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ABSTRACT

Generative Flow Networks (GFlowNets) are generative models capable of produc-
ing graphs. While GFlowNet theory guarantees that a fully trained model samples
from an unnormalized target distribution, computing state transition probabilities
remains challenging due to the presence of equivalent actions that lead to the same
state. In this paper, we analyze the properties of equivalent actions in the context
of graph generation tasks and propose efficient solutions to address this prob-
lem. Our theoretical analysis reveals that naive implementations, which ignore
equivalent actions, introduce systematic bias in the sampling distribution for both
atom-based and fragment-based graph generation. This bias is directly related to
the number of symmetries in a graph, a factor that is particularly critical in ap-
plications such as drug discovery, where symmetry plays a key role in molecular
structure and function. Experimental results demonstrate that a simple reward-
scaling technique not only enables the generation of graphs that closely match
the target distribution but also facilitates the sampling of diverse and high-reward
samples.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) have emerged as a powerful framework for learning gener-
ative models capable of sampling complex, compositional objects with probabilities proportional to
a given reward. Inspired by reinforcement learning (RL), GFlowNets generate these objects through
a sequence of actions that iteratively modify the structure of the object being built. This approach
is particularly well-suited for generating compositional objects, such as graphs, where each step in
the process adds components in a structured and interpretable manner. A prominent application of
GFlowNets is molecule generation, where molecules are sequentially constructed as graphs (Bengio
et al., 2021; Jain et al., 2023a).
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Figure 1: The connected com-
ponent on the right is the par-
tial graph to be edited, and
node 6 is a new node to be
connected. Connecting node
6 to any of the existing nodes
in the same orbit results in
isomorphic graphs.

However, GFlowNet training objectives rely on the accurate com-
putation of the transition probability P (s → s′) of a policy, which
becomes particularly challenging in graph-building environments
due to the presence of equivalent actions. These are actions that,
although different in representation, lead to the same graph struc-
ture. For instance, consider Figure 1, where connecting a new node
(node 6) to either of two existing nodes (nodes 4 or 5) results in
the same graph. Although these actions are distinct, they lead to
structurally identical graphs, meaning their transition probabilities
must be summed. More generally, when multiple actions lead to the
same state s′ from a given state s, the transition probability must
account for all equivalent actions. This issue, referred to as the
equivalent action problem, arises because determining whether two
actions result in the same state requires computationally expensive
graph isomorphism tests.

While GFlowNets were first popularized for their reward-matching capabilities, our analysis reveals
that failing to account for equivalent actions introduces a systematic bias in GFlowNets, skewing
the model towards sampling graphs with fewer symmetries in atom-based generation and favoring
symmetric components in fragment-based generation. This bias is particularly problematic for tasks
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such as molecule generation, where symmetry plays a significant role. For example, over 50%
of molecules in the ZINC250k dataset exhibit more than one symmetry, with 18% of molecules
showing four or more symmetries. Ignoring symmetries leads to incorrect modeling and generation
of molecular structures, limiting the diversity and accuracy of samples.

In this paper, we propose a simple yet effective modification to the GFlowNet training objectives
to resolve the equivalent action problem. Our method adjusts the reward based on the number of
symmetries in a graph, requiring only minimal changes to the existing training algorithms. Addi-
tionally, we introduce a new unbiased estimator for the model likelihood, which we use to evaluate
the performance of our approach. Our key contributions are as follows:

• We present a rigorous formulation of autoregressive graph generation within the GFlowNet
framework, explicitly addressing the equivalent action problem.

• We analyze the impact of equivalent actions on learning and demonstrate how they intro-
duce biases in the sampling process, particularly in tasks involving high-symmetry objects
such as molecular graphs.

• We propose a simple yet effective method to resolve the equivalent action problem by
scaling the reward based on the automorphism group of the generated graph, allowing
GFlowNets to accurately model and sample from the target distribution.

• We introduce an unbiased estimator for the model likelihood, and through theoretical anal-
ysis and experiments, demonstrate the effectiveness of our method in generating diverse
and high-reward samples.

