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Abstract

Training large-scale image captioning (IC)001
models demands access to a rich and diverse002
set of training examples that are expensive to003
curate both in terms of time and man-power.004
Instead, alt-text based captions gathered from005
the web is a far cheaper alternative to scale006
with the downside of being noisy. Recent007
modeling approaches to IC often fall short in008
terms of performance in leveraging these noisy009
datasets in favor of clean annotations. We010
address this problem by breaking down the011
task into two simpler, more controllable tasks012
– skeleton prediction and skeleton-based cap-013
tion generation. Specifically, we show that014
sub-selecting content words as skeletons helps015
in generating improved and denoised captions016
when leveraging rich yet noisy alt-text–based017
uncurated datasets. We also show that the018
predicted English skeletons can further cross-019
lingually be leveraged to generate non-English020
captions, and present experimental results cov-021
ering caption generation in French, Italian,022
German, Spanish and Hindi. We also show023
that skeleton-based prediction allows for bet-024
ter control of certain caption properties, such025
as length, content, and gender expression, pro-026
viding a handle to perform human-in-the-loop027
interpretable semi-automatic corrections.028

1 Introduction029

In the last demi-decade, most of the NLP fields030

ventured into reaping the benefits of utilizing031

large scale raw data (uncurated) from web-crawls.032

This trend resonated with new uncurated image-033

captioning datasets like Conceptual Captions034

(Sharma et al., 2018). While this uncurated alt-035

texts are superior in terms of size and diversity in036

the dataset, they are inferior to the well curated037

datasets (Lin et al., 2014; Wang et al., 2019b) in038

terms of noisiness in the captions. The content in039

the alt-text for the image is often distorted in favor040

of the intent or the context in which the image is041

presented. For example, the ground truth alt-text042

En: custom posters for a wedding .

Hi: यह लेख शीषर्षक के लए छव है 
(Translation: This is the image for the article 
title)

It: persona ha creato un nuovo libro  
(Translation: person created a new book)

En: collection of books on display

Hi: पुस्तक का चयन 
(Translation: selection of books)

It: una raccolta di alcuni libri 
(Translation: a collection of some books)

Baseline Image 
Captioning

Skeleton Prediction

“collection”
“book”

Skeleton Based 
Image Captioning

Proposed Approach

Figure 1: Overview of our approach: (1) skeleton prediction
& (2) skeleton based IC; compared to conventional IC. Output
captions shown in English (En), Hindi (Hi) and Italian (It).

caption for a house is ‘house for sale’ instead of 043

‘front view of a house’. This noise hinders exploit- 044

ing these very large datasets to the fullest. 045

We present a simple two-staged approach by 046

separating the content selection from caption gen- 047

eration as illustrated in Figure 1. In contrast to 048

most IC approaches (Hossain et al., 2018; Sharma 049

et al., 2020), which hallucinate incorrect content 050

from noisy training data (i.e ‘custom posters’ and 051

‘wedding’), our approach first focuses on denoising 052

the content words (i.e ‘collection’ and ‘book’) that 053

are further used to generate a relevant caption. We 054

refer to this sequence of concept words that are key 055

pieces of information consistent with the image as 056

a skeleton. Sub-selecting skeleton words that curb 057

noisiness are automatically extracted from the alt- 058

text captions. We focus on language-based skele- 059

tons that are derived from captions (Kuznetsova 060

et al., 2014; Fang et al., 2015; Dai et al., 2018), 061

rather than expensive visual-based skeletons de- 062

rived from image, e.g., scene graphs, (Wang et al., 063

2019a; Yang et al., 2019), which are hard to scale. 064

More concretely, we introduce an intermediate task 065

of distantly supervised skeleton prediction in the 066

end to end IC pipeline: The end-to-end task of 067

IC is (fθ : I→ C) is broken down into a dual- 068

staged pipeline: skeleton prediction (fθ : I→ S) 069

and skeleton based captioning (fφ : I,S→ C), 070

where I is the image, S is the skeleton, and C is 071

the caption (Kulkarni et al., 2013; Li et al., 2011; 072
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Elliott and Keller, 2013; Fang et al., 2015). We073

