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ABSTRACT

Identifying analogies across domains without supervision is an important task for
artificial intelligence. Recent advances in cross domain image mapping have con-
centrated on translating images across domains. Although the progress made
is impressive, the visual fidelity many times does not suffice for identifying the
matching sample from the other domain. In this paper, we tackle this very task of
finding exact analogies between datasets i.e. for every image from domain A find
an analogous image in domain B. We present a matching-by-synthesis approach:
AN-GAN, and show that it outperforms current techniques. We further show that
the cross-domain mapping task can be broken into two parts: domain alignment
and learning the mapping function. The tasks can be iteratively solved, and as
the alignment is improved, the unsupervised translation function reaches quality
comparable to full supervision.

1 INTRODUCTION

Humans are remarkable in their ability to enter an unseen domain and make analogies to the pre-
viously seen domain without prior supervision (“This dinosaur looks just like my dog Fluffy”).
This ability is important for using previous knowledge in order to obtain strong priors on the new
situation, which makes identifying analogies between multiple domains an important problem for
Artificial Intelligence. Much of the recent success of AI has been in supervised problems, i.e., when
explicit correspondences between the input and output were specified on a training set. Analogy
identification is different in that no explicit example analogies are given in advance, as the new
domain is unseen.

Recently several approaches were proposed for unsupervised mapping between domains. The ap-
proaches take as input sets of images from two different domains A and B without explicit corre-
spondences between the images in each set, e.g. Domain A: a set of aerial photos and Domain B:
a set of Google-Maps images. The methods learn a mapping function TAB that takes an image in
one domain and maps it to its likely appearance in the other domain, e.g. map an aerial photo to
a Google-Maps image. This is achieved by utilizing two constraints: (i) Distributional constraint:
the distributions of mapped A domain images (TAB(x)) and images of the target domain B must be
indistinguishable, and (ii) Cycle constraint: an image mapped to the other domain and back must be
unchanged, i.e., TBA(TAB(x)) = x.

In this paper the task of analogy identification refers to finding pairs of examples in the two domains
that are related by a fixed non-linear transformation. Although the two above constraints have been
found effective for training a mapping function that is able to translate between the domains, the
translated images are often not of high enough visual fidelity to be able to perform exact matching.
We hypothesize that it is caused due to not having exemplar-based constraints but rather constraints
on the distributions and the inversion property.

In this work we tackle the problem of analogy identification. We find that although current methods
are not designed for this task, it is possible to add exemplar-based constraints in order to recover
high performance in visual analogy identification. We show that our method is effective also when
only some of the sample images in A and B have exact analogies whereas the rest do not have exact
analogies in the sample sets. We also show that it is able to find correspondences between sets when
no exact correspondences are available at all. In the latter case, since the method retrieves rather
than maps examples, it naturally yields far better visual quality than the mapping function.
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Using the domain alignment described above, it is now possible to perform a two step approach for
training a domain mapping function, which is more accurate than the results provided by previous
unsupervised mapping approaches:

1. Find the analogies between the A and B domain, using our method.

2. Once the domains are aligned, fit a translation function TAB between the domains ymi
=

TAB(xi) using a fully supervised method. For the supervised network, larger architectures
and non-adversarial loss functions can be used.

2 RELATED WORK

This paper aims to identify analogies between datasets without supervision. Analogy identification
as formulated in this paper is highly related to image matching methods. As we perform matching by
synthesis across domains, our method is related to unsupervised style-transfer and image-to-image
mapping. In this section we give a brief overview of the most closely related works.

Image Matching Image matching is a long-standing computer vision task. Many approaches have
been proposed for image matching, most notably pixel- and feature-point based matching (e.g. SIFT
(Lowe, 2004)). Recently supervised deep neural networks have been used for matching between
datasets (Wang et al., 2014), and generic visual features for matching when no supervision is avail-
able (e.g. (Ganin & Lempitsky, 2015)). As our scenario is unsupervised, generic visual feature
matching is of particular relevance. We show in our experiments however that as the domains are
very different, standard visual features (multi-layer VGG-16 (Simonyan & Zisserman, 2015)) are
not able to achieve good analogies between the domains.

