
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BUDGET-AWARE TEST-TIME SCALING VIA DISCRIMI-
NATIVE VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Test-time scaling is a powerful strategy for boosting the performance of large lan-
guage models on complex reasoning tasks. While state-of-the-art approaches often
employ generative verifiers to select the best solution from a pool of candidates,
this method incurs prohibitive computational costs, limiting its practicality. In
this work, we pivot the focus to a more budget-aware paradigm: discriminative
verification. We conduct a thorough empirical analysis and demonstrate that while
discriminative verifiers may underperform in isolation, combining them with self-
consistency in a hybrid approach creates a powerful and efficient selectiontest-time
scaling mechanism. These hybrid methods consistently outperform self-consis-
tency with negligible computational overhead (e.g., less than 2% on AIME2025).
More importantly,Notably, under a fixed compute budget, our approach surpasses
state-of-the-art generative verification by a significant margin: achieving up to
6.1% higher accuracy on AIME2025. Our findings establish that for practical,
real-world applications, budget-aware scaling with discriminative verifiers is not
only a "free" upgrade over self-consistency, but also a more effective and effi-
cient alternative to costly generative techniques. Code is available at https:
//anonymous.4open.science/r/Verification-ICLR2026.

1 INTRODUCTION

The pursuit of advanced reasoning in large language models (LLMs) has been defined by the principle
of scale: scaling up models, datasets, and training compute has consistently unlocked new capabilities.
More recently, a new frontier has emerged in this paradigm—scaling compute not just during training,
but at the point of inference. This strategy, known as test-time scaling, aims to elicit a model’s full
potential by allocating additional resources to solve a single problem at inference time, leading to
dramatic performance gains in complex domains like mathematics and programming (OpenAI, 2024;
Snell et al., 2024).

The simplest and most canonical form of test-time scaling is self-consistency (SC) (Wang et al.,
2023b). Instead of trusting a single, greedily decoded answer, SC samples a diverse ensemble of
solutions and selects the final answer through a simple plurality vote. This brute-force yet remarkably
effective method has become a foundational baseline, demonstrating that more computation in the
form of more samples often leads to better reasoning. The natural next question is whether this
compute can be used more intelligently. Rather than relying on a democratic vote, could an expert
"verifier" model scrutinize each solution and select the best one?

This question has given rise to a new class of powerful, state-of-the-art techniques centered on
generative verification. These verifiers are themselves sophisticated LLMs that produce a detailed
chain-of-thought (CoT) rationale, critically evaluating a candidate solution before rendering a final
verdict (Zhang et al., 2024c; Mahan et al., 2024). The approach is intuitively appealing; it mimics
human meta-cognition and opens up a new axis for scaling. If one verification pass is good, multiple
passes should be even better, allowing for deeper scrutiny and higher confidence (Shi & Jin, 2025;
Zhao et al., 2025).

However, this expressive power comes at a staggering computational cost. Generating a detailed CoT
critique for each candidate can match or even exceed the cost of generating the original solution.
This immense overhead makes generative verification impractical for many real-world applications
where inference budgets are constrained. Indeed, a careful analysis by Singhi et al. (2025) reveals

1

https://anonymous.4open.science/r/Verification-ICLR2026
https://anonymous.4open.science/r/Verification-ICLR2026

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Pass@N SC@N BoN@N WSC@N PV@N GPV@N,M

103 104

Latency (s)

55

60

65

70

75

80

85

AC
C

on
 A

IM
E2

02
5

Figure 1: Hybrid discriminative verification techniques (e.g., weighted self-consistency
(WSC) (Welleck et al., 2024) and pessimistic verification (PV) (Shi & Jin, 2025)) consistently
outperform self-consistency (SC) for a negligible amount of additional compute on AIME2025,
and can outperform generative pessimistic verification (GPV) under equalized compute budgets.
For latency budgetsof less than 22.5 minutes., discriminative verification outperforms generative
verification. N is doubled at each point along the x-axis. For GPV, each solution is verified twice
(M = 2). Pass@N provides an upper bound on the achievable performance, assuming a free oracle
verifier.

that when verification costs are properly accounted for, these state-of-the-art verification methods
require up to 8× more compute just to match the performance of simple self-consistency, and deliver
only marginal gains even when granted a colossal 128× budget.

These findings underscore an important limitation of scaling verification: solution correctness is
fundamentally constrained by the quality of the candidates produced by the solver. If no correct
solutions are sampled, no amount of verification, regardless of strength, can recover the right answer.
Moreover, SC already provides a strong baseline, closely tracking pass@N on many tasks. To
improve over SC, a verifier must reliably agree with the majority when it is correct, while also
identifying the minority solution when the majority is wrong. These requirements make it difficult for
a verifier to deliver significant gains, especially under a fixed compute budget. As a result, allocating
additional compute to generating candidate solutions typically yields better returns than spending it
on verification.

Given these limitations, it is appealing to develop a budget-aware verification mechanisms that
improve the model performance while minimizing compute costs. Discriminative verifiers present a
promising alternative due to their computational efficiency. Unlike generative verifiers, which require
both a costly prefilling step and sequential token generation during decoding, discriminative verifiers
only perform a single forward pass (i.e., prefilling) to output a scalar score, thus avoiding the expensive
sequential decoding bottleneck. However, despite their speed advantage, discriminative verifiers
exhibit limited capabilities on complex reasoning tasks (Tan et al., 2025), often underperforming SC
as the pool of candidate solutions grows, which has limited their practical use.

In this work, we show that hybrid approaches combining discriminative verification with self-
consistency can offer the best trade-off between effectiveness and efficiency under practical compute
budgets. Although discriminative verifiers underperform SC in isolation, we show that by leveraging
hybrid methods (Welleck et al., 2024; Shi & Jin, 2025), the resulting test-time scaling pipeline

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

can obtain consistent improvements over SC on AIME2025 by up to 5.1%, while having only
2% compute overhead. MoreoverFor instance, under fixed practical inference budgets of 5× 1015

and 1 × 1016 FLOPs, hybrid discriminative verification methods (Welleck et al., 2024; Shi & Jin,
2025) outperform state-of-the-art generative verification by 6.1% and 2.5%, respectively. Moreover,
although discriminative verifiers underperform SC in isolation, we show that by leveraging these
hybrid methods, the resulting test-time scaling pipeline can obtain consistent improvements over
SC on AIME2025 by up to 5.1%, while having only 2% compute overhead. These results highlight
hybrid discriminative verification as a practical and scalable alternative, delivering strong accuracy
gains with negligible overhead and outperforming more expensive generative approaches under
realistic budget constraints.