present a comparison between encoding, decoding074

and autoencoding these skeletons. As such, our075

skeleton prediction solution addresses the semantic076

gap problem (Li and Chen, 2018; Yao et al., 2018).077

We illustrate the effectiveness of this approach078

on uncurated noisy datasets in the following ways.079

(1) We demonstrate that sub-selecting content080

words with an intermediate skeleton prediction task081

denoises content thereby leading to better human082

evaluation results on captioning. We also conduct083

an extensive analysis on multimodal discourse re-084

lations to understand the reasons for this improve-085

ment (Alikhani et al., 2020) being generation of086

more visible captions. (2) Scaling the large un-087

curated datasets to other languages is still a bot-088

tleneck. We show the transferability of learning089

English skeletons to improve caption generation in090

other languages – English, French, Italian, German,091

Spanish and Hindi. (3) The predicted skeletons092

qualitatively demonstrate other potential benefits,093

such as controllability of content, length, and gen-094

der via a natural language–based interpretable in-095

terface, which enables one to additionally interact096

with the generation process.097

2 Related Work098

Content selection from vision: There is a rich099

body of work in improving content selection for IC100

(Feng et al., 2019), mainly focused on scene graph101

based skeletons (Gu et al., 2019; Kim et al., 2019;102

Chen et al., 2020a; Yang et al., 2019). However,103

these annotations with objects and relations are104

expensive, thereby constraining the scaling up to105

multiple languages and diverse concepts. Our work106

delegates this responsibility of identifying content107

to the language modality by using inexpensive off108

the shelf tools for weak supervision.109

Content selection from language: An orthogo-110

nal body of work relies on skeletons derived from111

language using hierarchical phrase modeling (Tan112

and Chan, 2016; Dai et al., 2018), semantic at-113

tention (You et al., 2016), attribute LSTM (Yao114

et al., 2017), skeleton based attribute filling (Wang115

et al., 2017), adaptively merging topic and visual116

information (Liu et al., 2018), multimodal flow117

(Li et al., 2019a) and concept guided attention (Li118

et al., 2019b). Note that all these prior works uti-119

lize human curated gold datasets such as COCO120

(Lin et al., 2014) and Flickr30k (Plummer et al.,121

2015) with clean coupling between captions and122

images. However, scaling them to large and diverse 123

concepts is expensive. We utilize uncurated silver 124

standard datasets with the advantages of richness 125

and diversity at the cost of noisy text. Hence we 126

show the effectiveness of a dual staged approach 127

that denoises the captions by skeleton prediction. 128

Cross-lingual and controllable captions: Past 129

work on cross-lingual captioning focused on trans- 130

lation (Barrault et al., 2018), fluency guidance (Lan 131

et al., 2017), using large datasets (Yoshikawa et al., 132

2017) and more recently by pivoting on source lan- 133

guage captions (Thapliyal and Soricut, 2020; Gu 134

et al., 2018). We go a step further and pivot on 135

the predicted English skeleton to improve multi- 136

lingual captions due to the dearth of similar off 137

the shelf tools in other languages. We qualitatively 138

explore controlling length via skeletons which was 139

explored before via adding length to decoder (Luo 140

and Shakhnarovich, 2020; Cornia et al., 2019). 141

Other controllable aspects include stylistic captions 142

(Guo et al., 2019; Mathews et al., 2018) language 143

(Tsutsui and Crandall, 2017) which are potential 144

extensions to our unpaired captioning work. 145

Interpretable Natural language skeletons: De- 146

spite remarkable advancements of large scale end- 147

to-end models, recent work identifies spurious cor- 148

relations in the datasets that potentially leads to 149

high performances (Geva et al., 2019; Tsuchiya, 150

2018). To mitigate this, researchers began dissect- 151

ing intermediate components of the models with 152

the goal of interpretability to humans (Wiegreffe 153

and Pinter, 2019; Thorne et al., 2019; Lipton, 2018) 154

as opposed to implicit explanation (Xu et al., 2015). 155

Our work can also be viewed as an instance of 156

explaining captions through skeleton predictions 157

similar to recent works on rationalizing answer pre- 158

dictions for question answering (Latcinnik and Be- 159

rant, 2020). We view this interpretable intermediate 160

layer as a peek into the model predictions helping 161

us study more subtle but crucial dataset attributes, 162

such as gender bias and provide human-in-the-loop 163

interventions to improve the final caption. 164

3 Our Approach 165

IC requires paired examples of images and captions 166

(I, C), where c ∈ C correspond to tokens in a cap- 167

tion (c1, c2, ..., cm), which are often expensive to 168

gather. In contrast, our approach uses intermediate 169

skeletons as an effective way to leverage noisy, un- 170

curated alt-text based captions to train a model to 171

generate more visually informative captions. An 172
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Figure 2: Model architecture of our skeleton based captioning along with text as side attention mechanism between visual (v)
and textual (w) modalities. The skeleton is present optionally in the encoder, decoder or both based on our three approaches.

overview of both the stages is presented in Fig. 1.173

3.1 Distantly Supervised Skeletons174

Since gold standard skeleton words are usually not175

available for IC datasets, we use distant supervision176

to get these labels. We retrieve syntax annotations177

(specifically parts-of-speech (POS) and word lem-178

mas), using the Google Cloud Natural Language179

API 1 over the caption texts. We use these annota-180

tions to experiment with the following four variants181

of skeletons.182

1. Nouns & Verbs: This includes a sequence of183

lemmas of all the nouns and verbs in a caption.184

2. Salient Nouns & Verbs: Saliency of nouns and185

verbs is determined using tf-idf scores, treating186

each caption as a document. For each caption, the187

top 2 highest scoring noun and verb tokens (lemma)188

are selected. This examines if saliency contributes189

towards effectiveness of the skeleton.190

3. Nouns: This includes lemmas of all the nouns.191

This helps us untangle the roles of nouns vs verbs192

in the effectiveness of the skeleton.193

4. Iteratively refined captions: Under this condi-194

tion, the output of the baseline Img2Cap model195

serves as the ‘skeleton’ for the next skeleton-based196

captioning stage. The rationale behind this skeleton197

is to compare the utility of sub-selecting skeleton198

words based on POS in denoising caption content,199

compared to a full caption prediction.200

We ignore skeleton tokens with a frequency of201

less than 50 in our training data to reduce noise.202

This subselection of content based on POS tags203

and downscaling of vocabulary helps in retaining204

1https://cloud.google.com/natural-language

important words as skeletons resulting in a label 205

size of 5k. 206

3.2 Model 207

Baseline (Img2Cap): We adopt an encoder- 208

decoder (fθ : I→ C) IC model based on Trans- 209

formers (Vaswani et al., 2017) following recent 210

state-of-the-art approaches (Sharma et al., 2018; 211

Yu et al., 2019; Changpinyo et al., 2019; Huang 212

et al., 2019; Cornia et al., 2020). Our model uses 213

the IC framework introduced in (Changpinyo et al., 214

2019). Inspired by the bottom-up and top-down 215

approach (Anderson et al., 2018), the input image I 216

is represented as a bag of features, containing one 217

global and 16 regional, fine-grained feature vectors. 218

The regional features correspond to the top 16 box 219

proposals from a Faster-RCNN (Ren et al., 2015) 220

object detector trained on Visual Genome (Krishna 221

et al., 2017), with a ResNet101 (He et al., 2016) 222

that is trained on JFT (Hinton et al., 2015) and 223

fine-tuned on ImageNet (Russakovsky et al., 2015). 224

We featurize both global and regional boxes us- 225

ing Graph-RISE (Juan et al., 2019, 2020). We 226

make the following changes to the state of the art 227

model (Changpinyo et al., 2019), leading to a 9- 228

point improvement on the dev CIDEr on CC (1.00 229

vs. 0.91) (improved baseline): 1) encode the cor- 230

ners and the area of the bounding boxes to fuse 231

positional information with visual features, (Lu 232

et al., 2019a), and 2) encode each feature vector 233

with a Linear-ReLU-LayerNorm-Linear instead of 234

Linear embedding layer, where LayerNorm is layer 235

normalization (Ba et al., 2016). 236

Dual Staged Modeling: In this approach, we 237

introduce an intermediate natural-language inter- 238
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pretable skeleton S between I and C. This S is239