Generative Adversarial Networks GAN (Goodfellow et al., 2014) technology presents a major
breakthrough in image synthesis (and other domains). The success of previous attempts to generate
random images in a class of a given set of images, was limited to very specific domains such as
texture synthesis. Therefore, it is not surprising that most of the image to image translation work
reported below employ GANs in order to produce realistically looking images. GAN (Goodfellow
et al., 2014) methods train a generator networkG that synthesizes samples from a target distribution,
given noise vectors, by jointly training a second network D. The specific generative architecture we
and others employ is based on the architecture of (Radford et al., 2015). In image mapping, the
created image is based on an input image and not on random noise (Kim et al., 2017; Zhu et al.,
2017; Yi et al., 2017; Liu & Tuzel, 2016; Taigman et al., 2017; Isola et al., 2017).

Unsupervised Mapping Unsupervised mapping does not employ supervision apart from sets of
sample images from the two domains. This was done very recently (Taigman et al., 2017; Kim
et al., 2017; Zhu et al., 2017; Yi et al., 2017) for image to image translation and slightly earlier for
translating between natural languages (Xia et al., 2016). The above mapping methods however are
focused on generating a mapped version of the sample in the other domain rather than retrieving the
best matching sample in the new domain.

Supervised Mapping When provided with matching pairs of (input image, output image) the map-
ping can be trained directly. An example of such method that also uses GANs is (Isola et al., 2017),
where the discriminator D receives a pair of images where one image is the source image and the
other is either the matching target image (“real” pair) or a generated image (“fake” pair); The link
between the source and the target image is further strengthened by employing the U-net architecture
of (Ronneberger et al., 2015). We do not use supervision in this work, however by the successful
completion of our algorithm, correspondences are generated between the domains, and supervised
mapping methods can be used on the inferred matches. Recently, (Chen & Koltun, 2017) demon-
strated improved mapping results, in the supervised settings, when employing the perceptual loss
and without the use of GANs.

3 METHOD

In this section we detail our method for analogy identification. We are given two sets of images in
domains A and B respectively. The set of images in domain A are denoted xi where i ∈ I and the
set image in domainB are denoted yj where j ∈ J . Letmi denote the index of theB domain image
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Figure 1: A schematic of our algorithm with illustrative images. (a) Distribution matching using an
adversarial loss. Note that in fact this happens for both the A→ B and B → A mapping directions.
(b) Cycle loss ensuring that an example mapped to the other domain and back is mapped to itself.
This loss is used for both A → B → A and B → A → B . (c) Exemplar loss: The input domain
images are mapped to the output domain and then a linear combination of the mapped images is
computed. The objective is to recover a specific target domain image. Both the linear parameters α
and mapping T are jointly learned. The loss is computed for both A → B and B → A directions.
The parameters α are shared in the two directions.

ymi
that is analogous to xi. Our goal is to find the matching indexes mi for i ∈ I in order to be able

to match every A domain image xi with a B domain image ymi
, if such a match exists.

We present an iterative approach for finding matches between two domains. Our approach maps
images from the source domain to the target domain, and searches for matches in the target domain.

3.1 DISTRIBUTION-BASED MAPPING

A GAN-based distribution approach has recently emerged for mapping images across domains. Let
x be an image in domain A and y be an image in domain B. A mapping function TAB is trained to
map x to TAB(x) so that it appears as if it came from domain B. More generally, the distribution
of TAB(x) is optimized to appear identical to that of y. The distributional alignment is enforced
by training a discriminator D to discriminate between samples from p(TAB(x)) and samples from
p(y), where we use p(x) to denote the distribution of x and p(TAB(x)) to denote the distribution of
TAB(x) when x ∼ p(x). At the same time TAB is optimized so that the discriminator will have a
difficult task of discriminating between the distributions.

The loss function for training T and D are therefore:

minTAB
LT = Lb(D(TAB(x)), 1) (1)

minDLD = Lb(D(TAB(x)), 0) + Lb(D(y), 1) (2)
Where Lb(, ) is a binary cross-entropy loss. The networks LD and LT are trained iteratively (as they
act in opposite directions).