2 RELATED WORK

Autoregressive graph generation. There are two primary formulations of autoregressive mod-
els: one based on adjacency matrices and the other based on graph sequences (Chen et al., 2021).
Methods based on adjacency matrices (You et al., 2018b; Popova et al., 2019; Liao et al., 2019)
are unlikely to suffer from the equivalent action problem because they preserve the node order in-
formation generated so far, making each pair of (graph, node order) a unique state. In contrast,
equivalent actions arise in methods based on graph sequences (You et al., 2018a; Li et al., 2018;
Shi et al., 2020). This becomes problematic if a method requires state transition probabilities, as in
GFlowNets. Chen et al. (2021) suggest that, for graph sequence-based methods, the size of a node’s
orbit is equal to the number of equivalent transitions, which inspired our work.

GFlowNets. Several learning objectives have been proposed for GFlowNets, including flow
matching (Bengio et al., 2021), detailed balance (Bengio et al., 2023), trajectory balance (Malkin
et al., 2022), sub-trajectory balance (Madan et al., 2023), as well as their variants to improve training
efficiency (Pan et al., 2023; Shen et al., 2023). Recently, GFlowNets have been found to be equiva-
lent to maximum entropy reinforcement learning (Tiapkin et al., 2024; Mohammadpour et al., 2024),
which was previously known to be inadequate for directed acyclic graph (DAG) environments (Ben-
gio et al., 2021). However, none of these objectives can avoid the equivalent action problem, as they
are formalized based on state transitions, where multiple isomorphic graphs can represent the next
state.

Ma et al. (2024) had noticed that equivalent actions must be accounted for to compute exact transi-
tion probabilities. They proposed an approximate test to detect equivalent actions at each transition
using positional encoding. However, the bias in their model was demonstrated only experimentally
on synthetic dataset, without theoretical guarantees. Our work differs in that we provide an exact
and efficient solution to this problem, requiring corrections only once at the end of trajectories, as
opposed to at each transition within a trajectory, which makes our method straightforward to im-
plement. Our analysis reveals that the bias is present in general setting, namely in both atom- and
fragment-based generation schemes, and can significantly impact learning, particularly for highly
symmetric graphs. We provide further details in Appendix B and Table 1.
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Table 1: Comparison to “Baking Symmetry into GFlowNets”

Ma et al. (2024) Ours

Theory No theoretical guarantees Theoretical guarantees on biased sam-
pling is provided

Method Approximately identify equivalent ac-
tions at each transition

Exactly correct for bias by scaling re-
wards

Types
(Generality) Node types Node types, edge types, fragments

Experiment Synthetic graphs Real molecules and synthetic graphs

Computation
(Exact) Multiple isomorphism tests for each

transition
Computation of |Aut(G)| once for
each trajectory

Computation
(Approximate) Multiple positional encoding computa-

tions for each transition
Summation over the number of frag-
ments for each trajectory

3 PRELIMINARIES

3.1 GRAPH THEORY

Let G = (V,E) denote a graph, where V = {v1, . . . , vn} is the set of n vertices, and E ⊆ V × V
is the set of edges. For heterogeneous graphs, we also define labeling functions ln, le, and lg ,
which map nodes, edges, and graphs to their respective attributes. We denote G as the set of all
such graphs under consideration. A permutation π is a bijective mapping defined on the vertex
set. We extend the permutation to the vertex and edge sets as π(V ) = {π(v) : v ∈ V } and
π(E) = {(π(vi), π(vj)) : (vi, vj) ∈ E}, as well as to the graph as π(G) = (π(V ), π(E)). Since
any permutation simply relabels node indices, it maps to a structurally identical graph. This notion
is formalized as graph isomorphism.

Definition 3.1 (Isomorphism). Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic, denoted
G ∼= G′, if there exists a permutation π : V → V ′ such that π(E) = E′. For heterogeneous graphs,
the permutation must also preserve labels: for every v ∈ V , ln(v) = l′n(π(v)), for every (u, v) ∈ E,
le(u, v) = l′e(π(u), π(v)), and lg(G) = l′g(G

′).

An automorphism is a special case of an isomorphism where the graph is mapped to itself.

Definition 3.2 (Automorphism). An automorphism of a graph G = (V,E) is a permutation π on
the vertex set V that preserves the edge set, meaning π(E) = E. If labels are present, they must
also be preserved under the permutation. The set of all automorphisms of a graph G is called the
automorphism group of G, denoted by Aut(G).