composed of a sequence of lemmas, using a sub-240

set of content words (s1, s2, ...sn) from c, where241

n < m. This reduces the output complexity of242

fθ : I→ C by simplifying and denoising the noisy243

C to S. Hence, the task of IC is decomposed into244

the first stage of predicting skeleton concepts and245

the second stage of caption generation using the246

intermediate skeleton.247

Stage 1: Skeleton Prediction (Img2Ske): The248

first stage (fθ : I→ S) is to predict one of the 4249

variants of the skeleton words (from §3.1) from250

the images. We experiment with both classification251

and generation paradigm that respectively do not252

possess and possess linear conditioning of the pre-253

dicted skeleton word on the following words. We254

observe that the generation based skeleton predic-255

tion results in skeleton words that co-occur in a sen-256

tence. In contrast, the classification approach pre-257

dicts skeleton words relevant to an image like per-258

son, man, singer that do not necessarily co-occur259

in a caption. This is detailed in §D of Appendix.260

To improve co-occurrence of the predicted skele-261

ton words, we generate the skeleton words Ŝ au-262

toregressively where each word is conditioned on263

the previously predicted skeleton word. This con-264

ditional dependence models word co-occurrence265

more tightly as p(ŝj |I, ŝ<j), making the skeleton a266

sequence of words. The model is optimized with267

cross-entropy loss, trained using teacher forcing.268

An attractive property is that the same architecture269

can be used to decode both the skeleton S and the270

caption C. Moreover, the output tokens predicted271

in this stage are interpretable, and they are used to272

condition the second stage of our model.273

Stage 2: Skeleton-based Caption Generation:274

The second stage of training uses both images and275

skeletons to generate captions fφ : I,S→ C. We276

experiment with 3 variants of conditioning pre-277

dicted skeletons via encoding, decoding and au-278

toencoding as shown in the overall model architec-279

ture in Fig. 2. The inputs, outputs for each stage280

and the conditioning of attention for transformer281

decoder are compared in Table 1.282

2a. SkeEncoding: The predicted skeleton from283

the previous stage is used as input to the encoder.284

The image encoding and skeleton embeddings are285

fused with a unidirectional attention mechanism,286

called text-as-side (notated as g). In other words,287

we use the text representation as “side information”288

Stage 1 Stage 2 ConditioningInput Output Input Output
SkeEnc I S′ I+S′ C′ ĉτ ∼

∏
t Pr(ĉt|ĉ<t, g(zI, Ŝ))

SkeAE I S′ I + S′ S′ + C′ ĉτ ∼
∏
t Pr(ĉtk|[Ŝ; ĉ<t], g(zI; Ŝ))

SkeDec (no Stage 1) I S′ + C′ ĉτ ∼
∏
t Pr(ĉtk|[Ŝ; ĉ<t], zI)

Table 1: The inputs and outputs of the different models.
In iterative refinement, S′ is replaced by C′.

— each transformed image feature unit can attend to 289

other image feature units (self-attention) and text 290

(cross-attention), but text cannot attend to image. 291

As shown in Fig. 2, this model has the dotted box 292

in the Transformer encoder side, with the textual 293

query, key, value (Qw, Kw, Vw) and the visual 294

counterpart attending to textual or visual key and 295

value (Kv+Kw, Vv+Vw) with a visual query (Qv). 296

We focus on the text-as-side attention mechanism 297

as our preliminary results indicate that it leads to 298

qualitatively better captions than image-text co- 299

attention (Lu et al., 2019b). 300

2b. SkeDecoding: The skeleton and caption are 301

concatenated and predicted by the same decoder. 302

This is not a two-staged model, as the model is 303

trained to predict both skeleton and caption auto- 304

regressively. The model first predicts the skele- 305

ton words conditioned on the previously generated 306

skeleton words, and then every token in the de- 307

coded caption attends to the entire predicted skele- 308

ton as well as the tokens of the caption decoded 309

until that time step. The dotted box in Transformer 310

decoder of Fig. 2 depicts this approach. 311

2c. SkeAE: To bring both the above models to- 312

gether, we simultaneously encode and decode the 313

predicted skeleton. This brings the benefits of bidi- 314

rectional attention on the input features (image and 315

predicted skeleton words) and autoregressive at- 316

tention on the re-predicted skeleton words while 317

generating the caption. In this case, both the dot- 318

ted boxes on encoder and decoder sides in Fig. 2 319

are active. The encoding mechanism follows the 320

g function and the decoder prepends the caption 321

generation task with the predicted skeleton. 322

4 Experiments and Results 323

Hyperparameters: Our transformer model uses 324

6 encoder and 6 decoder layers (unless specified 325

otherwise), with 8 heads for multiheaded attention. 326

Captions are subword-tokenized with a vocab size 327

of 8,300. The models are optimized with Adam 328

and an initial learning rate of 3.2e−5. We use mini- 329

batches of size 128, and train for 1M steps. The 330
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token embedding and filter sizes are both 512.331