Our contributions are as follows:

• We conduct a thorough empirical analysis of discriminative verification techniques, exploring
how different selection strategies perform across scaling regimes. To our knowledge, this
is the first study to systematically examine the test-time scaling properties of discriminative
verification.

• Building on this analysis, we present a compute-centric comparison of discriminative and
generative verification, showing that discriminative methods offer a more practical and efficient
alternative under realistic inference budgets.

2 EFFECTIVE DISCRIMINATIVE VERIFICATION

2.1 PRELIMINARIES

Repeated sampling is a test-time scaling technique that involves generating a batch of N independent
candidate solutions {si}Ni=1 for a given problem Q. Each solution si is a chain of reasoning that
terminates in a final answer ai = Ans(si). As N increases, the probability that at least one answer is
correct also rises (i.e., Pass@N improves; see Figure 1) (Cobbe et al., 2021). However, this leaves
open the central challenge of selecting a single answer a∗ from among the candidates in the absence
of ground truth.

Self-consistency. A common approach for this selection problem is self-consistency (SC) (Wang
et al., 2023b). Since correct answers tend to recur across independent solutions, SC groups responses
by their final answer and selects the most frequent one. Formally, each distinct answer a has support
size na = |{i : ai = a}|, and SC chooses a∗ = argmaxa na. While this approach is robust
when the correct answer is common, it can fail when the majority converges on an incorrect answer.
Pseudocode for this method is provided in Algorithm 1.

Best-of-N . Another strategy is best-of-N (BoN) selection (Charniak & Johnson, 2005; Cobbe
et al., 2021), which uses a discriminative verifier to assign each solution a scalar score (e.g., in [0, 1]),
and selects the final answer from the highest-scoring solution. Formally, each solution si receives a
scalar score r(si), then BoN chooses a∗ = Ans(s∗) where s∗ = argmaxsi r(si). Verifiers come in
two forms:

• Discriminative verifiers (or reward models) (Cobbe et al., 2021) output a single scalar via
a value or reward head, typically using just one forward pass over the input, making them
compute-efficient. In this work, BoN refers specifically to this discriminative setting.

• Generative verifiers (Zhang et al., 2025) prompt an LLM to judge correctness via free-form
CoT reasoning. Generative verifiers can benefit from inference-time scaling by independently
sampling multiple verification chains and aggregating verdicts, but incur significant compute
overhead due to sequential decoding.

A strong verifier can identify correct but rare responses that SC might miss. However, as N increases,
it can also be misled by confident yet incorrect responses, highlighting a long-tail vulnerability (see
Figure 1). Pseudocode for this method is provided in Algorithm 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 HYBRID DISCRIMINATIVE VERIFICATION

To guard against the long-tail of high-scoring but incorrect responses, hybrid discriminative verifica-
tion methods combine the consensus signal from SC with the verifier’s signal from BoN. We study
two hybrid approaches:

• Weighted self-consistency (WSC) (Welleck et al., 2024) groups solutions by their final answers
and selects the answer with the largest total verifier score, i.e., a∗ = argmaxa

∑
i:ai=a r(si).

The approach prioritizes answers that are not only common but also favored by the verifier.
Pseudocode for this method is provided in Algorithm 3.

• Pessimistic verification (PV) (Shi & Jin, 2025) groups solutions by their final answer and
penalizes small answer clusters to reduce the chance of selecting low-support answers. Formally,
a∗ = argmaxa

(
1
na

∑
i:ai=a r(si) − α lnN

na+1

)
, where α controls the strength of the penalty.

When α = 0, selection is based exclusively on the mean verifier score. As α→∞, the penalty
dominates and the selection collapses to SC. Empirically, we find that α = 0.5 provides a good
tradeoff (see Appendix C.1). Pseudocode for this method is provided in Algorithm 4.

2.3 DISCRIMINATIVE VERIFIER TRAINING

This subsection outlines an approach for training a lightweight discriminative verifier, which provides
the verification signal for BoN and hybrid discriminative verification techniques (WSC and PV).

Dataset curation. We sample 32k math problems from NuminaMath (LI et al., 2024), which
aggregates problems from Chinese K-12 exams, Orca-Math (Mitra et al., 2024), AoPS forums, and
various Olympiads (e.g., IMO, APMO, BMO), among other sources. We decontaminate the training
dataset by excluding any problem whose fuzzy-match similarity to an entry in our evaluation sets
exceeds 80. For each question, we sample one response from each of ten LLMs: DeepSeek-R1 and
its six distilled variants (DeepSeek-AI et al., 2025), DeepScaleR-1.5B-Preview (Luo et al., 2025b),
and both the preview and production releases of QWQ-32B (Team, 2024; 2025). Following Shi & Jin
(2025), we remove the reasoning content (i.e., the tokens between the <think> and </think> tags)
from each response (see Appendix C.2 for an ablation on this choice). Each response is graded for
correctness using HuggingFace’s Math-Verify toolkit (Kydlíček, 2025), which parses the model’s
final answer and performs symbolic equivalence checks against the reference solution. We throw out
problems for which all ten solutions are either correct or incorrect, since they contain no learnable
signal.

Training. Following prior work (Qwen et al., 2025; Yang et al., 2024), we replace the language mod-
eling head of the LLM (specifically DeepSeek-R1-Distill-Qwen-1.5B) with a two-layer scaler value
head. We train our verifier using a Bradley-Terry ranking loss combined with an L2 regularization
term (Ouyang et al., 2022; Kirchner et al., 2024). Concretely, our loss is

L = − 1

|P | |N |
∑
i∈P

∑
j∈N

log σ
(
ri − rj

)
+

λ

2
E
(
r2
)
,

where r = (r1, . . . , rm) are the logits assigned by the verifier to a batch of m responses, σ(x) is
the logistic function, and P and N are the sets of correct and incorrect responses, respectively. The
first term implements the Bradley–Terry model by maximizing the probability σ(ri − rj) that every
correct response i ∈ P outranks every incorrect response j ∈ N (Bradley & Terry, 1952), and the
second term keeps score head well-behaved and centered around zero. By computing all |P | × |N |
comparisons in one vectorized pass instead of sampling pairs, we gain both higher throughput and
more stable gradients. We train for a single epoch on 11,420 response groups. Additional training
details and hyperparameters are provided in Appendix B.

