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Abstract—We introduce simple, efficient algorithms for
computing a MinHash of a probability distribution, suitable
for both sparse and dense data, with equivalent running
times to the state of the art for both cases. The collision
probability of these algorithms is a new measure of the
similarity of positive vectors which we investigate in detail.
We describe the sense in which this collision probability is
optimal for any Locality Sensitive Hash based on sampling.
We argue that this similarity measure is more useful for
probability distributions than the similarity pursued by
other algorithms for weighted MinHash, and is the natural
generalization of the Jaccard index.

Index Terms—Locality Sensitive Hashing, Retrieval,
MinHash, Jaccard index, Jensen-Shannon divergence

I. INTRODUCTION

MinHashing[1] is a popular Locality Sensitive Hash-
ing algorithm for clustering and retrieval on large
datasets. Its extreme simplicity and efficiency, as well
as its natural pairing with MapReduce and key-value
datastores, have made it a basic building block in
many domains, particularly document clustering[1][2]
and graph clustering[3][4].

Given a finite set U , and a uniformly random per-
mutation π, the map X 7→ argmini∈X π(i) provides a
representation of any subset X of U that is stable under
small changes to X . If X , Y are both subsets of U the
well-known Jaccard index[5] is defined as

J(X,Y ) =
|X ∩ Y |
|X ∪ Y |

Stability of argmini∈X π(i) with respect to X is quan-
tified by

Pr

[
argmin

i∈X
π(i) = argmin

i∈Y
π(i)

]
= J(X,Y )

Practically, this random permutation is generated by
applying some hash function to each i with a fixed
random seed, hence “MinHashing.”

In order to hash objects other than sets, Chum et al.[6]
introduced two algorithms for incorporating weights
in the computation of MinHashes. The first algorithm
associates constant global weights with the set members,
suitable for idf weighting. The collision probability that
results is

∑
i∈X∩Y wi∑
i∈X∪Y wi

. The second algorithm computes

MinHashes of vectors of positive integers, yielding a
collision probability of

JW(x, y) =

∑
i min (xi, yi)∑
i max (xi, yi)

Subsequent work[7][8][9] has improved the efficiency
of the second algorithm and extended it to arbitrary
positive weights, while still achieving JW as the collision
probability.

JW is one of several generalizations of the Jaccard
index to non-negative vectors. It is useful because it is
monotonic with respect to the L1 distance between x and
y when they are both L1 normalized, but it is unnatural
in many ways for probability distributions.

If we convert sets to binary vectors x, y, with xi, yi∈
{0, 1}, then JW(x, y) = J(X,Y ). But if we convert these
vectors to probability distributions by normalizing them
so that xi ∈

{
0, 1

|X|

}
, yi ∈

{
0, 1

|Y |

}
, then JW(x, y) ̸=

J(X,Y ) when |X| ̸= |Y |. The correspondence breaks
and it no longer generalizes the Jaccard index. Instead,
for |X| > |Y |,

JW(x, y) =
|X ∩ Y |

|X \ Y |+ |X|
< J(X,Y ). (1)

As a consequence, switching a system from an un-
weighted MinHash to a MinHash based on JW will
generally decrease the collision probabilities.

Furthermore, JW is insensitive to important differ-
ences between probability distributions. It counts all
differences on an element in the same linear scale
regardless of the mass the distributions share on that
element. For instance, JW ((a, b, c, 0), (a, b, 0, c)) =
JW ((a+ c, b), (a, b+ c)). This makes it a poor choice
when the ultimate goal is to measure similarity using
an expression based in information-theory or likelihood
where having differing support typically results in the
worst possible score.

For a drop-in replacement for the Jaccard index that
treats its input as a probability distribution, we’d like it
to have the following properties.

1) Scale invariant.
2) Not lower than the Jaccard Index when applied to

discrete uniform distributions.
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Algorithm 1: P-MinHash. We require only a single
exponentially distributed hash per nonzero element.

input : Vector x, Seed s
output: Stable sample from x
foreach i where xi > 0 do

ei ← − log(UniformNonZeroFloat(i,s))
xi

end
return argmini ei

3) Sensitive to changes in support, in a similar way
to information-based measures.

4) Easily achievable as a collision probability.
JW fails all but the last.

1) It isn’t scale invariant, JW(αx, y) ̸= JW(x, y).
2) If the vectors are normalized to make it scale

invariant, the values drop below the corresponding
Jaccard index (equation 1.)

3) It is insensitive to changes in support.
4) Good algorithms exist, but they are non-trivial.
Existing work has thoroughly explored improvements

to Chum et al.’s second algorithm, while leaving their
first untouched. In this work we instead take their first
algorithm as a starting point. We extend it to arbitrary
positive vectors (rather than sets with constant global
weights) and analyze the result. In doing so, we find
that the collision probability is a new generalization of
the Jaccard Index to positive vectors, which we here call
JP .