In Figure 1, the graph has two automorphisms: the identity mapping and one that permutes nodes 4
and 5. We denote the order (or size) of the automorphism group as |Aut(G)|, which represents the
number of symmetries in the graph.

Definition 3.3 (Orbit). The orbit of a node u ∈ V in graph G is defined as Orb(G, u) = {v ∈
V : ∃π ∈ Aut(G), π(u) = v}. Similarly, the orbit of an edge (u, v) ∈ E in graph G is defined as
Orb(G, u, v) = {(h, k) ∈ E : ∃π ∈ Aut(G), (π(u), π(v)) = (h, k)}. More generally, the orbit of
a node set S ⊆ V in graph G is defined as Orb(G,S) = {S′ : ∃π ∈ Aut(G), π(S) = S′}.

An orbit is a set of nodes or edges that are structurally identical. In Figure 1, the orbit of node 4 is
{4, 5}, and the orbit of the edge (4, 3) is {(4, 3), (5, 3)}. Equivalent actions occur because they act
on nodes in the same orbit; since nodes 4 and 5 are in the same orbit, adding a new node to either
one is equivalent. This point will be further discussed in Section 4.2.
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3.2 GENERATIVE FLOW NETWORKS

The generation process of GFlowNets is defined as a finite DAG (S,A, TS), where S and A are the
sets of states and actions, and TS : S × A → S is a deterministic, acyclic transition function. Note
that our notation deviates from Bengio et al. (2023), but is similar to (Mohammadpour et al., 2024).
This formulation allows two different actions lead to the same next state.

Let s0 ∈ S denote the special starting point of the process, called the initial state, with no incoming
edges in the transition graph. Let X ⊆ S be the set of terminal states, for which rewards are
given. From the initial state s0, objects are constructed sequentially by the forward policy pS(a|s)
until reaching terminal states. A set of complete trajectories, denoted as T , consists of sequences
of transitions τ = (s0, a0, s1, . . . , an−1, sn) starting from the initial state s0 and terminating at
sn ∈ X , such that TS(st, at) = st+1 for all t. The goal of GFlowNets is to train a forward policy pS
that generates objects with a probability proportional to their reward, such that p⊤S (x) = R(x)/Z,
where Z is a normalizing constant and p⊤S (x) denotes the probability of terminating at x when
following pS . This is achieved by training pS using the following objectives.

Trajectory Balance (Malkin et al., 2022). The Trajectory Balance (TB) objective is based on the
flow consistency constraint at the trajectory level. Given a complete trajectory τ , the TB objective
is defined as follows:

LTB(τ) =

(
log

Z
∏n−1

t=0 pS(at|st)
R(sn)

∏n−1
t=0 qS(st, at|st+1)

)2

.

It introduces a backward policy qS that reverses the process. Given qS , which can be either fixed or
learned, the forward policy pS and the normalizing constant Z are trained to match the backward
flow induced by the reward function and the backward policy.

Detailed Balance (Bengio et al., 2023). The Detailed Balance (DB) objective is based on the
flow consistency constraint at the state-action level. The objective is defined for each transition
(s, a, TS(s, a) = s′) as:

LDB(s, a, s
′) =

(
log

F (s)pS(a|s)
F (s′)qS(s, a|s′)

)2

.

In addition to the backward policy qS , the DB objective requires learning the state flow function
F : S → R+, which represents the unnormalized probability that a policy visits state s.

4 THE EQUIVALENT ACTION PROBLEM

In this section, we formalize the graph generation process in the context of GFlowNets and discuss
the equivalent action problem.

4.1 PROBLEM DEFINITION

Consider a sequential graph generation process (G, E , TG) that constructs graphs by editing the nodes
and edges of existing partial graphs, where E is the set of graph editing actions and TG : G ×E → G
is an acyclic transition function. In previous work, the relationship between the two processes,
(S,A, TS) and (G, E , TG), was not explicitly addressed, and they were assumed to be identical.
Here we relate two processes in a formal way.