In many datasets, the distribution-constraint alone was found to be insufficient. Additional con-
straints have been effectively added such as circularity (cycle) (Zhu et al., 2017; Kim et al., 2017)
and distance invariance (Benaim & Wolf, 2017). The popular cycle approach trains one-sided GANs
in both the A → B and B → A directions, and then ensures that an A image domain translated to
B (TAB(x)) and back to A (TBA(TBA(x))) recovers the original x.

Let L1 denote the L1 loss. The complete two-sided cycle loss function is given by:

LTdist
= Lb(DA(TBA(y)), 1) + Lb(DB(TAB(x)), 1) (3)

LTcycle
= L1(TAB(TBA(y)), y) + L1(TBA(TAB(x)), x) (4)
minTAB ,TBA

LT = LTdist
+ LTcycle

(5)
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minDA,DB
LD = Lb(DA(TBA(y)), 0)+Lb(DA(x), 1)+Lb(DB(TAB(x)), 0)+Lb(DB(y), 1) (6)

The above two-sided approach yields mapping function from A to B and back. This method pro-
vides matching between every sample and a synthetic image in the target domain (which generally
does not correspond to an actual target domain sample), it therefore does not provide exact corre-
spondences between the A and B domain images.

3.2 EXEMPLAR-BASED MATCHING

In the previous section, we described a distributional approach for mapping A domain image x to
an image TAB(x) that appears to come from the B domain. In this section we provide a method for
providing exact matches between domains.

Let us assume that for every A domain image xi there exists an analogous B domain image ymi
.

Our task is find the set of indices mi. Once the exact matching is recovered, we can also train a fully
supervised mapping function TAB , and thus obtain a mapping function of the quality provided by
supervised method.

Let αi,j be the proposed match matrix between B domain image yj and A domain image xi, i.e.,
every xi matches a mixture of all samples in B, using weights αi,:, and similarly for yj for a weigh-
ing using α:,j of the training samples from A. Ideally, we should like a binary matrix with αi,j = 1
for the proposed match and 0 for the rest. This task is formally written as:

Lp(
∑
i

αi,jTAB(xi), yj), (7)

where Lp is a “perceptual loss”, which is based on some norm, a predefined image representation, a
Laplacian pyramid, or otherwise. See Sec. 3.4.

The optimization is continuous over TAB and binary programming over αi,j . Since this is compu-
tationally hard, we replace the binary constraint on α by the following relaxed version:∑

i

αi,j = 1 (8)

αi,j ≥ 0 (9)

In order to enforce sparsity, we add an entropy constraint encouraging sparse solutions.

Le =
∑
i,j

−αi,j · log(αi,j) (10)

The final optimization objective becomes:

minTAB ,αi,j
LTexemplar

=
∑
j

Lp(
∑
i

αi,jTAB(xi), yj) + kentropy · Le (11)

The positivity α ≥ 0 and
∑
i αi,j = 1 constraints are enforced by using an auxiliary variable β and

passing it through a Softmax function.

αi,j = Softmaxi(βi,j) (12)

The relaxed formulation can be optimized using SGD. By increasing the significance of the entropy
term (increasing kentropy), the solutions can converge to the original correspondence problem and
exact correspondences are recovered at the limit.

Since α is multiplied with all mapped examples TAB(x), it might appear that mapping must be
performed on all x samples at every batch update. We have however found that iteratively updating
TAB for N epochs, and then updating β for N epochs (N = 10) achieves excellent results. Denote
the β (and α) updates- α iterations and the updates of TAB - T iterations. The above training scheme
requires the full mapping to be performed only once at the beginning of the α iteration (so once in
2N epochs).
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3.3 AN-GAN

Although the examplar-based method in Sec. 3.2 is in principle able to achieve good matching, the
optimization problem is quite hard. We have found that a good initialization of TAB is essential for
obtaining good performance. We therefore present AN-GAN - a cross domain matching method that
uses both exemplar and distribution based constraints.

The AN-GAN loss function consists of three separate constraint types:

1. Distributional loss LTdist
: The distributions of TAB(x) matches y and TBA(y) matches x

(Eq. 3).
2. Cycle loss LTcycle

: An image when mapped to the other domain and back should be un-
changed (Eq. 4).

3. Exemplar loss LTexemplar
: Each image should have a corresponding image in the other

domain to which it is mapped (Eq. 11).