JP(x, y) =
∑

{i : xi,yi>0}

1∑
j max

(
xj

xi
,
yj

yi

) . (2)

The names used here, JW and JP , are chosen to reflect
how each function interprets x and y, and the conditions
under which they match the original Jaccard index. JW
treats a difference in magnitude the same as any other
difference, so treats vectors as “weighted sets.” JP is
scale invariant, so any input is treated the same as a
corresponding probability distribution.

The primary contribution of this work is to derive and
analyze JP , and to show that in many situations where
the objects being hashed are probability distributions, JP
is a more useful collision probability than JW .

We will describe the sense in which JP is an optimal
collision probability for any LSH based on sampling. We
will prove that if the collision probability of a sampling
algorithm exceeds JP on one pair, it must sacrifice
collisions on a pair that has higher JP .

We will motivate JP ’s utility by showing experimen-
tally that it has a tighter relationship to the Jensen-
Shannon divergence than JW , and is more closely cen-
tered around the Jaccard index than JW . We will even
show empirically that in some circumstances, it is better

for retrieving documents that are similar under JW
than JW itself (and consequently, sometimes better for
retrieving based on L1-distance.)

II. P -MINHASH AND ITS MATCH PROBABILITY

Let h : [n]→ (0, 1] be a pseudo-random hash mapping
every element 1 ≤ i ≤ n to an independent uniform
random value in (0, 1]. Over a non-negative vector x,
define

H(x) := argmin
i

− log h(i)

xi

For brevity, we will be using the extended real number
system in which 1/∞ := 0. Each term is an exponen-
tially distributed random variable with rate xi,

Pr

[
− log h(i)

xi
< y

]
= 1− e−xiy,

so it follows that

Pr [H(x) = i] =
xi∑
i xi

.

This well known and beautiful property of expo-
nential random variables derives from the fact that
Pr [min(x, y) > α] = Pr [x > α] Pr [y > α].

Theorem II.1. For any two nonnegative vectors x, y ∈
Rn

+,
Pr [H(x) = H(y)] = JP(x, y).

Proof. Any monotonic transform on − log h(i)
xi

will not
change the arg min, so multiplying each xi by a positive
α won’t either. H(αx) = H(x). Thus for xi, yi > 0

Pr [i = H(x) = H(y)] = Pr

[
i = H

(
x

xi

)
= H

(
y

yi

)]
By definition, H

(
x
xi

)
= H

(
y
yi

)
= i means − log h(i)

xi/xi
≤

− log h(j)
xj/xi

and − log h(i)
yi/yi

≤ − log h(j)
yj/yi

, for j ̸= i, or
equivalently,

− log h(i) ≤ min

(
− log h(j)

xj/xi
,
− log h(j)

yj/yi

)
≤ − log h(j)

max
(

xj

xi
,
yj

yi

) .
Now we desire a new vector zi such that H(zi) = i
if and only if H(x/xi) = H(y/yi) = i. This requires
that − log h(j)

zi
j/z

i
i

= − log h(j)

max
(

xj
xi

,
yj
yi

) . Thus for fixed i, zij =

max
(

xj
xi

,
yj
yi

)
∑

k max
(

xk
xi

,
yk
yi

) . Consequently,

Pr
[
H(zi) = i

]
=

1∑
j max

(
xj

xi
,
yj

yi

)
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(a) Pr [H(x) = i] (b) Pr [H(y) = i] (c) Pr [H(x), H(y) = i, j] (d) Pr [H(x) = H(y) = i]

Fig. 1: The P-MinHash process can be interpreted geometrically as dividing the unit simplex into smaller simplexes
proportional to the mass of each term, then selecting the same point in each simplex as its representative. Pictured
here are x = (0.5, 0.4, 0.1), y = (0.2, 0.4, 0.4). Colors are assigned to unique values of i, or (i, j) in the case of
the joint distributions. The sum of the remaining colored areas in (d) is proportional to JP(x, y).

Repeating this process for all i in the intersection yields

Pr [H(x) = H(y)] =
∑
i

1∑
j max

(
xj

xi
,
yj

yi

)
Continuing the notational convention, we will refer to

hashing algorithms that achieve JP as their pair collision
probability as P-MinHashes, and algorithms that achieve
JW as W-MinHashes.

III. INTUITION ABOUT JP
While JP ’s expression is superficially awkward, we

can aid intuition by representing it in other ways. The
simplest interpretation is to view it as a variant of JW .
We rewrite JW allowing one input to be rescaled before
computing each term,

JW(x, y, α) =
∑
i

min(αixi, yi)∑
j max(αixj , yj)

and choose the vector α to maximize this general-
ized JW . If αixi > yi, increasing αi raises only the
denominator. If αixi < yi, increasing αi raises the
numerator more than the denominator. So the optimal
α sets αixi = yi, and results in JP .

We can derive a more powerful representation by
viewing the P-MinHash algorithm itself geometrically.
A vector of k + 1 exponential random variables, when
normalized to sum to 1, is a uniformly distributed
random point on the unit k-simplex. Every point in the
unit k-simplex is also a probability distribution over k+1
elements. Using these two facts we can construct the P-
MinHash as a function of the simplex as illustrated in
Figure 1.