4.1 Datasets332

Conceptual Captions (CC): CC (Sharma et al.,333

2018) is a large-scale dataset of 3.3M image-334

caption pairs covering a large variety of processed335

alt-texts from the web. The focus of this work is336

on denoising noisy captioning datasets (web-scale,337

not human verified). Hence our experiments are fo-338

cused on CC, which is a step closer to having large339

and diverse alt-texts from the web at the cost of340

being noisy. In contrast, other popular datasets like341

COCO (size 120K) (Lin et al., 2014) and Multi30k342

(Elliott et al., 2016) are hand-annotated by humans343

and contain high quality images/captions. As a re-344

source, CC is useful both for measuring progress345

on large-scale automatic captioning (Sharma et al.,346

2018; Changpinyo et al., 2019; Alikhani et al.,347

2020; Thapliyal and Soricut, 2020), as well as pre-348

training data for a variety of vision-and-language349

tasks (Lu et al., 2019b; Chen et al., 2020c; Tan and350

Bansal, 2019; Su et al., 2020; Li et al., 2020).351

Pre-processing: CC might contain a long tail of352

spelling errors and other typos due to the automatic353

curation of the data. Therefore, we perform fre-354

quency based thresholding of the skeleton words355

to abate this noise. We experimented with sev-356

eral values for this hyperparameter and selected a357

minimum occurrence count as 50 that provides the358

desired balance between noise and vocabulary size.359

Multilingual CC: To demonstrate the cross lin-360

gual transferability of our skeletons, we use auto-361

matic caption translations2 for CC, similar to the362

approach in (Thapliyal and Soricut, 2020). Note363

that the skeletons are learned from, and predicted364

in, English (not in the final target language), mak-365

ing English skeleton act as an interlingua. Since366

multilingual captions are all pivoted on English367

skeletons, this nullifies the requirement to 1) collect368

large-scale image-caption pairs in various language,369

and 2) have access to linguistic tools to analyze cap-370

tions in each language. We perform experiments371

on 5 languages – French, Italian, German, Spanish372

and Hindi – which vary in word orders and token373

overlap with the English skeletons.374

Conceptual Captions T2 test set: For human375

evaluations across all languages, we use T2 test376

set used in the Conceptual Captions Challenge3. It377

2We use the Google Cloud Translate API.
3http://www.conceptualcaptions.com/

Iterative Refinement Classification Generation
Precision 35.75 23.22 36.66
Recall 24.29 41.31 24.30
F-score 28.92 29.73 29.23

Table 2: Performance of skeleton prediction stage. Note that
for classification and generation, the skeleton type used is
‘nouns & verbs’.

Model CIDEr
Baseline (SOTA model) 0.91 (Changpinyo et al., 2019)
Impr. Img2Cap 1.00
Impr. Img2Cap (large) 0.99

Skeleton-based Skeleton Type
Nouns & Verbs Nouns only Sal. Nouns & Verbs

SkeEncoding 0.99 0.97 0.94
SkeDecoding 0.99 0.99 0.96
SkeAE 0.99 0.96 0.94

Table 3: Automatic metrics to compare various skeleton
forms. Img2Cap is the baseline (large version refers to 12
encoder and decoder layers). Note that these results use
generation-based skeleton prediction.

comprises of 1K out of domain images from the 378

Open Images Dataset (Kuznetsova et al., 2020). 379

4.2 Automatic Evaluation 380

Skeleton Prediction: The goal of this stage is to 381

extract key skeleton words from the image. We 382

compute precision, recall and F-score as shown in 383

Table 2. With the same labels (skeleton: nouns 384

& verbs), both classification and generation ap- 385

proaches have similar F-scores. However, preci- 386

sion is higher for generation and recall is higher 387

for classification based predictions. Based on both 388

qualitative observations and human judgements, 389

we note that generation approach was better, which 390

shows that a higher precision is favorable in com- 391

parison to recall for this stage. The label size (of 392

skeletons) in Table 2 is approximately 5K. 393

Skeleton-based Caption Generation: We re- 394

port multilingual IC performance of baseline and 395

our dual-stage models using CIDEr in Table 3 (En- 396

glish) and Table 4 (multilingual). Automatic met- 397

rics for captioning are based on surface n-grams, 398

and are not suitable to evaluate when the ground 399

truth captions themselves are noisy. In addition, 400

we find that CIDEr is misleading (Alikhani et al., 401

2020; Sharma et al., 2018; Seo et al., 2020) and 402

does not correlate with human evaluations (§4.3). 403

Multilingual captioning: Note that the skele- 404

tons are always in English, trained using annota- 405

tions over the original English CC dataset. Cross- 406

lingual results on val data of Multilingual CC are 407

presented in Table 4. In addition to the data nois- 408

iness, a reason for slightly lower performance for 409

non-English captions is probably noisy translation 410
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Language Baseline SkeEncoding SkeDecoding SkeAE
French 0.91 0.90 0.89 0.90
Italian 0.90 0.88 0.86 0.87
German 0.74 0.72 0.72 0.73
Spanish 0.92 0.91 0.89 0.91
Hindi 0.85 0.83 0.82 0.82

Table 4: CIDEr scores for skeleton (form: Nouns & Verbs,
prediction approach: generation) conditioned caption genera-
tion for multiple languages.

Model Enc Input CIDEr
PredSke + Img (Paired) 0.99
PredSke (Unpaired) 0.91
GtSke + Img (Paired Headroom) 4.62
GtSke (Unpaired Headroom) 4.48

Table 5: Ablations on val data for unpaired captioning.