3 MAIN RESULTS

We analyze the performance of our trained discriminative verifier under various discriminative
verification techniques on several challenging benchmarks: AIME2024, AIME2025, LiveBench

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350
Step

0.50

0.55

0.60

0.65

0.70

0.75

Lo
ss

0.2

0.4

0.6

0.8

1.0

Sc
or

e
M

ar
gi

n

Figure 2: Blue: The loss decreases over one epoch of training. Red: The score margin, i.e., the
difference in score assigned to correct solutions and incorrect solutions on average across a global
batch, increases during training. Together, these indicate that the discriminative verifier learns to
discriminate between correct and incorrect solutions.

Math (White et al., 2025), and GPQA (Rein et al., 2023), and LiveCodeBench (Jain et al., 2024). For
each AIME problem, we sample 128 candidate responses no longer than 16k tokens from DeepSeek-
R1-Distill-Qwen-32B. On LiveBench Math and GPQA, and LiveCodeBench, we sample only 64
candidate responses. Similar to the construction of our training dataset, we exclude the reasoning
content (i.e., the tokens between the <think> and </think> tags) during inference (see Appendix C.2).
To ensure our metric estimates (e.g., Pass@N or PV@N) are precise, we report the mean over 1000
resampled draws of size N per problem and report 95% confidence intervals. Our results are provided
in Table 1.

Method AIME2024 AIME2025 LiveBench Math GPQA LiveCodeBench

Pass@1 67.0± 0.5 51.9± 0.6 62.1± 0.2 56.9± 0.2 55.6± 0.4
SC@32 83.4± 0.4 66.6± 0.5 67.0± 0.2 63.5± 0.2 63.0± 0.4
BoN@32 79.1± 0.5 60.8± 0.6 64.1± 0.2 63.9± 0.2 58.9± 0.4
WSC@32 85.6± 0.4 68.8± 0.5 67.5± 0.2 65.0± 0.2 63.5± 0.4
PV@32 85.5± 0.4 69.1± 0.5 67.8± 0.2 65.6± 0.2 63.3± 0.4

Table 1: Accuracy rates of DeepSeek-R1-Distill-Qwen-32B (N = 32) with various discriminative
verification techniques (highlighted in yellow). Pass@1 and SC@32 are included for comparison.

Across the board in Table 1, hybrid verification methods like WSC and PV consistently outperform
competing selection methods. For example, on AIME2025, PV@32 improves over Pass@1 by
17.2%, and beats SC@32 and BoN@32 by 2.5% and 8.3%, respectively. Amazingly, even on an
out-of-distribution task like GPQA, which includes questions on biology, physics, and chemistry,
PV@32 can outperform SC@32 by 2.1%. On LiveCodeBench, WSC@32 and PV@32 yield smaller
gains of 0.5% and 0.3% over SC@32, indicating that hybrid discriminative verification is at least as
strong as SC even on out-of-distribution tasks.

3.1 COMPUTE-FOCUSED COMPARISON OF DISCRIMINATIVE AND GENERATIVE VERIFICATION

Recent work has explored leveraging the generative and reasoning abilities of LLMs to verify
candidate solutions (Zhang et al., 2025; Mahan et al., 2024). Generative verifiers can leverage
additional test-time scaling to generate and aggregate over multiple CoT rationales to produce more
accurate verdicts (Zhao et al., 2025; Shi & Jin, 2025). While this strategy can boost performance, it
comes at a high cost. Generative verifiers require N (1 +M) = O(NM) long CoT generations per
problem, where M is the number of times each candidate solution is verified, leading to prohibitively

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

high inference costs as N or M is scaled. Discriminative verifiers provide a compelling alternative to
generative ones: they require only a single forward pass per candidate solution, avoiding the costly
decoding of long rationales. This efficiency makes them particularly attractive when compute is
limited, since any budget spent on verification could otherwise be allocated to generating additional
candidate solutions.

In this subsection, we compare discriminative and generative verification under equalized compute
budgets. Following prior work (Singhi et al., 2025), we measure the total inference compute, i.e., the
compute required to generate and verify candidate solutions. Concretely, we leverage Heimdall (Shi &
Jin, 2025), a state-of-the-art generative verifier trained from DeepSeek-R1-Distill-Qwen-32B. Similar
to hybrid discriminative verification, Heimdall leverages pessimistic verification to incorporate the
consensus signal from SC, thereby improving performance. We refer to this approach as GPV (see
Algorithm 5).

We focus our compute analysis on two perspectives: FLOPs and latency. FLOPs capture the
theoretical compute cost of each approach, while latency reflects the real-world efficiency on modern
hardware. Together, these perspectives allow us to identify the compute regimes where discriminative
verifiers are most effective and where the added expense of generative verification may be justified.

3.1.1 FLOPS ANALYSIS

FLOPs provide a theoretical measure of the intrinsic compute required, independent of hardware and
other implementation details, allowing us to study how compute requirements scale for discriminative
and verification techniques. For a decoder-only transformer model with hidden size d, intermediate
size m, L layers, and vocabulary size V , the FLOPs roughly decompose into three components:

1. Layer projections. Each token per layer requires 8d2 + 4dm FLOPs for Q,K, V,O projections
and the MLP.

2. Attention. With KV caching, prefill compute is quadratic in Tin: each of the Tin tokens attends to
all previous tokens, giving 4d · Tin(Tin+1)

2 FLOPs per layer. During decoding, cached keys/values
avoid recomputation, so each of the Tout generated tokens only attends to the fixed prefix and prior
outputs, costing 4d · (TinTout +

Tout(Tout−1)
2) FLOPs per layer.

3. LM Head. Finally, output projection adds 2dV Tout FLOPs, where V is the vocabulary size. For
discriminative verification, we set V = 1 and Tout = 1, corresponding to a single scalar output.

Note that this formulation omits smaller terms such as normalization layers, activation functions, or
positional encodings.