For a probability distribution x, mark the point on
the unit simplex corresponding to x, (x1, . . . , xk+1),
and connect it to each of the corners of the simplex.
These edges divide it into k + 1 smaller simplices that
fill the unit simplex. Each internal simplex has volume
proportional to the coordinate of x opposite to its unique

exterior face. As a result, a uniformly chosen point on
the unit simplex will land in one of the sub-simplices
with probability given by x. P-MinHashing is equivalent
to sampling in this fashion, but holding the chosen point
constant when sampling from each new distribution. The
match probability is then proportional to the sum of the
intersections of simplices that share an external face.
This representation makes several properties obvious on
small examples that we prove generally in the next
section.

IV. OPTIMALITY OF JP

When MinHashing is used with a key-value store,
high collision probabilities are generally more efficient
than low collision probabilities, because as we discuss in
section VI, it is much cheaper to lower them than to raise
them. For this reason, we are interested in the question
of the highest collision probability that can be achieved
through sampling. The constraint that the samples follow
each distribution forces the collision probability to re-
main discriminative, but given that constraint, we would
like to make it as high as possible to maximize flexibility
and efficiency.

Suppose for two distributions, x and y, we want to
choose a joint distribution that maximizes Pr[H(x) =
H(y)]. If we were concerned with only these two
particular distributions in isolation, the upper bound
of Pr[H(x) = H(y)] is given by the Total Variation
distance, or equivalently 1 − L1(x, y)/2. Meeting this
bound requires the probability mass where x exceeds y
to be perfectly coupled with the mass where y exceeds
x. Both the mass they share and the mass they do not
must be perfectly aligned.

Rather than just two, we want to create a joint dis-
tribution (or coupling) of all possible distributions on a
given space where the collision probability for any pair
is as high as possible. It is always possible to increase
the collision probability of one pair at the expense of
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another so long as the chosen pair has not hit the Total
Variation limit, so the kind of optimality we are aiming
for is Pareto optimality. This requires that no collision
probability be able to exceed ours everywhere; any gain
on one pair must have a corresponding loss on another.

This by itself would not be a very consequential bound
for its retrieval performance. We really only desire high
collision probabilities for items that are similar, and
we would happily lower the collision probability of a
dissimilar pair to increase it for a similar pair.

However we are able to prove something stronger by
examining the pair whose collisions must be sacrificed.
To increase the collision probability for one pair above
its JP , you must always sacrifice collisions on a pair
with even higher JP . To get better recall on one pair,
you must always give up recall on an even better pair.

The Jaccard index itself is optimal on uniform distri-
butions, and the short proof is a model for the general
case.

Theorem IV.1. No method of sampling from uniform
discrete distributions can have collision probabilities
dominating the Jaccard index of their supports. The
Jaccard index is Pareto optimal.

Proof. Let Z be the symmetric difference of X and
Y , Z = X ∪ Y − X ∩ Y , and let z, x, y be the
corresponding discrete uniform distributions. The three
intersections, X ∩ Y, X \ Y, Y \X , are disjoint, so the
three collision events, H(x) = H(y), H(z) = H(x),
and H(z) = H(y), are also disjoint. As disjoint events,
their probabilities must sum to at most 1. When the
three probabilities are given by the Jaccard index of the
corresponding sets, they already sum to 1, respectively,
|X∩Y |
|X∪Y | ,

|X\Y |
|X∪Y | ,

|Y \X|
|X∪Y | , so the Jaccard index is Pareto

optimal.

To prove the same claim on JP for all distributions,
we need a few tools. We can rearrange JP to separate
the two iteration indices within the max.

JP(x, y) =
∑
i

xi∑
j yj max

(
xj

yj
, xi

yi

)
(3)

This lets us characterize the argmax choices in the
denominator as functions of a sorted list of xi/yi where
xi

yi
≥ xi+1

yi+1
. If we reindex i according to this sorted list,

then we can describe each JP(x, y)i knowing that i terms
choose the left side of the max, and n−i terms choose the
right. (This also lets us compute JP in O(n log n) rather
than O(n2) time by sorting first and keeping running
sums of each choice of the max.)

To analyze JP we will need to refer to each
term in its outer sum via subscript. JP(x, y)i :=

1∑
j max

(
xj
xi

,
yj
yi

) = zii . We will also use quantifiers in this

subscript to indicate a partial sum, i.e. JP(x, y)i>a :=∑
{i:i>a} JP(x, y)i.

Lemma IV.2. Useful tools from sorting JP ’s indices:

1) For at least two values of i, and distributions x, y,
JP(x, y)i = min(xi, yi).

2) Let w1...wn be distributions with disjoint support.
Consider two linear combinations of these distri-
butions with coefficients α and β. JP(α·w, β ·w) =
JP(α, β)

Proof. For a given i, if every max chooses the same side,
JP(x, y)i = min(xi, yi). xi/yi has both an argmax and
argmin for which this is true. This gives us part 1.