artifacts. For example, corresponding caption in411

the Hindi dataset for English caption ‘She is gaz-412

ing at the fall colors’ is ‘vh Egrt� r\go\ kF aor413

d�K rhF h{’ (translation: She is looking at the414

falling colors.) Translation errors (such as ‘fall’415

colors to ‘falling’ colors) introduce noise in the416

non-English datasets. Figure 3 presents an exam-417

ple of output multilingual captions for the baseline418

and our SkeAE approach.419

Unpaired Image Captioning: A natural exten-420

sion to our approach is for the caption generator421

to rely purely on predicted skeleton, and not use422

image features. This is a harder problem, but elimi-423

nates altogether, the need for image-caption pairs424

because the second stage (skeleton to caption) can425

be trained on a large text-only corpus. In this direc-426

tion, within the scope of CC dataset, we investigate427

1) with and without using image features in the sec-428

ond stage, 2) using ground truth skeleton (GTSke)429

to get an estimate of the upper bound on unpaired430

captioning 3) comparing the upper bound to the431

predicted skeleton (PredSke). These results are432

presented in Table 5. When image features are ig-433

nored, CIDEr drops by only 8 points when only434

predicted skeletons are used for caption generation435

compared to the baseline. This initial result shows436

that skeletons are a promising direction towards437

unpaired captioning.438

4.3 Human Evaluations439

Automatic metrics often have been found not to440

correlate well with human scores (Kilickaya et al.,441

2017; Alikhani et al., 2020) and do not fare well442

when ground truth text is noisy. So we conduct ex-443

tensive human evaluations where captions for each444

image are evaluated both in relative preferences445

and absolute scale (Thapliyal and Soricut, 2020).446

As mentioned above, we use the T2 test set of 1000 447

images, each rated by 3 distinct annotators. The 448

interface of this evaluation is displayed in Figure 449

4. While comparing two models side-by-side, they 450

are randomly assigned ‘A’ or ‘B’ in the interface 451

for each image to avoid any rater bias. 452

Relative Rating: For each image we ask the raters 453

to choose the most relevant caption. Comparing 454

Caption A to Caption B, raters can select relative 455

options as shown in the third column in Figure 4. 456

Wins are the percentage of images where at least 457

2 out of 3 annotators voted for caption generated 458

with our approach. Losses are percentage of im- 459

ages where at least 2 out of 3 annotators voted for 460

caption generated with Img2Cap approach. We 461

compute gains in this side by side relative evalua- 462

tion as Gainsrelative = Wins - Losses. 463

Results: Table 6 presents the human ratings for 464

English captions using different skeletons. From 465

this, we observe the following: 466

• Dual Staging helps: Our dual staged models 467

with skeletons (SkeEnc, SkeDec, SkeAE) show 468

gains compared to the improved baseline Img2Cap 469

model. Most notably, it shows that the ‘Nouns 470

& Verbs’ skeletons significantly improves SkeEn- 471

coding model attaining the most significant gain, 472

followed by SkeAE and then SkeDecoding. 473

• Subselecting content words helps: Using the 474

same dual staged SkeEnc model without subse- 475

lecting content words in the form of iterative re- 476

finement does not show any improvement in perfor- 477

mance, supporting the hypothesis that sub-selecting 478

content skeleton from noisy captions improves the 479

overall caption quality. 480

• Cross-lingual skeleton transfer: Table 7 presents 481

our human evaluation scores for captions in other 482

target languages. We observe gains from the 483

skeleton-based approach for 4 out of 5 languages, 484

and only a slight loss for the fifth language, show- 485

ing the effectiveness of cross-lingual transferability 486

of the skeleton words. 487

4.4 Cross-modal Discourse Coherence 488

To understand where the improvements quantified 489

in Table 6 come from, we turn to the notion of dis- 490

course coherence. Alikhani et al. (2020) introduce 491

multimodal discourse coherence relationships be- 492

tween image-caption pairs. For instance, a caption 493

describing visually recognizable aspects of the im- 494

age, such as ‘people’ or ‘cake’, is annotated using 495

a Visible relation; in contrast, a Meta relation cor- 496
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Image Model English French Italian German Spanish Hindi

Baseline

spring is in 
the air

fleurs les plus chères du 
monde
(meaning: most expensive 
flowers in the world)

un campo di tulipani in 
primavera
(meaning: a field of tulips in 
spring)

Frühling ist in der Luft
(meaning: spring is in the 
air)

La primavera está en el aire
(meaning: spring is in the air)

वसंत हवा में है
(meaning: spring is in 
the air)

SkeAE
pred skeleton: 
‘tulip field’

pink tulips 
in a field

tulipes roses dans les jardins
(meaning: pink tulips in the 
garden)

genere biologico in un campo
(meaning: biological genus in 
a field)

ein Feld von rosa Tulpen
(meaning: a field of pink 
tulips)

tulipán en un mar de tulipanes
(meaning: tulip in a sea of 
tulips)

गुलाबी ट्यूलप का एक 
क्षेत्र
(meaning: a field of 
pink tulips)

Figure 3: Captions generated by baseline and our dual staged approach in 6 languages and their corresponding translations.

Caption A: 

a city from the 
trails

Caption B: 

a view of the 
mountains

    A is much better than B

    A is better than B

    A is slightly better than B

    A is about the same as B

    B is slightly better than A

    B is better than A

    B is much better than A

Image Captions Please compare Caption A 
to Caption B

Please select individual ratings 
for each cation

How does Caption A describe 
the image?

     Excellent
     Good
     Acceptable
     Bad
     Not enough information

How does Caption B describe 
the image?

     Excellent
     Good
     Acceptable
     Bad
     Not enough information

Figure 4: Human evaluation interface: We ask raters to: 1)
compare the two captions (relative), 2) give ratings for each
caption (absolute).

responds to a caption containing details regarding497

how/when/where the image was captured, such as498

in ‘warm summer afternoon’, while a Story relation499

implies that the caption describes some potentially500

non-visible context behind the scene depicted in501

the image, such as ‘fifth anniversary’.502

We hypothesize that our multi-stage approach of503

skeleton-based IC results in the generation of more504

captions of Visible type, as the intermediate skele-505

ton predictor is trained to predict nouns and verbs506

from the image. To assess this effect, we train the507

relation classifier described in Sec. 4 of (Alikhani508

et al., 2020), and obtain discourse relation labels509

for captions generated on T2-test images, by both510

the baseline Img2Cap and our SkeEncoding mod-511

els. Table 8 (Counts columns) quantifies the shift512

of relation label distribution towards the Visible co-513

herence relation, confirming our hypothesis. We514

also study the breakdown by coherence relations515

using the results from our human evaluations on516

the English captions. Table 8 (Human Evals col-517

umn) reports this breakdown, indicating that, of518

the 11.01% gains on human evals from Table 6,519

the shift from non-Visible to Visible discourse cap-520

tions is associated with clear increases in prefer-521

ence from the human raters. This is attributable to522

the fact that human raters are more likely to pre-523

fer captions that are in a Visible relation with the524

image, and therefore the shift towards generating525

Visible-type captions can be positively quantified526

in terms of human preference.527

Approach Skeleton Wins Losses Gains
SkeEncoding Nouns & Verbs 39.34 28.33 +11.0
SkeAE Nouns & Verbs 39.34 32.63 +6.7
SkeDecoding Nouns & Verbs 34.83 34.53 +0.3
SkeEncoding Iterative Refinement 19.62 20.52 -1.1

Table 6: Human evaluation scores of different approaches
and skeletons on English (vs the Img2Cap baseline).