We compare discriminative and generative verification methods on AIME2025. For each, we vary
the number of candidate solutions N ∈ 2, 4, 8, 16, 32, 64, 128 and, for generative verification, the
number of verifications per response M ∈ 1, 2, 4, 8, 16, 32. Results are presented in Figure 3.

Repeated sampling provides a natural compute baseline: generating N candidate solutions requires
O(N) long CoT traces. For example, generating 32 candidate solutions to a problem from AIME2025
with DeepSeek-R1-Distill-Qwen-32B costs 2.0× 1016 FLOPs on average. SC selects the most com-
mon answer from the candidate solutions and uses no additional compute beyond that of repeated
sampling. By contrast, verification-based techniques incur additional compute cost. For example,
verifying 32 solutions with our discriminative verifier trained in Section 2.3 costs just 4.1 × 1014

FLOPs on average, just 2.0% of the compute used for repeated sampling. All discriminative ver-
ification techniques (BoN, WSC, PV) use the same amount of verification compute. While BoN
tends to underperform SC when N is large, hybrid discriminative verification methods consistently
outperform the SC baseline by up to 5.1% for a negligible amount of additional compute.

Conversely, generative verification techniques are significantly less efficient. For example, verifying
the same 32 solutions with Heimdall (Shi & Jin, 2025) just once (M = 1) requires 3.1× 1016 FLOPs,
over 50% more FLOPs than solution generation and nearly 76x more FLOPs than discriminative
verification. While generative verification can be made more effective by scaling the number of
verifications per candidate solution (i.e., increasing M), the compute requirements scale linearly.

Critically, under practical FLOP budgets, hybrid discriminative verification techniques outperform
generative verification. This is because discriminative methods allocate nearly all of the compute

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

SC@N BoN@N WSC@N PV@N GPV@N,M

1015 1016 1017

FLOPs
50

55

60

65

70

75

80

85
AC

C
on

 A
IM

E2
02

5

(a) M = 1

1015 1016 1017

FLOPs
50

55

60

65

70

75

80

85

AC
C

on
 A

IM
E2

02
5

(b) M = 2

1015 1016 1017

FLOPs
50

55

60

65

70

75

80

85

AC
C

on
 A

IM
E2

02
5

(c) M = 4

1015 1016 1017 1018

FLOPs
50

55

60

65

70

75

80

85

AC
C

on
 A

IM
E2

02
5

(d) M = 8

1015 1016 1017 1018

FLOPs
50

55

60

65

70

75

80

85

AC
C

on
 A

IM
E2

02
5

(e) M = 16

1015 1016 1017 1018

FLOPs
50

55

60

65

70

75

80

85

AC
C

on
 A

IM
E2

02
5

(f) M = 32

Figure 3: Accuracy vs. FLOPs on AIME2025 under equalized compute budgets. Each subplot
varies the number of verifications per candidate solution (M). Along each curve, successive points
correspond to doubling the number of candidate solutions (N). The shaded region highlights the
FLOPs budgets where hybrid discriminative verification techniques strictly outperform generative
verification under equalized compute budgets.

budget towards sampling candidate solutions, while generative verification splits its compute budget
between sampling and verifying candidates. Under realistic compute budgets, scaling the number
of candidate solutions produces greater returns than scaling verifications; even an oracle-level
verifier will fail to produce the correct answer if no correct solutions were sampled. With a large
enough budget, however, the gain from sampling additional candidates begins to saturate, and
generative verification techniques begin to dominate. The critical threshold at which generative
verification becomes superior depends on M (Figure 3). For example, when M = 1, hybrid
discriminative verification techniques outperform generative verification for any combination of
N ≤ 128 and M ≤ 32. The optimal generative configuration occurs when M = 2, but even still,
hybrid discriminative verification methods remain optimal for compute budgets less than 2.2× 1016

FLOPs.

3.1.2 LATENCY ANALYSIS

While FLOPs provide a useful theoretical measure of compute, they do not fully capture the practical
costs of inference. In real deployments, generation is often memory- and I/O-bound, with bottlenecks
introduced by KV cache size, communication overhead, and sampling inefficiencies. Wall-clock
latency, therefore, provides a more realistic measure of efficiency, since compute is ultimately priced
in time rather than FLOPs.

We measure the average latency on AIME2025 using a single NVIDIA H100 SXM5 GPU. We
leverage vLLM (Kwon et al., 2023) and its many optimizations, including dynamic batching and
prefix caching, to reflect real-world usage. Similar to Section 3.1.1, we time the generation of N ∈
2, 4, 8, 16, 32, 64, 128 candidate solutions with DeepSeek-R1-Distill-Qwen-32B and the verification
of the solutions with our trained discriminative verifier and Heimdall (Shi & Jin, 2025). Latency
results are reported in Table 2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

N = 1 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 128

Repeated Sampling 273.1 276.6 288.4 448.4 782.9 1434.0 2815.5 5514.1

Discriminative 0.05 0.10 0.21 0.42 0.83 1.66 3.32 6.65
Generative (M = 2) 552.0 558.8 656.6 992.8 1825.7 3423.7 6668.8 13160.7

Table 2: The average wall-clock time (s) for repeatedly sampling N candidate solutions, as well as
the average time to verify each candidate solution using discriminative and generative verification.

The latency results largely mirror the FLOP-based analysis in Section 3.1.1, but with even larger
differences between discriminative and generative verification. For instance, verifying 32 solutions
sampled from DeepSeek-R1-Distill-Qwen-32B with our 1.5B discriminative verifier takes only
1.66 seconds, just 0.1% of the generation time. This is an order of magnitude smaller than what
FLOP estimates suggested (2.0%), reflecting the fact that discriminative verifiers avoid the decoding
bottlenecks that dominate wall-clock latency.

Generative verification, by contrast, becomes even less practical under a latency perspective. Just
verifying 32 candidate solutions with Heimdall at M = 2 takes 3423.7 seconds, over twice the
time needed for solution generation, and more than 2000× the cost of discriminative verification.
These inefficiencies stem from the need to generate long CoTs for each verification, which incur
memory-bandwidth and KV cache overheads not reflected in theoretical FLOP estimates. Indeed, as
shown in Figure 1, hybrid discriminative verification methods dominate generative verification for
all inference budgets shorter than 22.5 minutes (1350s) on AIME2025 with M = 2. This threshold
is dependent on a range of factors, including the number of verifications per solution (M), the
specific solver, the size of the verifier, and the dataset, but it highlights a broader trend: under realistic
latency constraints, discriminative verification almost always gives better performance than generative
verification.