The AN-GAN optimization problem is given by:
min

TAB ,TBA,αi,j

LT = LTdist
+ γ · LTcycle

+ δ · LTexemplar
(13)

The optimization also adversarially trains the discriminators DA and DB as in equation Eq. 6.

Implementation: Initially β are all set to 0 giving all matches equal likelihood. We use an initial
burn-in period of 200 epochs, during which δ = 0 to ensure that TAB and TBA align the distribution
before aligning individual images. We then optimize the examplar-loss for one α-iteration of 22
epochs, one T -iteration of 10 epochs and another α-iteration of 10 epochs (joint training of all
losses did not yield improvements). The initial learning rate for the exemplar loss is 1e − 3 and it
is decayed after 20 epochs by a factor of 2. We use the same architecture and hyper-parameters as
CycleGAN (Zhu et al., 2017) unless noted otherwise. In all experiments the β parameters are shared
between the two mapping directions, to let the two directions inform each other as to likelihood of
matches. All hyper-parameters were fixed across all experiments.

3.4 LOSS FUNCTION FOR IMAGES

In the previous sections we assumed a ”good” loss function for determining similarity between
actual and synthesized examples. In our experiments we found that Euclidean or L1 loss functions
were typically not perceptual enough to provide good supervision. Using the Laplacian pyramid loss
as in GLO (Bojanowski et al., 2017) does provide some improvement. The best performance was
however achieved by using a perceptual loss function. This was also found in several prior works
(Dosovitskiy & Brox, 2016), (Johnson et al., 2016), (Chen & Koltun, 2017).

For a pair of images I1 and I2, our loss function first extracts VGG features for each image, with
the number of feature maps used depending on the image resolution. We use the features extracted
by the the second convolutional layer in each block, 4 layers in total for 64X64 resolution images
and five layers for 256X256 resolution images. We additionally also use the L1 loss on the pixels to
ensure that the colors are taken into account. Let us define the feature maps for images I1 and I2 as
φm1 and φm2 (m is an index running over the feature maps). Our perceptual loss function is:

Lp(I1, I2) =
1

NP
L1(I1, I2) +

∑
m

1

Nm
L1(φ

m
1 , φ

m
1 ) (14)

WhereNP is the number of pixels andNm is the number of features in layerm. We argue that using
this loss, our method is still considered to be unsupervised matching, since the features are available
off-the-shelf and are not tailored to our specific domains. Similar features have been extracted using
completely unsupervised methods (see e.g. (Donahue et al., 2016))

4 EXPERIMENTS

To evaluate our approach we conducted matching experiments on multiple public datasets. We have
evaluated several scenarios: (i) Exact matches: Datasets on which all A and B domain images have
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Table 1: A→ B / B → A top-1 accuracy for exact matching.
Method Facades Maps E2S E2H

Unmapped− Pixel 0.00/0.00 0.00/0.00 0.06/0.00 0.11/0.00
Unmapped− V GG 0.13/0.00 0.00/0.00 0.09/0.06 0.02/0.04
CycleGAN − Pixel 0.00/0.41 0.01/0.41 0.02/0.20 0.01/0.00
CycleGAN − V GG 0.51/0.34 0.02/0.47 0.21/0.31 0.19/0.00
α iterations only 0.76/0.91 0.83/0.73 0.52/0.86 0.74/0.76
AN −GAN 0.97/0.98 0.87/0.87 0.89/0.98 0.94/0.91

exact corresponding matches. In this task the goal is to recover all the exact matches. (ii) Partial
matches: Datasets on which some A and B domain images have exact corresponding matches.
In this task the goal is to recover the actual matches and not be confused by the non-matching
examples. (iii) Inexact matches: Datasets on which A and B domain images do not have exact
matches. In this task the objective is to identify qualitatively similar matches. (iv) Inexact point
cloud matching: finding the 3D transformation between points sampled for a reference and target
object. In this scenario the transformation is of dimensionality 3X3 and the points do not have exact
correspondences.

We compare our method against a set of other methods exploring the state of existing solutions to
cross-domain matching:

Unmapped − Pixel: Finding the nearest neighbor of the source image in the target domain using
L1 loss on the raw pixels.