Language Wins Losses Gains
French 31.43 29.53 +1.9
Italian 26.13 24.93 +1.2
German 35.23 33.93 +1.3
Spanish 34.03 34.33 -0.3
Hindi 33.13 28.63 +4.5

Table 7: Human evaluation results for skeleton (form: nouns
& verbs, prediction approach: generation) conditioned caption
generation for multiple languages.

Counts Human EvalsBaseline Ours Change
Visible 605 640 +5.79% +10.93%
Meta 245 226 -7.76% +13.06%
Story 129 108 -16.28% +10.08%

Table 8: Analysis of multimodal discourse coherence re-
lations for baseline and our model on T2 dataset. The last
column shows the relative human evaluation gains over base-
line caption of each type. Other relations with small counts
are ignored in the above analysis.

5 Controllability: Qualitative Discussion 528

The dual-stage modeling decomposition brings 529

forth the advantage of increased interpretability 530

and thereby the ability to use the intermediate stage 531

results to control the final caption. We present 532

aspects of caption controllability by altering the 533

skeleton to explore effects on caption length, in- 534

formativeness, and gender specificity. This section 535

discusses the utility of this dual staged model for 536

controllability qualitatively. Instead, we present an 537

empirical study only to semi-automatically control 538

gender specificity in two of the languages. We plan 539

to conduct experiments on comparison with other 540

models (Zheng et al., 2019; Chen et al., 2020b) 541

and automatically selecting different but relevant 542

skeleton words in the future work. 543
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Baseline
caption

magic peace harbour 
heaven

view mountain storm 
darkness

house nest valley 
mountain

property image # 
apartment for people in 
a picturesque village

the magic of 
the colours

the peace of the 
glorious 
landscape

the view from 
the mountains

a dark storm in 
the darkness

a house nestled 
in the valley of 
mountains

a view from the water the magic of 
the lakes

the peace of the 
river

the view from 
the mountains

a dark storm 
on the horizon

the house nestled 
in the valley of 
mountains

Figure 5: Controllability: Effect of guiding the information through skeleton. As observed, the caption incorporates information
from the skeleton that is consistent with the image. For example, in the second column of the top row, we see that peace is
incorporated while harbor and heaven are not. The relevant skeleton words in other columns guide the captions accordingly.

Figure 6: Quantitative relationship between the number of
skeleton words and caption length.

Figure 7: Controllability: Effect of varying the number of
words in the skeleton on the generated caption length.

Effect of length of skeletons on captions: For544

applications that limit the caption lengths due to545

UI restrictions, the ability to control the length is546

important. The length of the skeleton correlates547

with the number of caption words, as shown in548

Figure 6. For 2 or 3 skeleton words, the percent-549

age of captions monotonically decreases with the550

number of caption words, with the mode at 4-word551

captions. Thus, for skeletons of size 2, captions of552

length 4 are much more frequent than captions of553

length 6 or 8. For longer skeletons, we see that the554

mode shifts to the right: with skeletons of size 5,555

the caption length peaks between 8 and 10 words.556

Fig 7 illustrates this qualitatively.557

Effect on gender specificity: Current models of-558

ten make embarrassing mistakes when generating559

captions that mention gender. The availability of560

a skeleton provides a direct handle for human-in-561

the-loop correction of such biases, at a pre-caption-562

generation stage. This is more robust compared563

to caption post-processing, especially for highly564

inflected languages. To illustrate this, we compare565

the number of times ‘man’ appears in the captions566

generated by our baseline versus our dual-stage 567

model after automatically modifying the skeleton 568

(replacing ‘man’ to the gender-neutral word ‘per- 569

son’ in the skeleton). Over the T2 dataset, the 570

baseline caption generates ‘man’ 13 times, and the 571

automatic control mechanism via our model re- 572

duces this by 46% (to 7 occurrences) in English. In 573

Hindi, the equivalent of ‘man’ (aAdmF) is gener- 574

ated 10 times, and it is reduced to a gender neutral 575

word (&yEÄ) by 70% (to 3 occurrences). 576

Effect of guiding information through skeleton: 577

The skeleton acts as a knob enabling the model to 578

describe different attributes of the image. Figure 5 579

presents an example of how varying the skeletons 580

for two different images affect their captions. The 581

words highlighted in green are derived from the 582

skeleton, the ones in blue are image-related words. 583

6 Conclusions 584

Scaling image captioning models practically man- 585

dates training on noisy and uncurated data avail- 586

able on web. Our works presents an approach 587

that denoises learning from such large yet diverse 588

web-scaled data with alt-text annotations by sub- 589

selecting content as intermediate skeletons. We 590

experimentally demonstrate that this approach im- 591

proves the captions significantly in human evalua- 592

tions on out-of-domain test data by converting meta 593

and story like captions to more visually informative 594

captions. We also demonstrate the transferability of 595

oversimplified English skeleton words to improve 596

captions in five other languages. 597

Additionally, the natural-language interpretable 598

skeleton layer gives us an access to better con- 599

trol and perform human-in-the-loop corrections of 600

model predictions. We believe that this is a promis- 601

ing direction towards unpaired IC and also has a 602

strong potential for semi-automatic interventions 603

to correct or interact with the skeletons to better 604

guide the final captions. Appendix G presents a 605

broader impact of our work. 606
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A Comparison of SkeEnc and SkeAE on 1000