Let xk/yk = xl/yl.∑
i∈{k,l}

xi∑
j yj max

(
xj

yj
, xi

yi

) =
xk + xl∑

j yj max
(

xj

yj
, xk

yk

)
∑

j∈{k,l}

yj max

(
xj

yj
,
xi

yi

)
= (yk + yl)max

(
xk

yk
,
xi

yi

)

Thus, we can form x′, y′ by merging the mass of xk, xl

into one element and yk, yl into one element and have
JP(x, y) = JP(x′, y′) Let w1...wn be distributions with
disjoint support, and consider JP(α · w, β · w). Repeat
the merging process until all elements of each wi are
merged into one. This gives us (2).

This ordering also lets us work more effectively with
the z distributions we constructed in theorem II.1. This
lemma contains all the algebra needed for the main
proof.

Lemma IV.3. For fixed a, let za, x, y be probability
distributions where zai ∝ max

(
xi

xa
, yi

ya

)
. Reorder i

according to the sorting of (3) such that xi

yi
≥ xi+1

yi+1
.

The following are true:

1) ∀i ≤ a, JP(x, za)i = zai = min(xi, z
a
i ) ≥ zii .

2) ∀i ≥ a, JP(x, za)i = zii .
3) JP(x, y)i = min(xi, yi) =⇒

JP(x, za)i = min(xi, z
a
i ).

4) JP(x, za) ≥ JP(x, y) and JP(y, za) ≥ JP(x, y)

Proof. For i ≤ a, xi

yi
≥ xa

ya
⇒ xi

xa
≥ yi

ya
, hence zai ∝ xi

xa
.

Similarly, for i ≥ a, zai ∝
yi

ya
. Working first with the

lower group of indices,

∀i ≤ a, JP(x, za)i =
1∑

j max

(
xj

xi
,
max(

xj
xa

,
yj
ya
)

xi/xa

)
=

xi/xa∑
j max

(
xj

xa
,
yj

ya

) = zai
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(a) Pr [H(x), H(y) = i, j] (b) Pr [H(zg) = i] (c) Pr [H(x), H(zg) = i, j] (d) Pr [H(y), H(zg) = i, j]

Fig. 2: A visual proof of theorem IV.4 on 3 element disributions. Using the same distributions as in Figure 1, the
green regions of x and y could be shifted to overlap more and improve the collision probability of this pair, but
any modification that achieves that would worsen at least one of collision probabilities between x or y and zgreen

(both of which have higher collision probability than the (x, y) pair.)

And since xi/xa∑
j max(

xj
xa

,
yj
ya
)
≤ xi/xa∑

j

xj
xa

we also know that

∀i ≤ a, zai = min(xi, z
a
i ). Furthermore, ∀i ≤ a,

zai =
1∑

j max

(
xj/xa

max( xi
xa

,
yi
ya
)
,

yj/ya

max( xi
xa

,
yi
ya
)

)
=

1∑
j max

(
min

(
xj

xi
,
xjya

xayi

)
,min

(
yj

yi
,
yjxa

yaxi

)) ≥ zii

which gives us part 1. Now, continuing on to the upper
group of indices,

∀i ≥ a, JP(x, za)i =
1∑

j max

(
xj

xi
,
max(

xj
xa

,
yj
ya
)

yi/ya

)
=

1∑
j max

(
xj

xi
, xj

ya

xa,yi
,
yj

yi

)
Since ∀i ≥ a, xayi

ya
≥ xi we can simplify further to

conclude part 2. ∀i ≥ a, JP(x, za)i = zii . By noting that
the choices within the max are preserved, we conclude
part 3. Finally, having bounded all indices, part 4:

∀i, JP(x, za)i ≥ JP(x, y)i
JP(x, za) ≥ JP(x, y).

We now have the tools to prove the optimality of JP .

Theorem IV.4. Let G be a sampling method. If
Pr[G(x) = G(y) = i] > JP(x, y)i, there exists a z
such that Pr[G(x) = G(z)] < JP(x, z) or Pr[G(y) =
G(z)] < JP(y, z). This implies that no method of
sampling from discrete distributions can have collision
probabilities dominating JP . JP is Pareto optimal.

Furthermore, JP(x, z) ≥ JP(x, y) and JP(y, z) ≥
JP(x, y). To exceed JP(x, y), G must sacrifice at least
one pair that is closer under JP than (x, y).

Proof. Let m be the number of elements i for which
JP(x, y)i < min(xi, yi).

In the base case where m = 0, JP(x, y) =∑
i min(xi, yi) which cannot be improved.
Assume the proposition to be proved is true ∀x, ∀y,

and ∀p < m. By IV.2.1 we know that m ≤ n− 2, since
at least the two endpoints of the sorted list have reached
their upper bound. We proceed by induction on m.