Unmapped − V GG: Finding the nearest neighbor of the source image in the target domain using
VGG feature loss (as described in Sec. 3.4. Note that this method is computationally quite heavy due
to the size of each feature. We therefore randomly subsampled every feature map to 32000 values,
we believe this is a good estimate of the performance of the method.

CycleGAN −Pixel: Train Eqs. 5, 6 using the authors’ CycleGAN code. Then use L1 to compute
the nearest neighbor in the target set.

CycleGAN − V GG: Train Eqs. 5, 6 using the authors’ CycleGAN code. Then use VGG loss to
compute the nearest neighbor in the target set. The VGG features were subsampled as before due to
the heavy computational cost.

α iterations only: Train AN − GAN as described in Sec. 3.3 but with α iterations only, without
iterating over TXY .

AN −GAN : Train AN −GAN as described in Sec. 3.3 with both α and TXY iterations.

4.1 EXACT MATCHING EXPERIMENTS

We evaluate our method on 4 public exact match datasets:

Facades: 400 images of building facades aligned with segmentation maps of the buildings
(Radim Tyleček, 2013).

Maps: The Maps dataset was scraped from Google Maps by (Isola et al., 2017). It consists of aligned
Maps and corresponding satellite images. We use the 1096 images in the training set.

E2S: The original dataset contains around 50K images of shoes from the Zappos50K dataset (Yu &
Grauman, 2014), (Yu & Grauman). The edge images were automatically detected by (Isola et al.,
2017) using HED ((Xie & Tu, 2015)).

E2H: The original dataset contains around 137k images of Amazon handbags ((Zhu et al., 2016)).
The edge images were automatically detected using HED by (Isola et al., 2017).

For both E2S and E2H the datasets were randomly down-sampled to 2k images each to accommo-
date the memory complexity of our method. This shows that our method works also for moderately
sized dataset.
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4.1.1 UNSUPERVISED EXACT MATCH EXPERIMENTS

In this set of experiments, we compared our method with the five methods described above on the
task of exact correspondence identification. For each evaluation, both A and B images are shuffled
prior to training. The objective is recovering the full match functionmi so that xi is matched to ymi .
The performance metric is the percentage of images for which we have found the exact match in the
other domain. This is calculated separately for A→ B and B → A.

The results are presented in Table. 1. Several observations are apparent from the results: matching
between the domains using pixels or deep features cannot solve this task. The domains used in our
experiments are different enough such that generic features are not easily able to match between
them. Simple mapping using CycleGAN and matching using pixel-losses does improve matching
performance in most cases. CycleGAN performance with simple matching however leaves much
space for improvement.

The next baseline method matched perceptual features between the mapped source images and the
target images. Perceptual features have generally been found to improve performance for image
retrieval tasks. In this case we use VGG features as perceptual features as described in Sec. 3.4.
We found exhaustive search too computationally expensive (either in memory or runtime) for our
datasets, and this required subsampling the features. Perceptual features performed better than pixel
matching.

We also run the α iterations step on mapped source domain images and target images. This method
matched linear combinations of mapped images rather than a single image (the largest α component
was selected as the match). This method is less sensitive to outliers and uses the same β parameters
for both sides of the match (A→ B and B → A) to improve identification. The performance of this
method presented significant improvements.

The exemplar loss alone should in principle recover a plausible solution for the matches between the
domains and the mapping function. However, the optimization problem is in practice hard and did
not converge. We therefore use a distributional auxiliary loss to aid optimization. When optimized
with the auxiliary losses, the exemplar loss was able to converge through α − T iterations. This
shows that the distribution and cycle auxiliary losses are essential for successful analogy finding.

Our full-method AN-GAN uses the full exemplar-based loss and can therefore optimize the map-
ping function so that each source sample matches the nearest target sample. It therefore obtained
significantly better performance for all datasets and for both matching directions.

4.1.2 PARTIAL EXACT MATCHING EXPERIMENTS

In this set of experiments we used the same datasets as above but with M% of the matches being
unavailable This was done by randomly removing images from the A and B domain datasets. In this
scenario M% of the domain A samples do not have a match in the sample set in the B domain and
similarly M% of the B images do not have a match in the A domain. (1−M)% of A and B images
contain exact matches in the opposite domain. The task is identification of the correct matches for
all the samples that possess matches in the other domain. The evaluation metric is the percentage
of images for which we found exact matches out of the total numbers of images that have an exact
match. Apart from the removal of the samples resulting in M% of non-matching pairs, the protocol
is identical to Sec. 4.1.1.