multilingual captions 1001

We have discussed the human evaluation scores 1002

of the SkeAE model by using nouns and verbs 1003

as skeletons in Table 7 in the main paper. In ad- 1004

dition to this, we also conducted human evalua- 1005

tion to compare the SkeEnc model with the nouns 1006

and verbs skeletons in comparison to the baseline. 1007

We present this in Table 9. While there are im- 1008

provements in 3 languages, the performance is also 1009

hurt in two languages. However, as we see, by 1010

comparing the performances in Table 7 and Table 1011

9, we observe that SkeAE has a clear advantage 1012

when leveraging the English caption to improve 1013

multilingual captions. This clearly indicates that 1014

channelling the prediction of the skeleton words in 1015

conjuction with the caption itself is enabling the 1016

model decoder to attend to the previously predicted 1017

skeleton words in the same decoder. 1018

Language Wins Losses Gains
French 31.93 31.43 +0.50
Italian 33.13 28.32 +4.81
German 29.43 29.72 -0.30
Spanish 30.53 34.43 -3.90
Hindi 29.93 26.03 +3.90

Table 9: Human evaluation results on SkeEnc model for skele-
ton (form: nouns & verbs, prediction approach: generation)
conditioned caption generation for multiple languages.

B Comparison of Classification and 1019

Generation based Skeleton Prediction 1020

From a preliminary manual analysis, we observed 1021

that the classification based approach to skeleton 1022

prediction faces the problem of predicting words 1023

that are related but are not likely to co-occur within 1024

the same sentence in the caption. This is described 1025

in detail in points 1a and 1b of §3. To validate this 1026

observation, we conducted human evaluation of the 1027

captions generated from classification and genera- 1028

tion based approaches relative to one another. This 1029

setup is different from the rest of the experiments in 1030

human evaluation in the paper which compare any 1031

given model relative to the baseline model. In con- 1032

trast, this study is to compare the generation and 1033
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classification approaches with one another. These1034

results are presented in Table 10.1035

The top-8 highest scoring content words are cho-1036

sen to reduce input noise for the caption generator1037

while improving the recall of concepts. We experi-1038

mented with different values for this and selected1039

8 to be an optimal balance between the content in1040

the skeleton words and the noise.1041

Approach Wins Losses Gains
Generation 39.14 30.23 +8.91

Table 10: Human evaluation results of comparison between
the generation and classification based approaches

