytical formula of population gradient for two-layered ReLU network and its
applications in convergence and critical point analysis. In International Conference on Machine
Learning, pages 3404–3413, 2017.

[47] G. Wang, G. B. Giannakis, and J. Chen. Learning ReLU networks on linearly separable data:
Algorithm, optimality, and generalization. arXiv preprint arXiv:1808.04685, 2018.

[48] M. Yamasaki. The lower bound of the capacity for a neural network with multiple hidden layers.
In ICANN’93, pages 546–549. Springer, 1993.

[49] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 94:
103–114, 2017.

[50] D. Yarotsky. Optimal approximation of continuous functions by very deep ReLU networks.
arXiv preprint arXiv:1802.03620, 2018.

[51] C. Yun, S. Sra, and A. Jadbabaie. Global optimality conditions for deep neural networks. In
International Conference on Learning Representations, 2018.

[52] C. Yun, S. Sra, and A. Jadbabaie. Small nonlinearities in activation functions create bad local
minima in neural networks. In International Conference on Learning Representations, 2019.

[53] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. In International Conference on Learning Representations (ICLR),
2017.

[54] X. Zhang, Y. Yu, L. Wang, and Q. Gu. Learning one-hidden-layer ReLU networks via gradient
descent. arXiv preprint arXiv:1806.07808, 2018.

[55] K. Zhong, Z. Song, P. Jain, P. L. Bartlett, and I. S. Dhillon. Recovery guarantees for one-hidden-
layer neural networks. In International Conference on Machine Learning, pages 4140–4149,
2017.

[56] Y. Zhou and Y. Liang. Critical points of neural networks: Analytical forms and landscape
properties. In International Conference on Learning Representations, 2018.

[57] Y. Zhou, J. Yang, H. Zhang, Y. Liang, and V. Tarokh. SGD converges to global minimum in
deep learning via star-convex path. In International Conference on Learning Representations,
2019.

[58] D. Zou, Y. Cao, D. Zhou, and Q. Gu. Stochastic gradient descent optimizes over-parameterized
deep ReLU networks. arXiv preprint arXiv:1811.08888, 2018.

12


	Introduction
	Summary of our contributions
	Related work

	Problem setting and notation
	Finite sample expressivity of FNNs
	Main results
	Discussion
	Extension to deeper and/or narrower networks

	Classification under the general position assumption
	Trajectory of SGD near memorizing global minima
	Main results and discussion

	Conclusion and future work