Since isomorphism is an equivalence relation, it partitions the space G into classes, where each
graph in a class is structurally identical to the others. Let [G] = {G′ ∈ G : G′ ∼= G} denote
the equivalence class of G induced by graph isomorphism. The state space S is defined as the set
of equivalence classes of graphs, S = {[G] : G ∈ G}, rather than the graph space G itself. This
is because our goal in using GFlowNets is to sample any graph within the equivalence class s in
proportion to R(s). If we allow individual graphs to represent states, the equivalence class of a
larger graph will be sampled exponentially more often.
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In practice, a graph generation process (G, E , TG) is constructed by first designing a set of allowable
actions in a given graph. Previous work has defined various types of actions for this process (You
et al., 2018a; Li et al., 2018; Bengio et al., 2021; Liao et al., 2019). For example, AddEdge(u, v)
adds an edge (u, v) to the existing graph G, and AddNode(u, v) adds a new node v and con-
nects it to the existing node u. The Stop action can be used to terminate the process, in which
case the graph-level attribute is flagged as terminated. We also define the corresponding backward
actions that reverse the process. For example, RemoveEdge(u, v) removes the edge (u, v), and
RemoveNode(v) removes node v and any edges connected to it. Other types of actions are also
possible. By confining the set of forward actions to those that enlarge the graph, the state transitions
form a DAG structure.

For a given graph G, we define Orb(G,−→e ) as the orbit of an forward graph editing action −→e ∈ E ,
referring to the orbit of the affected node or edge in the graph (See Table 4). For example, the orbit
of AddEdge(u, v) is defined as Orb(G, u, v). Equivalent actions are defined as those that lead to
isomorphic graphs within the same orbit.

Definition 4.1 (Equivalent actions). Two actions −→e ′ and −→e ′ are equivalent if they are in the same
orbit and induce isomorphic graphs. That is, Orb(G,−→e ) = Orb(G,−→e ′) and TG(G,−→e ) ∼=
TG(G,−→e ′). The set of equivalent actions of a graph editing action −→e given G is denoted as
A(G,−→e ).

In Figure 1, adding node 6 to either 4 or 5 results in isomorphic graphs, thus AddNode(4, 6) and
AddNode(5, 6) are equivalent actions. Note, however, that the resulting graphs are not equal, as
(4, 6) ̸= (5, 6). Similarly to the relation between S and G, the action space A is defined as the
equivalence class of graph editing actions A = {A(G,−→e ) : −→e ∈ E , G ∈ G}. We denote the
backward action corresponding to −→e as ←−e = (G,−→e ). Backward equivalent actions are defined
analogously to forward equivalent actions but in the context of the backward graph process.

For computations, we work with graphs rather than directly with states. If we use neural networks
equivariant to permutations, such as graph neural networks, then all graph in the same equivalence
class will have the same representation. Consequently, we can take one representative graph from
the class and treat it as the state, using notations such as R(s) = R(G). However, when defin-
ing forward and backward policies over the graph space as pG and qG , it is important to note that
pG(
−→e |G) ̸= pS(a|s), as this requires summing over all possible equivalent actions. Given a transi-

tion (G,−→e ,G′), state-action probabilities can be computed as follows:

pS(a|s) =
∑

−→e ′∈A(G,−→e )

pG(
−→e ′|G) qS(s, a|s′) =

∑
←−e ′∈A(G′,←−e )

qG(
←−e ′|G′).

Note that by defining equivalent actions as those within the same orbit, we allow for the possibility
of two distinct equivalent actions leading to the same next state: TS(s, a) = TS(s, a

′) where a ̸=
a′. In rare cases, pS(a|s) may not equal the transition probability P (s → s′) =

∑
a pS(a|s).

Nevertheless, this definition is sufficient for flow matching because a one-to-one correspondence
between A(G,−→e ) and A(G′,←−e ) exists for every transition (G,−→e ,G′).

4.2 PROPERTIES OF EQUIVALENT ACTIONS

To effectively address the equivalent action problem, we restrict the class of ac-
tions we consider to AddNode, AddEdge, SetNodeAttribute, SetEdgeAttribute,
SetGraphAttribute, and their corresponding backward actions. For fragment-based graph
generation, we also consider AddFragment in our experiments, but we discuss its properties sepa-
rately in Appendix D. These action classes can be easily extended to cover most of the design space
present in previous work on autoregressive graph generation (Li et al., 2018; You et al., 2018a; Luo
et al., 2021; Bengio et al., 2021). Precise definitions of these actions are provided in Appendix A.