As in theorem II.1, for each a where JP(x, y)a <
min(xa, ya), construct a distribution za, where zai ∝
max

(
xi

xa
, yi

ya

)
. Reorder i according to the sorting of

(3) such that xi

yi
≥ xi+1

yi+1
. From lemma IV.3 we know

∀i ≤ a, JP(x, za)i = zai = min(xi, z
a
i ) and ∀i ≥

a, JP(y, za)i = zai = min(yi, z
a
i ).

Now consider a new sampling method, G. The fol-
lowing events are pairwise disjoint by inspection.

E<
a := {G(x) = G(za) < a}

E=
a := {G(x) = G(y) = a}

E>
a := {G(y) = G(za) > a}

So their probabilities are constrained. Pr[E=
a ]+Pr[E<

a ]+
Pr[E>

a ] ≤ 1. When these probabilities are given by JP
they already sum to 1. Pr[E=

a ] + Pr[E<
a ] + Pr[E>

a ] =
zaa +

∑
i<a z

a
i +

∑
i>a z

a
i = 1.

From this bound, if Pr[G(x) = G(y) = a] >
JP(x, y)a, at least one of

Pr[G(x) = G(za) < a] < JP(x, za)i<a

Pr[G(y) = G(za) > a] < JP(y, za)i>a

must be true. Since the two cases are symmetric, we
will assume the first one: Pr[G(x) = G(za) < a] <
JP(x, za)i<a.

If Pr[G(x) = G(za)] < JP(x, za) then our z is za

and we are done. Otherwise, Pr[G(x) = G(za)] ≥
JP(x, za), and the terms i ≥ a must compensate for
the loss on the terms i < a, so Pr[G(x) = G(za) ≥
a] > JP(x, za)i≥a.

However, JP(x, za)a = JP(y, za)a = zaa , so these
terms have exhausted za and cannot be increased. Using
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IV.3.1 and IV.3 we know that this adds at least one
additional term that is fully consumed, i.e. the size of {i :
JP(x, za)i < min(xi, z

a
i )} is less than m. So by induc-

tion hypothesis, if Pr[G(x) = (za) < a] > JP(x, za)i<a

there is a new z for which Pr[G(x) = G(z)] < JP(x, z)
or Pr[G(za) = G(z)] < JP(za, z).

By IV.3 we know that JP(x, za) ≥ JP(x, y) and by
induction we know JP(x, z) ≥ JP(x, za), so we con-
clude JP(x, z) ≥ JP(x, y) and symmetrically JP(y, z) ≥
JP(x, y).

Figure 2 shows the mechanism of the proof intuitively.
On three element distributions, two of the elements are
fully constrained, in this case the blue and red terms, so
we construct our adversarial z around green. On three
elements, no induction is necessary and the diagram
itself proves the relationship.

Since JP is only Pareto optimal, we should be able to
find a sampling method that exceeds it for some pairs but
is below it on others. We can generalize our algorithm
to construct such a method. Consider arranging the
elements of the state space as the leaves of a tree. Internal
nodes in the tree are given the weight of the sum of
their children, and each is assigned its own exponential
hash. Perform P-MinHash among the children of the
root node. If the selected node is a leaf, emit it as the
sample. If it is an internal node, recurse and repeat. In
this generalization, our original algorithm is represented
by making all elements direct children of the root. We
can prioritize collisions on an index i by placing it closer
to the root node than all others; in particular, the tree
(i, (1, . . . , n)). Since i and its internal-node sibling form
a two element distribution, by lemma 3 the probability
of a collision on i will be min(xi, yi) for all x, y.

What of JW then? Is it another Pareto optimum? It is
not, it is dominated by JP .

Theorem IV.5. If JW(x, y) = 1−p
1+p , then 1−p

1+p ≤
JP(x, y) ≤ 1−p, and there are distributions that achieve
both bounds on JP for any value of JW .

Proof. The lower bound becomes clear by rewriting JW
in a similar form to JP .

JW(x, y) =
∑
i

1∑
j

max(xj ,yj)
min(xi,yi)∑

i

1∑
j max

(
xj

xi
,
yj

yi

) ≥∑
i

1∑
j max

(
xj

xi
,
yj

yi
,
xj

yi
,
yj

xi

)
JP(x, y) ≥ JW(x, y)

To achieve this lower bound, we can transform the dis-
tributions by moving the “excess” mass to new elements.

x′
2i = y′2i = min (xi, yi)

x′
2i+1 = max (xi − yi, 0) , y′2i+1 = max (yi − xi, 0)

Shifting the mass in this way has no effect on JW ,
but it decreases JP to equal JW . x′ and y′ can
be expressed as linear combinations over the three
sets of indices, so using lemma IV.2.2, JP(x′, y′) =
JP ((0, 1− p, p), (p, 1− p, 0)) = 1−p

1+p
To achieve the upper bound, 1− p, consider inverting

this transformation, reallocating the p extra mass to max-
imize JP(x′′, y′′) while holding JW(x′′, y′′) constant. To
avoid increasing JW , we must add the mass to disjoint el-
ements, so divide the indices into two sets, X,Y . We find
that if we distribute the mass proportional to the original
value, JP reaches the total variation limit regardless of
the choice of X,Y . Let |X| :=

∑
i∈X min(xi, yi).