The results for partial exact matching are shown in Table. 2. It can be clearly observed that our
method is able to deal with scenarios in which not all examples have matches. When 10% of samples
do not have matches, results are comparable to the clean case. The results are not significantly lower
for most datasets containing 25% of samples without exact matches. Although in the general case a
low exact match ratio lowers the quality of mapping function and decreases the quality of matching,
we have observed that for several datasets (notably Facades), AN-GAN has achieved around 90%
match rate with as much as 75% of samples not having matches.

4.2 INEXACT MATCHING EXPERIMENT

Although the main objective of this paper is identifying exact analogies, it is interesting to test our
approach on scenarios in which no exact analogies are available. In this experiment, we qualitatively
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Table 2: Matching (top-1) accuracy for both directionsA→ B /B → AwhereM% of the examples
do not have matches in the other domain. This is shown for a method that performs only α iterations
and for the full AN −GAN method.

Experiment Dataset

M% Method Facades Maps E2S E2H

0% α iteration only 0.76/0.91 0.83/0.73 0.52/0.86 0.74/0.76
0% AN −GAN 0.97/0.98 0.87/0.87 0.89/0.98 0.94/0.91

10% α iteration only 0.86/0.71 0.79/0.66 0.73/0.81 0.85/0.75
10% AN −GAN 0.96/0.96 0.86/0.88 0.99/0.99 0.93/0.84

25% α iteration only 0.73/0.70 0.77/0.67 0.66/0.87 0.83/0.87
25% AN −GAN 0.93/0.94 0.82/0.84 0.84/0.81 0.83/0.87

(a) (b) (c) (d)

Figure 2: Inexact matching scenarios: Three examples of Shoes2Handbags matching. (a) Source
image. (b) AN-GAN analogy. (c) DiscoGAN + α iterations. (d) output of mapping by DiscoGAN.

evaluate our method on finding similar matches in the case where an exact match is not available. We
evaluate on the Shoes2Handbags scenario from (Kim et al., 2017). As the CycleGAN architecture
is not effective at non-localized mapping we used the DiscoGAN architecture (Kim et al., 2017) for
the mapping function (and all of the relevant hyper-parameters from that paper).

In Fig. 2 we can observe several analogies made for the Shoes2Handbags dataset. The top example
shows that when DiscoGAN is able to map correctly, matching works well for all methods. However
in the bottom two rows, we can see examples that the quality of the DiscoGAN mapping is lower.
In this case both the DiscoGAN map and DiscoGAN + α iterations present poor matches. On the
other hand AN −GAN forced the match to be more relevant and therefore the analogies found by
AN −GAN are better.

4.3 APPLYING A SUPERVISED METHOD ON TOP OF AN-GAN’S MATCHES

We have shown that our method is able to align datasets with high accuracy. We therefore suggested
a two-step approach for training a mapping function between two datasets that contain exact matches
but are unaligned: (i) Find analogies using AN −GAN , and (ii) Train a standard mapping function
using the self-supervision from stage (i).

For the Facades dataset, we were able to obtain 97% alignment accuracy. We used the alignment
to train a fully self-supervised mapping function using Pix2Pix (Isola et al., 2017). We evaluate on
the facade photos to segmentations task as it allows for quantitative evaluation. In Fig. 3 we show
two facade photos from the test set mapped by: CycleGAN, Pix2Pix trained on AN-GAN matches
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(a) (b) (c) (d) (e)

Figure 3: Supervised vs unsupervised image mapping: The supervised mapping is far more accu-
rate than unsupervised mapping, which is often unable to match the correct colors (segmentation
labels). Our method is able to find correspondences between the domains and therefore makes the
unsupervised problem, effectively supervised. (a) Source image. (b) Unsupervised translation using
CycleGAN. (c) A one to one method (Pix2Pix) as trained on AN-GAN’s matching, which were
obtained in an unsupervised way. (d) Fully supervised Pix2Pix mapping using correspondences. (e)
Target image.