We observe that the generation based approach1042

has significant gains of +8.91 over the classification1043

based approach. Most of the prior literature uses1044

the classification based approach to predict content1045

or bag of concepts to assist caption generation. Our1046

hypothesis is that this classification based model1047

helps in end-to-end approaches where the loss from1048

caption generation backpropagates to the classifier1049

model as well. As opposed to this, our model de-1050

couples the prediction of the skeleton or concept1051

words that are further used for caption generation.1052

Hence we believe that suppressing the words that1053

do not co-occur is important in the skeleton pre-1054

diction task and the generation based approach is1055

addressing this problem.1056

C Absolue Ratings1057

In each human evaluation experiment, we also gath-1058

ered absolute ratings of each caption in addition1059

to the relative ratings. The relative ratings are1060

described in §4.3. We also gather absolute rat-1061

ing for each of the 2 captions per image. Each1062

caption is rated as acceptable if at least 2 out of1063

3 annotators rate it as acceptable, good or ex-1064

cellent. Gainsabsolute = Acceptour_approach −1065

Acceptbaseline. However they are not used in this1066

quantitative analysis. We use them only to validate1067

the ratings such that, for example, an “Excellent”1068

rated caption is not annotated as inferior to a “Bad”1069

rated caption for the same image. These ratings are1070

collected to double check the results of the relative1071

rating as well.1072

These scores are presented in Table 11. The top1073

part of the table indicate the absolute ratings in1074

terms of Good and OK performance for multilin-1075

gual captions. The second part of the table show the1076

same scores when baseline model is compared with1077

the corresponding model and skeleton combination.1078

Each model i.e baseline and the proposed model 1079

in each row are rated individually (not relative to 1080

one another). The last two columns indicate the 1081

performance shift of the corresponding proposed 1082

model with respect to the baseline in each of the 1083

Good and OK categories. 1084

Here are some of the observations from these 1085

results: 1086

• Better results of Dual Staged Approach: As 1087

we can see in the last two rows (rows 8 and 9), 1088

our proposed SkeEnc and SkeAE show abso- 1089

lute improvements in both the categories. This 1090

further demonstrates that the proposed dual 1091

staged approach is generating better denoised 1092

captions when trained on noisy uncurated alt- 1093

text–based captions. 1094

• Sub-selecting content words is better: Now 1095

that we saw the improvements with the dual 1096

staged approach, we now investigate whether 1097

sub-selecting content words is important. For 1098

this, we present comparison between rows 7 1099

and 8. Both these models are dual staged with 1100

SkeEnc i.e encoding the predicted skeleton 1101

in the second stage. The only difference is 1102

that row 8 sub-selects all nouns and verbs to 1103

predict the skeletons whereas row 8 includes 1104

all the words from the captions to predict the 1105

skeletons. Row 8 shows better performance 1106

compared to row 7. This means that sub- 1107

selecting content words contribute to the cap- 1108

tion generation in the second stage. 1109

D Img2Ske: Classification based 1110

prediction 1111

Skeleton prediction is posed as a multilabel classi- 1112

fication problem where the prediction of a skeleton 1113

word si is not conditionally dependent on the pre- 1114

diction of another skeleton word sj . The encoder 1115

part remains the same as the baseline followed by 1116

optimization with sigmoid cross entropy between 1117

the skeleton words S and image encoding zI, which 1118

is the representation of the image from the encoder. 1119

Accuracy, A =
1

N

N∑
i=1

∣∣∣Si ∩ Ŝi
∣∣∣∣∣∣Si ∪ Ŝi
∣∣∣ (1) 1120

The skeleton for the second stage is chosen as the 1121

ordered list of top-8 (experimentally selected) high 1122

scoring words after the softmax layer. However, 1123

conditional independence of skeleton words with 1124
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Row no. Language Good Baseline Good SkeAE OK Baseline OK SkeAE Gains in Good Gains in OK
1 French 34.63 35.04 61.36 60.66 +0.40 -0.70
2 Italian 35.14 35.44 60.86 62.56 +0.30 +1.70
3 German 43.64 41.04 67.27 68.07 -2.60 0.80
4 Spanish 48.15 46.55 74.37 74.67 -1.60 +0.30
5 Hindi 59.96 66.17 85.99 87.99 +6.21 +2.00
Row no. Model Good Baseline Good Model OK Baseline OK Model Gains in Good Gains in OK
6 Unpaired 57.36 55.06 86.48 84.28 -2.30 -2.20
7 SkeEnc (Iterative Refinement) 63.76 62.36 87.89 87.49 -1.40 -0.40
8 Nouns and Verbs (SkeEnc) 66.47 63.66 89.39 88.89 +2.81 +0.50
9 Nouns and Verbs (SkeAE) 51.55 56.66 79.68 83.18 + 5.01 +3.40

Table 11: Absolute ratings in percentages in Human Evaluations.

one another ignores the co-occurrences of words1125

capable of composing a sentence or a final caption.1126

For instance, classification predictions are com-1127

posed of words and their synonyms that are highly1128

correlated like {person, man, singer}. These words1129

definitely are relevant to an image but do not all1130

necessarily co-occur in a sentence.1131

Table 2 presents the precision, recall and f-1132

scores of the generation and classification based1133

approaches for skeleton prediction. These metrics,1134

however are misleading because they do not ac-1135

count for synonyms or semantic similarity. For1136

example, ‘food’, ‘meal’, ‘lunch’ and ‘dinner’ are1137

all distinct labels while computing these metrics,1138

and predicting one instead of the other get heavily1139

penalized even though the effect on downstream1140

caption quality would be minimal. This issue gets1141

amplified by the fact that with CC that has a rich1142

vocabulary with words such as electricity ‘pylon’1143

and ‘tower’ referring to the same concept.1144

E Performance drop for Spanish1145

While we have seen improvements in the perfor-1146

mance on multiple languages in human evaluation1147

(Table 6), we observed a drop in the preference for1148

Spanish captions when we use skeletons. Given1149

the similarity in word order between Spanish and1150

English in comparison to Hindi, the lower perfor-1151

mance of Spanish is an interesting result indeed.1152

Our speculation for this is probably due to the di-1153

alect differences. The translation model that we1154

used for Spanish is a mix of ‘Spain Spanish’ and1155

‘Latin American Spanish’, with Latin American1156

Spanish dominating. The evaluation was done by1157

raters from Spain. The dialects are sufficiently dif-1158

ferent that it would impact the absolute scores.1159

F Hyperparameters:1160

This section lists the hyperparameters used for1161

training our models. We used BERT embeddings1162

(Devlin et al., 2019) to initialize the words in skele- 1163

tons in the SkeEnc and SkeAE models. 1164

• Learning rate: We experimented with 3.2e−5, 1165

0.5, 1, 1.5 and 2 as the learning rate. The 1166

experiments presented in the paper have the 1167

learning rate of 1. The learning rate is decayed 1168

at 0.95 decay rate with staircase strategy. 1169

• Number of layers: All our models have 6 1170

layers for encoder and decoder. We also con- 1171

ducted an additional experiment to check if 1172

the model complexity of the end-to-end base- 1173

line can improve the performance in compari- 1174

son to our dual staged approach. To evaluate 1175

this, we doubled the number of layers where 1176

the number of transformer encoder and de- 1177

coder layers are 12 each as presented in the 1178

paper as Impr Img2Cap (large) in Table 3 in 1179

Section 4.2. 1180

• Subtoken Vocabulary: We experimented with 1181

4000 and 8300 sub-token vocabularies. The 1182

experiments in the paper all have 8,300 as 1183

subtoken vocabulary size. 1184

• Batch size: All our experiments include 1185

batchsize of 128 only. 1186

• Number of steps: We train for a maximum of 1187

1 million update steps. 1188

• Maximum Caption Length: In the baseline 1189

and the SkeEnc models, our decoder generates 1190

a maximum words of length 36. In the SkeAE 1191

and SkeDec model, the skeleton words are 1192

prepended to the caption. So we allow the 1193

decoder to generate 72 words in these two 1194

models. 1195

• Warm up and decay steps: The model is 1196

warmed up for 20 epochs and decayed for 25 1197

epochs. 1198
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• Embedding size: We use embedding dimen-1199

sion of 512.1200

• Beam size: We perform beam search in the1201

decoder with a beam size of 5.1202

Here are some of the configuration and modeling1203

choices for training the models:1204

• Attention type: Our experiments include at-1205

tention types of cross-attention and text-as-1206

side as described along with point 2a in Sec-1207

tion 3.1208

• FRCNN Tokens: We use 1601 tokens from1209

the trained FRCNN.1210

G Broader Impact1211

We believe that this work has extensive impact1212

in scaling captioning models to large and noisy1213

datasets thereby exploiting web data and reduce1214

manual annotation efforts. We do not foresee any1215

immediate concerns ethically directly from our1216

work. However, while applying this to datasets1217

crawled from the web, offensive content should1218

be removed. In general, we envisage researchers1219

and practitioners to benefit from our approach es-1220

pecially, when expensive human annotations are1221

not available. More broadly speaking, we also1222

strongly believe that our approach laid blocks for1223

future work on cross-lingually leveraging English1224

skeletons and automatic translations to generate1225

captions for various languages. Hence, when com-1226

bined with unpaired captioning, this can especially1227

benefit captioning in low resource languages.1228
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