∀i ∈ X, x′′
i = min (xi, yi)

|X|+ p

|X|
, y′′i = min (xi, yi)

∀i ∈ Y, y′′i = min (xi, yi)
|Y |+ p

|Y |
, x′′

i = min (xi, yi)

We can express this as a linear combination of
two distributions with disjoint support. JP(x′′, y′′) =
JP ((|X|+ p, |Y |), (|X|, |Y |+ p)) = 1 − p. Since p is
the total variation distance of x and y, 1 − p is the
maximum collision probability that is possible between
two distributions in any context, so it is the upper bound
here as well.

This gives us some insight into how JP and JW differ.
JP ranks distributions as more similar than JW if their
extra mass is on elements that both distributions share.

Like 1 − JW , 1 − JP is a metric on probability
distributions.

Theorem IV.6. 1 − JP is a proper metric on P where
P(Ω) is the space of probability distributions over a
finite set Ω.

Proof. Symmetry is obvious. Non-degeneracy over P
follows from 1∑

j∈Ω max
(

xj
xi

,
yj
yi

) ≤ min(xi, yi). The

triangle inequality follows from being a collision prob-
ability, 1− JP(x, y) = Pr [H(x) ̸= H(y)]. Therefore,

Pr [H(x) = H(y)] ≥ Pr [H(x) = H(z) ∧H(y) = H(z)]

Pr [H(x) ̸= H(y)] ≤ Pr [H(x) ̸= H(z) ∨H(y) ̸= H(z)]

for any distribution z. But by the union bound,

Pr
[
H(x) ̸= H(z) ∨H(y) ̸= H(z)

]
≤ Pr

[
H(x) ̸= H(z)

]
+ Pr

[
H(y) ̸= H(z)

]
V. HASHING ON DENSE AND CONTINUOUS DATA

The algorithm we’ve presented so far is suitable for
sparse data such as documents or graphs. It is linear in
the number of non-zeros, equivalent to Ioffe 2010 [7]. On
dense data (such a image feature histograms[8]) there’s
significant overlap in the supports of each distribution,
so rehashing each element for every distribution wastes
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Algorithm 2: Dense and Continuous P-MinHash.
“Global-Bound” A* Sampling [10] with a fixed seed.

input : sample space Ω,
sigma-finite measure µ,
proposal sigma-finite measure λ,
finite upper bound, B := max(µ(i)/λ(i))
shared random seed s

output: Stable sample from (Ω,F , µ)
(M,X∗, k, e−1)← (inf, null, 0, 0)
do

ek ← − log (UniformNonZeroFloat(k, s))+ek−1

Xk ← Sample(λ(Ω), s)
Mk ← ekλ(Xk)/µ(Xk)
if Mk < M then

M ←Mk

X∗ ← Xk

end
Ω← Ω \Xk

k ← k + 1
while M > ek/B
return X∗

work. With a shared stream of sorted hashes, we expect
the hash we select for each distribution to be biased
towards the beginning of the stream, and closer to the
beginning when the data is denser. Therefore one might
expect that we could improve performance by searching
only some prefix of the stream to find our sample.

A* Sampling (Maddison, Tarlow, and Minka
2014[10]) explores this idea thoroughly, and we lean
on it heavily in this section. In particular, we use their
“Global Bound” algorithm, and essentially just run
it with a fixed random seed (algorithm 2.) We leave
the proof of running time and of correctness as a
sampling method to that work, and limit our discussion
to the proof of the resulting collision probability. (Their
derivation uses Gumbel variables and maxima. We use
exponential variables and minima to make the continuity
with the rest of our work clear, which is achieved by a
simple change of variables.)

The key insight of A* Sampling is that when a (pos-
sibly infinite) stream of independent exponential random
variables is ordered, the exact marginal distributions of
each variable can be computed as a function of the
rank and the previous variables. If the vector of sorted
exponential variables is e with corresponding param-
eter vector x, then once e1, . . . , ek−1 are all known,
the distribution of ek is a truncated exponential with
rate |x \

∪k
i=1 xi| truncated from below at ek−1. The

“statelessness” of exponential variables makes this trun-
cation easy to accomplish. Simply generate the desired
exponential, and add ek−1 to shift it.

To change the parameters of those exponentials and

find the new minimum element, only a small prefix
of the list must be examined. The running time of
finding the new minimum is a function of the differ-
ence between the two vectors of parameters, and has
equivalent running time to rejection sampling. This gives
algorithm 2 equivalent running time to the state of the
art for computing a MinHash of dense data, Shrivastava
2016[8]. Because algorithm 2 admits an unbounded list
of random variables, it is also applicable to continuous
distributions, as the paper[10] describes in detail.