Table 3: Facades→ Labels. Segmentation Test-Set Accuracy.
Method Per-Pixel Acc. Per-Class Acc. Class IOU

CycleGAN 0.425 0.252 0.163
Pix2Pix with An−GAN matches 0.535 0.366 0.258
Pix2Pix with supervision 0.531 0.358 0.250

and a fully-supervised Pix2Pix approach. We can see that the images mapped by our method are of
higher quality than CycleGAN and are about the fully-supervised quality. In Table. 3 we present a
quantitative comparison on the task. As can be seen, our self-supervised method performs similarly
to the fully supervised method, and much better than CycleGAN.

We also show results for the edges2shoes and edges2handbags datasets. The supervised stage uses
a Pix2Pix architecture, but only L1 loss (rather than the combination with cGAN as in the paper –
L1 only works better for this task). The test set L1 error is shown in Tab. 4. It is evident that the use
of an appropriate loss and larger architecture enabled by the ANGAN-supervision yields improved
performance over CycleGAN and is competitive with full-supervision.

4.4 POINT CLOUD MATCHING

We have also evaluated our method on point cloud matching in order to test our method in low
dimensional settings as well as when there are close but not exact correspondences between the
samples in the two domains. Point cloud matching consists of finding the rigid 3D transformation
between a set of points sampled from the reference and target 3D objects. The target 3D object is a

Table 4: Edge Prediction Test-Set L1 Error.
Dataset Edges2Shoes Edges2Handbags

CycleGAN 0.049 0.077
Pix2Pix with An−GAN matches 0.039 0.056
Pix2Pix with supervision 0.039 0.057
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Table 5: Evaluation of the point cloud alignment success probability of our method and CycleGAN
Rotationangle CycleGAN Ours

0-30 0.12000 1.00000
30-60 0.12500 1.00000
60-90 0.11538 0.88462
90-120 0.07895 0.78947
120-150 0.05882 0.64706
150-180 0.10000 0.76667

transformed version of the model and the sampled points are typically not identical between the two
point clouds.

We ran the experiments using the Bunny benchmark, using the same setting as in (Vongkulbhisal
et al., 2017). In this benchmark, the object is rotated by a random 3D rotation, and we tested the
success rate of our model in achieving alignment for various ranges of rotation angles. For both
CycleGAN and our method, the following architecture was used. D is a fully connected network
with 2 hidden layers, each of 2048 hidden units, followed by BatchNorm and with Leaky ReLU
activations. The mapping function is a linear affine matrix of size 3X3 with a bias term. Since in
this problem, the transformation is restricted to be a rotation matrix, in both methods we added a loss
term that encourages orthonormality of the weights of the mapper. Namely, ‖WWT − I‖, where
W are the weights of our mapping function.

Tab. 5 depicts the success rate for the two methods, for each rotation angle bin, where success is
defined in this benchmark as achieving an RMSE alignment accuracy of 0.05.

Our results significantly outperform the baseline results reported in (Vongkulbhisal et al., 2017)
at large angles. Their results are given in graph form, therefore the exact numbers could not be
presented in Tab. 5. Inspection of the middle column of Fig.3 in (Vongkulbhisal et al., 2017) will
verify that our method performs the best for large transformations. We therefore conclude that our
method is effective also for low dimensional transformations and well as settings in which exact
matches do not exist.

5 CONCLUSION

We presented an algorithm for performing cross domain matching in an unsupervised way. Previous
work focused on mapping between images across domains, often resulting in mapped images that
were too inaccurate to find their exact matches. In this work we introduced the exemplar constraint,
specifically designed to improve match performance. Our method was evaluated on several public
datasets for full and partial exact matching and has significantly outperformed baseline methods.
It has been shown to work well even in cases where exact matches are not available. This paper
presents an alternative view of domain translation. Instead of performing the full operation end-to-
end it is possible to (i) align the domains, and (ii) train a fully supervised mapping function between
the aligned domains.

Future work is needed to explore matching between different modalities such as images, speech and
text. As current distribution matching algorithms are insufficient for this challenging scenario, new
ones would need to be developed in order to achieve this goal.
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