In summary, while the FLOP analysis in Section 3.1.1 already showed discriminative verification to
be more efficient, latency measurements make the contrast even sharper: discriminative verification
achieves consistent gains for virtually the same latency as SC, whereas generative verification quickly
becomes impractical as N or M grows.

3.2 SCALING MODEL SIZE FOR DISCRIMINATIVE VERIFICATION

Here, we analyze how discriminative verification techniques scale with respect to the size of the
solver model, which generates the candidate solutions, and the size of the verifier, which verifies each
candidate solution. To do sostudy the effect of scaling the solver, we generate 128 candidate solutions
per question in AIME2024 and AIME2025 using DeepSeek-R1-Distill-Qwen models with 1.5B, 7B,
14B, and 32B parameters, and verify each using our trained discriminative verifier. To isolate the
effect of scaling the verifier, we train a second verifier initialized from DeepSeek-R1-Distill-Qwen-7B,
and verify each candidate solution with both the 1.5B and 7B verifiers. We plot the aggregate results
in Figure 4 for several values of N .

We observe that increasing the solver’s size produces consistent but diminishing performance increases
on AIME, while the effect of scaling the verifier’s size is only noticeable when N is sufficiently
large. Specifically, hybrid methods like WSC and PV scale similarly to SC as the size of the solver is
increased, with WSC and PV maintaining a consistent edge over SC regardless of the solver’s size and
verifier’s size, across various Ns. BoN, on the other hand, exhibits poor scaling behavior regardless
of the verifier’s size: when N is small, BoN only slightly underperforms SC, but when N is large,
BoN trails far behind. These results suggest that hybrid approaches can effectively mitigateare more
effective than scaling the verifier for mitigating BoN’s long-tail vulnerability.

3.3 INFERENCE-TIME SCALING OF DISCRIMINATIVE VERIFICATION

We study how each discriminative verification method benefits from increased inference-time com-
pute along two axes: the number of candidate solutions sampled from the solver and the reasoning
budget allocated to the solver. First, we observe that scaling N produces consistent but diminishing
improvements in performance on AIME (i.e., Pass@N increases). BoN struggles to benefit from scal-
ing N , with performance quickly saturating and even falling. On the other hand, hybrid approaches

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Pass@N
PV@N (1.5B)

SC@N
BoN@N (7B)

BoN@N (1.5B)
WSC@N (7B)

WSC@N (1.5B)
PV@N (7B)

1.5B 7B 14B 32B
Solver Size

40

50

60

70

80

90

AC
C

on
 A

IM
E

(a) N = 8

1.5B 7B 14B 32B
Solver Size

40

50

60

70

80

90

AC
C

on
 A

IM
E

(b) N = 16

1.5B 7B 14B 32B
Solver Size

40

50

60

70

80

90

AC
C

on
 A

IM
E

(c) N = 32

1.5B 7B 14B 32B
Solver Size

40

50

60

70

80

90

AC
C

on
 A

IM
E

(d) N = 64

Figure 4: Accuracy rates on AIME 2024/2025 for various discriminative verification methods across
four solver sizes and two verifier sizes for several values of N . Pass@N and SC@N are included as
baselines.

Pass@N SC@N BoN@N WSC@N PV@N

20 21 22 23 24 25 26 27

Number of solutions sampled (N)

60

65

70

75

80

85

90

AC
C

on
 A

IM
E2

02
4

DeepSeekR1
o3-mini (medium)

o3-mini (high)

o3-mini
(low)

0 29 210 211 212 213 214

Reasoning Length
20

30

40

50

60

70

80

90
AC

C
on

 A
IM

E2
02

4

Figure 5: Left: Unlike BoN, hybrid techniques show consistent but diminishing improvements
on AIME2024 from increasing the number of candidate results N sampled from DeepSeek-R1-
Distill-Qwen-32B. Right: The performance of DeepSeek-R1-Distill-Qwen-32B on AIME2024 scales
logarithmically with the reasoning budget regardless of verification method. Here, N = 32.

like WSC and PV show consistent improvements as more solutions are sampled, maintaining a 2.2%
to 5.6% edge over SC as N is scaled from 2 to 128. On AIME2024In Figure 5 (left), WSC and PV
boost the accuracy of DeepSeek-R1-Distill-Qwen-32B on AIME2024 from 66.8% to 79.7% with
only 4 candidate solutions, matching the performance of o3-mini (medium) or DeepSeek-R1, and
outperforming SC by 3.7%.

To control the reasoning budget, we use budget forcing (Muennighoff et al., 2025) and truncate the
candidate solutions T ∈ {0, 512, 1024, 2048, 4096, 8192, 16384} tokens after the opening think tag,
manually append the closing think tag, then allow the model to continue generating its final answer.
In doing so, we collect solutions under constrained reasoning budgets. We observe that even as the
reasoning budget is scaled from 0 to 16k tokens, WSC and PV maintain an edge over SC, even while
BoN falls off (see Figure 5 (right)), showcasing the reliability of hybrid verification methods under
various constraints.

3.4 FAILURE MODES OF DISCRIMINATIVE VERIFICATION

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

WSC PV
Beat SC (%) 4.6 5.1
Tie SC (%) 93.2 92.3
Lose to SC (%) 2.2 2.6

Minority override (%) 69.0 51.3
Narrow margin (%) 31.0 48.7

Table 3: Failure modes of WSC and PV on
AIME2025.

To better understand the limitations of hybrid discrim-
inative verification, we analyze their failure modes
on AIME2025 using 1,000 Monte Carlo trials per
question. In each trial, we sample 32 candidates from
the solution pool and compare WSC and PV to SC.
We observe that failures are rare, with WSC and PV
underperforming SC on only 2.2% and 2.6% of tri-
als, respectively (Table 3). When failures happen,
they tend to manifest in two common patterns: (1) a
“minority override” error in which a high-scoring but
small, incorrect cluster overrides the consensus, and
(2) a “narrow margin” error where two answers have similar frequencies but the incorrect cluster
scores slightly higher. An example of the first failure mode is AIME2025 Problem 13, in which a
minority cluster of size 7 (with an average score of 0.58) outscores the correct consensus cluster
of size 16 (with an average score of 0.10). An example of the second failure mode is AIME2025
Problem 22, where two dominant clusters form and a narrow score margin (0.52 vs 0.47) overrides a
slight consensus (41 vs 42). In practice, on problems where these patterns emerge, it may be worth
turning to a stronger generative verifier to resolve the ambiguity.