Let’s first show that algorithm 2 gives JP(µ, ν) when
Ω is finite. Indeed, this construction is simply an al-
ternative way of finding the minimum − logUi/µi. A*
sampling merely reads off the minimum of − logUi/λi∗
λi/µi = − logUi/µi, and similar for ν.

To prove the general case for infinite Ω, we need to
first define what we mean by JP(µ, ν) in that setting. One
option is to replace all the summation by integrals in the
formula (2). This runs into two difficulties however:

1) A probability space Ω may not be a subset of Rn.
2) Either µ or ν could be singular.
Instead, we define it as a limit over increasingly finer

finite partitions of Ω. More formally,

Definition V.1. Assume JP(µ, ν) is defined as before
when |Ω| <∞, we define

JP(µ, ν) = inf
F⊢Ω

JP(µF , νF ), (4)

where F ranges over finite partitions of the space Ω,
and µF denotes the push-forward of µ with respect to the
map π : Ω→ F , π(x) = Q ∈ F iff x ∈ Q. (µF is simply
a coarsified probability measure on the finite space F
where it (tautologically) assigns probability µ(Q) to the
element Q ∈ F .)

First we verify that the definition above coincides with
JP when Ω is finite.

Lemma V.2. Let |Ω′| + 1 = |Ω| = n, µ, ν ∈
P(Ω), and µ′, ν′ ∈ P(Ω′) obtained by merging the
last two elements of Ω into a single element. Then
JP(µ, ν) ≤ JP(µ′, ν′), with strict inequality if both µ, ν
have nonzero masses on those two elements.

Proof. By considering JP(µ, ν) as the probability that
the argmin’s of two lists of independent exponentials
land on the same index 1 ≤ i∗ ≤ n, and using the
fact that the minimum of two independent exponentials
is an exponential with the sum of the parameters, we
can couple the four argmin’s arising from µ, ν, µ′, ν′ and
conclude by inspection.

The lemma shows that any partition of Ω will lead to
a JP that’s greater than or equal to the original JP . So
the infimum is achieved with the most refined partition,
namely Ω itself.
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Fig. 3: The Jensen-Shannon divergence compared with JP and JW on pairs of normalized unigram term vectors
of random web documents. JSD has a much tighter relationship with JP than JW . We show exact bounds for JW
against JSD and approximate bounds for JP against JSD where d(x) = (1−x)

2 log2(1−x)+ (1+x)
2 log2(1+x). The

curve that appears to lower bound JSD against JP is violated on 10−7 of the pairs.
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The left graph shows the joint distribution of JP and JW and the bounds we prove. The right graph shows the
conditional distributions of JP and JW against the (set) Jaccard index of the terms. We show the distribution of the
log of their ratios against the Jaccard index and highlight the median. JP is generally centered around the Jaccard
index, while JW is consistently centered below, as predicted by their behavior on uniform distributions.

Finally we show that A* sampling applied to µ and
ν simultaneously has a collision probability equal to
JP(µ, ν) as defined above.

Theorem V.3. Given two probability measures µ and
ν on an arbitrary Polish space Ω, both absolutely
continuous with respect to a common third measure λ, it
is possible to apply A* sampling with base distribution
λ, either in-order or with a hierarchical partition of Ω,
to sample from µ and ν simultaneously. Further, the
probability of the procedure terminating at the same

point p ∈ Ω for both µ and ν is exactly JP(µ, ν).

Proof. The first statement follow from the procedural
definition of A* sampling described in [10]. For the
second statement, since in-order A* is proven equivalent
to hierarchical partition A* in [10], we are free to choose
any partition to our convenience. The natural choice is
then the partition used in the definition of JP(µ, ν).

More precisely, we know there is a finite partition F ⊢
Ω such that JP(µ, ν) ≤ JP(µF , νF ) ≤ JP(µ, ν) + ϵ,
for any ϵ > 0. On the other hand, for finite parti-
tion like F , the exponential variables attached to the
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Precision/Recall on JW > 0.5
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(b) Performance on retrieving pairs with JW greater than 0.5.
The fact that P-MinHash slightly outperforms W-MinHashes
illustrates the benefit of higher match probabilities. JP is higher
than JW for pairs that are similar under JW , which makes high
recall cheaper. As the cost increases, JW overtakes JP as the
difference between the two scores becomes the larger factor.

Fig. 5: Precision/recall curves illustrating the typical case of retrieval using a key-value store. Each point represents
outputting o independent sums of a hashes each, for a collision probability of 1 − (1 − pa)o. The cost in storage
and CPU is dominated by o, so we connect these points to show the trade-offs possible at similar cost.

representative of each part Q ∈ F are jointly dis-
tributed as exponentials with rate λ(Q) with common
seed. Let U, V be the two coupled A* processes re-
stricted to F . Either one of them does not terminate,
or they both terminate and collide conditionally with
probability JP(µF , νF ). In other words, letting P(T )
be the probability that both terminate at F level, and
AC(U, V ;F ) be the collision probability of U, V re-
stricted to F , then AC(U, V ;F ) = P(T )JP(µF , νF ).
Thus JP(µ, ν)P(T ) ≤ AC(U, V ;F ) ≤ JP(µF , νF ) ≤
JP(µ, ν) + ϵ.