4 RELATED WORK

LLM Verifiers LLM-based verifiers can be broadly categorized into generative and discriminative
approaches. Generative verifiers use large language models as judges that assess the correctness
or quality of outputs by generating natural language rationales. A growing body of work explores
this direction, employing LLMs as judges for modeling human preferences (Dubois et al., 2024;
Zheng et al., 2024; Li et al., 2024; Wang et al., 2023c; Kim et al., 2023; 2024; Li et al., 2023; Zhu
et al., 2023b; Mahan et al., 2024), or as verifiers for evaluating solution correctness in reasoning
tasks (Zhang et al., 2024c; Singhi et al., 2025; Shi & Jin, 2025; Saha et al., 2025).

In contrast, discriminative verifiers, such as reward models, assign scalar scores to candidate responses
based on human preference data (Christiano et al., 2017; Ziegler et al., 2019; Zhu et al., 2023a; Liu
& Zeng, 2024; Wang et al., 2024; Park et al., 2024; Han et al., 2024). These models are central
to reinforcement learning from human feedback and are also used to rank or select responses in
BoN inference settings (Lightman et al., 2023; Wang et al., 2023a; Luo et al., 2024; Saunders et al.,
2022; Uesato et al., 2022; Yu et al., 2024). Together, generative and discriminative verifiers provide
complementary paradigms for evaluating, selecting, and aligning LLM outputs at inference time.

LLM Reasoning A substantial body of work has investigated improving the mathematical reasoning
capabilities of LLMs through training Cobbe et al. (2021); Guan et al. (2025); Hosseini et al. (2024);
Lightman et al. (2023); Pang et al. (2024); Ye et al. (2025); Luo et al. (2025b;a), test-time scaling Snell
et al. (2024); Brown et al. (2024); Setlur et al. (2024), or a combination of both Zhang et al. (2024b);
Guan et al. (2025); Xie et al. (2024); Zhang et al. (2024a). Following the release of o1 OpenAI
(2024), there has been a surge of interest in test-time scaling methods for LLM reasoning Snell et al.
(2024); Brown et al. (2024); Singhi et al. (2025); Zhao et al. (2025), which improve performance by
sampling multiple solutions and aggregating them via majority voting or LLM-based verification.
Our work builds on this line of research, demonstrating that discriminative LLM verifiers can serve as
an effective and efficient verification approach for test-time scaling in complex math reasoning tasks.

5 CONCLUSION

We studied hybrid discriminative verification as a practical alternative to costly generative approaches.
Discriminative methods achieve comparable or superior accuracy in practical compute regimes,
where the high cost of CoT generation limits generative approaches. Our results highlight hybrid
discriminative verification as the more efficient choice for realistic test-time scaling.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide a link to our anonymized codebase in the abstract, containing everything necessary to
reproduce all experiments, including the figures. In addition, we provide pseudocode for the main
algorithms in Appendix A and training details and hyperparameters for our discriminative verifier in
Appendix B.

REFERENCES

R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3–4):324–345, December 1952.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and MaxEnt discriminative
reranking. In Kevin Knight, Hwee Tou Ng, and Kemal Oflazer (eds.), Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL‘05), pp. 173–180, Ann
Arbor, Michigan, June 2005. Association for Computational Linguistics. doi: 10.3115/1219840.12
19862. URL https://aclanthology.org/P05-1022/.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

11

https://aclanthology.org/P05-1022/
https://arxiv.org/abs/2501.12948

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems, 36,
2024.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519, 2025.

Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang, Bill Yuchen Lin, Nathan Lambert, Yejin
Choi, and Nouha Dziri. Wildguard: Open one-stop moderation tools for safety risks, jailbreaks,
and refusals of llms, 2024. URL https://arxiv.org/abs/2406.18495.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457,
2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained eval-
uation capability in language models. In The Twelfth International Conference on Learning
Representations, 2023.

Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
model specialized in evaluating other language models. arXiv preprint arXiv:2405.01535, 2024.

Jan Hendrik Kirchner, Yining Chen, Harri Edwards, Jan Leike, Nat McAleese, and Yuri Burda.
Prover-verifier games improve legibility of llm outputs, 2024. URL https://arxiv.org/ab
s/2407.13692.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Hynek Kydlíček. Math-Verify: Math Verification Library. https://github.com/hugging
face/math-verify, 2025. Version 0.6.1, Apache-2.0 license.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau,
Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingface.co/AI-M
O/NuminaMath-CoT](https://github.com/project-numina/aimo-progres
s-prize/blob/main/report/numina_dataset.pdf), 2024.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. Generative judge
for evaluating alignment. arXiv preprint arXiv:2310.05470, 2023.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez,
and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Chris Yuhao Liu and Liang Zeng. Skywork reward model series. https://huggingface.co
/Skywork, September 2024. URL https://huggingface.co/Skywork.

12

https://arxiv.org/abs/2406.18495
https://arxiv.org/abs/2407.13692
https://arxiv.org/abs/2407.13692
https://github.com/huggingface/math-verify
https://github.com/huggingface/math-verify
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://huggingface.co/Skywork

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepcoder: A fully open-source 14b coder at o3-mini level. https://pretty-radio-b75
.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-min
i-Level-1cf81902c14680b3bee5eb349a512a51, 2025a. Notion Blog.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/DeepS
caleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-196
81902c1468005bed8ca303013a4e2, 2025b. Notion Blog.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models. arXiv preprint
arXiv:2410.12832, 2024.

Justus Mattern, Sami Jaghouar, Manveer Basra, Jannik Straube, Matthew Di Ferrante, Felix Gabriel,
Jack Min Ong, Vincent Weisser, and Johannes Hagemann. Synthetic-1: Two million collaboratively
generated reasoning traces from deepseek-r1, 2025. URL https://www.primeintellect
.ai/blog/synthetic-1-release.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking the
potential of slms in grade school math, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

OpenAI. Learning to reason with language models. https://openai.com/index/learnin
g-to-reason-with-llms/, 2024. Accessed: 2025-04-25.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Richard Yuanzhe Pang, Weizhe Yuan, He He, Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. Advances in Neural Information Processing
Systems, 37:116617–116637, 2024.