So AC(U, V ;F ) is squeezed between JP(µ, ν)P(T )
and JP(µ, ν) + ϵ. Since P(T ) → 1 and ϵ → 0 under a
refinement sequence F , we get in the limit

AC(U, V ) := AC(U, V ;F∞) = JP(µ, ν).

VI. UTILITY OF JP ON PAIRS OF WEB DOCUMENTS

To determine whether the difference between JP and
JW matters in practice and whether achieving JP as a
collision probability is a useful goal, we computed both
for a large sample of pairs of unigram term vectors of
web documents. From an index of 6.6 billion documents,
we selected pairs using a sum of 2 W-MinHashes
to perform importance sampling. We computed several
similarity scores for 100 million pairs of normalized
unigram term vectors, and weighted them by the inverse

of their sampling probability to simulate an unbiased
sample of all non-zero pairs.

The Jensen-Shannon divergence (JSD) defines the
information loss that results from representing two dis-
tributions using a model that is an equal mixture of them,
and as such is the ideal criterion to form information-
preserving clusters of items of equal importance. Like
both JW and JP it is bounded, symmetric, and monotonic
in a metric distance. Due to these properties, as well as
its popularity, we use it here as a basis for comparison.

JP has a much tighter relationship with the Jensen-
Shannon divergence than JW as shown in figure 3.
Tight bounds on JSD as a function of JW are given
by JW ’s monotonic relationship with Total Variation, as
described by [11]. Let p be the total variation distance,
and d(p) = (1−p)

2 log2(1 − p) + (1+p)
2 log2(1 + p).

d(p) ≥ JSD(x, y) ≥ p. Substituting 1−JW
1+JW

= p extends
these to JW . These same bounds apply to JP as well, but
JP has a much tighter relationship with what appears to
be a much higher lower bound.

We have approached finding this lower bound with
large differential equations that we have only solved
numerically, but small examples form good approximate
bounds. On 2 element distributions, JSD has a direct
relationship with JP , and only 1× 10−7 of the pairs fall
below the resulting curve, d(1 − JP). No pairs in our
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sample had JSD more than 0.0077 below it. In contrast,
JW puts 7×10−3 of the pairs below this curve, with the
farthest point 0.16 below.

We also compare both JP and JW to the Jaccard
index of the set of terms, and compute a kernel density
estimate of the log of their ratios. JP is generally
centered around the Jaccard index, while JW is con-
sistently centered below, as predicted by their behavior
on uniform distributions. This makes P-MinHash less
disruptive as a drop-in replacement for an unweighted
MinHash. Parameters of the system such as the number
of hashes or the length of concatenated hashes are likely
to continue to function well.

In the typical case of retrieval using a key-value
store, performance is characterized by cheap ANDs and
expensive ORs.[12] To reduce the collision probabil-
ity we can sum multiple hashes to form keys, but to
raise the collision probability, we must output multiple
independent keys. This lets us apply an asymmetric
sigmoid to the collision probabilities, 1 − (1 − pa)o

with o independent outputs of a summed hashes each.
Assuming that the cost of looking up hashes dominates
the cost of generating them, ANDs are essentially free,
while CPU and storage cost are both linear in the number
of ORs. Furthermore, as a increases linearly, o must
increase exponentially to keep the inflection point of the
sigmoid in the same place. For instance, if the sigmoid
passes through (0.5, 0.5), then o ≈ log(2)2a. This gives
a significant performance advantage to algorithms with
higher collision probabilities, and thus to JP over JW .
Lowering the probability is much cheaper than raising
it.

The effect of this is demonstrated in Figure 5. Unsur-
prisingly from the tightness of the joint distribution, P-
MinHash achieves better precision and recall retrieving
low JSD documents for a given cost. More surprising is
that it also achieves slightly better precision and recall
on retrieving high JW documents when the cost is low,
even though this is the task W-MinHashes are designed
for. The reason for this can be seen from the upper
bound, JP ≤ 2JW/(1 + JW). On items that achieve
this bound, the collision probability when summing two
hashes, (2x/(1+x))2, is similar to 4x2 near 0 and similar
to x near 1. This in effect gives it the recall of 1 hash
with the precision of 2 hashes on this subset of items,
and thus a better precision/recall trade-off overall.

VII. CONCLUSION

We’ve described a new generalization of the Jaccard
index, and shown several qualities that motivate it as the
natural extension to probability distributions. In particu-
lar, we proved that it is optimal on all distributions in the
same sense that the Jaccard index is optimal on uniform
distributions. We’ve demonstrated its utility by showing

JP ’s similarity in practice to the Jensen-Shannon diver-
gence, a popular clustering criterion. We’ve described
two MinHashing algorithms that achieve this as their
collision probability with equivalent running time to the
state of the art on both sparse and dense data.
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