Junsoo Park, Seungyeon Jwa, Meiying Ren, Daeyoung Kim, and Sanghyuk Choi. Offsetbias:
Leveraging debiased data for tuning evaluators, 2024.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A Graduate-Level Google-Proof Q&A
Benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

Swarnadeep Saha, Xian Li, Marjan Ghazvininejad, Jason Weston, and Tianlu Wang. Learning to plan
& reason for evaluation with thinking-llm-as-a-judge. arXiv preprint arXiv:2501.18099, 2025.

13

https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://www.primeintellect.ai/blog/synthetic-1-release
https://www.primeintellect.ai/blog/synthetic-1-release
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2311.12022

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802,
2022.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning. arXiv preprint arXiv:2410.08146, 2024.

Wenlei Shi and Xing Jin. Heimdall: test-time scaling on the generative verification, 2025. URL
https://arxiv.org/abs/2504.10337.

Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach, and
Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and generative
verification for llm reasoning, 2025. URL https://arxiv.org/abs/2504.01005.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Sijun Tan, Siyuan Zhuang, Kyle Montgomery, William Y. Tang, Alejandro Cuadron, Chenguang
Wang, Raluca Ada Popa, and Ion Stoica. Judgebench: A benchmark for evaluating llm-based
judges, 2025. URL https://arxiv.org/abs/2410.12784.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL
https://qwenlm.github.io/blog/qwq-32b-preview/.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: A label-free step-by-step verifier for llms in mathematical reasoning. arXiv
preprint arXiv:2312.08935, 2023a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023b. URL https://arxiv.org/abs/2203.11171.

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang,
Rui Xie, Jindong Wang, Xing Xie, et al. Pandalm: An automatic evaluation benchmark for llm
instruction tuning optimization. arXiv preprint arXiv:2306.05087, 2023c.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J. Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset for training
top-performing reward models, 2024. URL https://arxiv.org/abs/2406.08673.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms
for large language models. arXiv preprint arXiv:2406.16838, 2024.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 2024.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh Sandha, Siddartha
Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger, and Micah Goldblum.
Livebench: A challenging, contamination-limited llm benchmark, 2025. URL https://arxiv.
org/abs/2406.19314.

14

https://arxiv.org/abs/2504.10337
https://arxiv.org/abs/2504.01005
https://arxiv.org/abs/2410.12784
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2406.08673
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2406.19314

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451, 2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement, 2024. URL https://arxiv.org/abs/2409.12122.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning in
mathematical reasoning. In Findings of the Association for Computational Linguistics: NAACL
2024, pp. 858–875, 2024.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. Advances in Neural Information Processing
Systems, 37:64735–64772, 2024a.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong Li, Tong Xie, Xiaoshui Huang, Shufei Zhang,
Marco Pavone, Yuqiang Li, et al. Llama-berry: Pairwise optimization for o1-like olympiad-level
mathematical reasoning. arXiv preprint arXiv:2410.02884, 2024b.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. arXiv preprint arXiv:2408.15240,
2024c.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction, 2025. URL https://arxiv.
org/abs/2408.15240.

Eric Zhao, Pranjal Awasthi, and Sreenivas Gollapudi. Sample, scrutinize and scale: Effective
inference-time search by scaling verification, 2025. URL https://arxiv.org/abs/2502
.01839.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, and Jiantao Jiao. Starling-7b: Improving llm
helpfulness & harmlessness with rlaif, November 2023a.

Lianghui Zhu, Xinggang Wang, and Xinlong Wang. Judgelm: Fine-tuned large language models are
scalable judges. arXiv preprint arXiv:2310.17631, 2023b.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

A ALGORITHMS

Algorithm 1 Self-Consistency (SC@N)

Require: problem Q, solver LM, slate size N
1: Candidates← {si}Ni=1 ∼ LM(Q) ▷ Stage 1: Generate Candidates
2: Extract final answers {ai}Ni=1 and partition into clusters {Ca} by a Stage 2: Group Answers
3: for each cluster Ca do
4: na ← |Ca|
5: a∗ ← argmaxa na ▷ Stage 3: Plurality Vote
6: return a∗

15

https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2502.01839
https://arxiv.org/abs/2502.01839

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 Best-of-N (BoN@N)

Require: problem Q, solver LM, slate size N , verifier V
1: Candidates← {si}Ni=1 ∼ LM(Q) ▷ Stage 1: Generate Candidates
2: Verifications← { ri = V (si) }Ni=1 ▷ Stage 2: Verify Candidates
3: i∗ ← argmaxi∈{1,...,N} ri ▷ Stage 3: Select Highest-Scoring Solution
4: a∗ ← Ans(si∗) ▷ Stage 4: Extract Final Answer
5: return a∗

Algorithm 3 Weighted Self-Consistency (WSC@N)

Require: problem Q, solver LM, slate size N , verifier V
1: Candidates← {si}Ni=1 ∼ LM(Q) Stage 1: Generate Candidates
2: Verifications← { ri = V (si) }Ni=1 ▷ Stage 2: Verify Candidates
3: Extract final answers {ai}Ni=1 and partition into clusters {Ca} by a Stage 3: Group Answers
4: for each cluster Ca do
5: Wa ←

∑
i∈Ca

ri

6: a∗ ← argmaxa Wa Stage 4: Select Highest-Weight Answer
7: return a∗

Algorithm 4 Pessimistic Verification (PV@N)

Require: problem Q, solver LM, slate size N , verifier V , penalty weight α
1: Candidates← {si}Ni=1 ∼ LM(Q) ▷ Stage 1: Generate Candidates
2: Verifications← { ri = V (si)}Ni=1 ▷ Stage 2: Verify Candidates
3: Extract final answers {ai}Ni=1 and partition into clusters {Ca} by a Stage 3: Group Answers
4: for each cluster Ca do
5: na ← |Ca|
6: r̄(a)← 1

na

∑
i∈Ca

ri

7: ψa ← lnN
na+1

8: a∗ ← argmaxa [r̄(a)− αψa] ▷ Stage 4: Select Best Answer
9: return a∗

Algorithm 5 Generative Pessimistic Verification (GPV@N,M)

Require: problem Q, solver LM, slate size N , generative verifier V , # of verifications M , penalty
weight α

1: Candidates← {si}Ni=1 ∼ LM(Q) ▷ Stage 1: Generate Candidates
2: for i = 1 to N do ▷ Stage 2: Generative Verifications (repeat M times)
3: for m = 1 to M do
4: (CoTi,m, ri,m)← V (si)

5: r̃i ← 1
M

∑M
m=1 ri,m

6: Extract final answers {ai}Ni=1 and partition into clusters {Ca} by a Stage 3: Group Answers
7: for each cluster Ca do
8: na ← |Ca|
9: r̄(a)← 1

na

∑
i∈Ca

r̃i

10: ψa ← ln(NM)
naM+1

11: a∗ ← argmaxa [r̄(a)− αψa] ▷ Stage 4: Select Best Answer
12: return a∗

B ADDITIONAL TECHNICAL DETAILS

Our training data is based on a subset of Numina-Math (LI et al., 2024). DeepSeek-R1 responses were
collected from Mattern et al. (2025). Meanwhile, the majority of the responses from six DeepSeek-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

R1-Distill models, DeepScaleR-1.5B-Preview, and the two QwQ models were generated on a local
cluster of NVIDIA A100 GPUs, with a minority coming from 3rd party API providers.

Our evaluation datasets are AIME2024, AIME2025, LiveBench-Math (White et al., 2024), and
GPQA (Rein et al., 2023), and LiveCodeBench Jain et al. (2024). Combined, they include 596875
questions. We decontaminate the training dataset by excluding any problem whose fuzzy-match
similarity to an entry in our evaluation sets exceeds 80. For each AIME problem, we sample 128
candidate solutions, while on LiveBench Math and, GPQA, and LiveCodeBench, we sample only 64
candidate solutions.

When rolling out solutions during training and evaluation, we follow the model’s usage recommen-
dations, namely prefilling the opening think token, sampling with a temperature of 0.6 and a top-p
value of 0.95, and instructing the model to output its final answer within \boxed{}.

Our 1.5B and 7B discriminative verifiers waswere trained for a single epoch on 4xA100 SXM4 GPUs
and 4xH200 SXM5 GPUs using the hyperparameters listed in Table 4.

Hyper-parameter Value

Global batch size 32
LR 5×10−5

LR scheduler Linear with 20 warmup steps
Optimizer (AdamW) β1 = 0.9, β2 = 0.999
λ 0.01
Max gradient norm 1.0

Table 4: Hyper-parameters for training discriminative verifiers.

C ADDITIONAL ABLATION EXPERIMENTS

In addition to our main experiments, we include two further ablations conducted on a held-out
validation set. To construct this set, we removed 250 problems from the training dataset and generated
32 responses per problem with 1.5B, 7B, 14B, and 32B variants of deepseek-ai/DeepSeek-R1-Distill-
Qwen. We discarded items where all sampled responses were correct or all incorrect, leaving 691
problems for validation. This setup ensures that both correct and incorrect responses are available,
making it suitable for evaluating the performance of a verifier.

C.1 EFFECT OF THE PESSIMISM WEIGHT α

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
55

60

65

70

75

80

AC
C

on
 V

al
 S

et

N=4
N=8
N=16
N=32

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
40

45

50

55

60

65

70

75

80

AC
C

on
 V

al
 S

et

1.5B
7B
14B
32B

Figure 6: Left: Validation accuracy of PV as a function of the pessimism weight α for various
numbers of independent candidate solutions (N). Right: Validation accuracy of PV as a function of
the pessimism weight α for various-sized solver models.

We first ablate the effect of the pessimism weight α in pessimistic verification (PV). As shown
in Figure 6 (left), which only includes 147 response groups generated by deepseek-ai/DeepSeek-
R1-Distill-Qwen-32B, performance peaks around α ≈ 0.5 for N ∈ 4, 8, 16, 32 and slowly decays.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

21 22 23 24 25 26 27

Number of solutions sampled (N)

65

70

75

80

85

90

95

100
AC

C
on

 V
al

 S
et

Pass@N SC@N BoN@N WSC@N PV@N

BoN@N (w/ reasoning) WSC@N (w/ reasoning) PV@N (w/ reasoning)

Figure 7: Validation accuracy on the held-out set when including vs. excluding reasoning content in
verifier inputs for both training and inference.

Figure 6 (right) demonstrates that α = 0.5 is a reasonable choice for 4 solver models of various
sizes. Based on this result, we set α = 0.5 for all main experiments. Moreover, we find this to be a
reasonable choice for AIME2025, as well as with our 7B verifier, as the optimal α seems minimally
dependent on either of these factors. Notably, in Shi & Jin (2025), the authors use an α = 0.1 for
experiments with Heimdall. This makes sense: with a stronger verifier and sufficiently large M , you
can reduce α and put more weight on the verifier.

C.2 EFFECT OF REASONING CONTENT ON THE VERIFIER

We next ablate whether to pass the reasoning content (the tokens between <think> and </think>)
to the verifier during training and inference. Our main experiments exclude reasoning, i.e., the verifier
observes only the final solution string. For comparison, we trained and evaluated a second verifier
that retains the reasoning content. As shown in Figure 7, including reasoning consistently degrades
performance across all selection methods: BoN, WSC, and PV all achieve lower accuracy when
reasoning traces are present. This suggests that the additional reasoning text introduces noise rather
than a useful signal, reinforcing our choice to exclude it during both training and evaluation.

18

	Introduction
	Effective Discriminative Verification
	Preliminaries
	Hybrid Discriminative Verification
	Discriminative Verifier Training

	Main Results
	Compute-Focused Comparison of Discriminative and Generative Verification
	FLOPs Analysis
	Latency Analysis

	Scaling Model Size For Discriminative Verification
	Inference-time Scaling of Discriminative Verification
	Failure Modes of Discriminative Verification

	Related Work
	Conclusion
	Algorithms
	Additional Technical Details
	Additional Ablation Experiments
	Effect of the Pessimism Weight
	Effect of Reasoning Content on the Verifier