The definition of the equivalent actions suggests that the computation of state-action probabilities
can be simplified by multiplying the number of equivalent actions with a graph editing probability:

pS(a|s) = |A(G,−→e )| · pG(−→e |G)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

G1

|Aut(G1)| = 2

G2

|Aut(G2)| = 6

G3

|Aut(G3)| = 2

|Orb(G1, )| = 1

|Orb(G2, )| = 3

|Orb(G2, )| = 3

|Orb(G3, )| = 1

Figure 2: Graphs representing two transitions (G1,
−→e 1, G2,

−→e 2, G3), with the first transition by
AddNode and the second by AddEdge. Graph editing actions induce orbits of some node/edge
set, which we used to define equivalent actions. The number of symmetries in the graph is related to
the number of equivalent actions, as seen in the ratio |Aut(Gt)| : |Aut(Gt+1)| = |Orb(Gt,

−→e t)| :
|Orb(Gt+1,

←−e t)| for t = 1, 2. Nodes in the same orbit are given the same color. See Figure 5 for
another illustration.

This is because when actions are parameterized using graph neural networks, equivalent actions
are assigned equal probabilities. Generally, permutation-equivariant functions, such as graph neural
networks, provide the same representations for nodes within the same orbit (more in Appendix F). If
we aggregate node representations to obtain edge representations using invariant aggregators, such
as SUM or MEAN, the edges in the same orbit will also receive identical representations. This
is desired property of graph neural networks, although actions from different orbits may collapse
into the same representations, reducing representational power (Zhang et al., 2021). Alternative
parameterizations, such as the relative edge parameterization proposed by Shen et al. (2023), also
assign equal probabilities to equivalent actions, while potentially enhancing representational power.

Equivalent actions are actions of the same type that act on the same orbit. In other words, graph
editing actions operating on the same orbit lead to isomorphic graphs. For instance, if (u, v) and
(h, k) are in the same orbit, then AddEdge(u, v) and AddEdge(h, k) are equivalent actions, mean-
ing they result in isomorphic graphs. This is because only the orbits are structurally important in
determining actions.
Lemma 1. For a given graph G and action type, actions applied to the same orbit are equivalent.
That is, if Orb(G,−→e ) = Orb(G,−→e ′), then TG(G,−→e ) ∼= TG(G,−→e ′). For backward actions,
Orb(G,←−e ) = Orb(G,←−e ′) implies T̄G(G,←−e ) ∼= T̄G(G,←−e ′).

The implication of Lemma 1 is that the number of equivalent actions can be represented as the order
of orbits: |A(G, e)| = |Orb(G, e)|. Next, we relate the number of equivalent actions to the order of
the automorphism groups.
Lemma 2. Let G′ = TG(G,−→e ), where −→e ∈ E represents an action that either adds a node, an
edge, or modifies an attribute in the graph G. Then, the following relationship holds:

|Orb(G,−→e )|
|Orb(G′,←−e )|

=
|Aut(G)|
|Aut(G′)|

.

In Figure 2, we observe that the number of equivalent actions changes as the graph evolves. For
instance, from G1, there is only one forward equivalent action, while from G2, there are three. The
number of backward actions also varies with each transition, making it seem daunting to account
for all equivalent actions step-by-step. However, the ratio of forward equivalent actions to backward
equivalent actions between G and G′ can be simply expressed as the ratio of the sizes of their
automorphism groups. This is the basis for the next theorem.
Theorem 1 (Automorphism correction). Let (G,−→e ,G′) be a graph transition in atom-based graph
generation, and (s, a, s′) be a state transition such that s = [G], a = A(G,−→e ), and s′ = [G′]. If
we use permutation-equivariant functions for pG and qG , then

pS(a|s)
qS(s, a|s′)

=
|Aut(G)|
|Aut(G′)|

· pG(
−→e |G)

qG(
←−e |G′)

.

The theorem shows that we can adjust the forward and backward action probability ratio without
evaluating all the equivalent actions. The adjustment is determined by the symmetry ratio between
two successive states. Given that GFlowNet objectives are based on the ratio of transition probabil-
ities, this adjustment is straightforward to apply, as we will discuss in the next section.
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5 AUTOMORPHISM-CORRECTED GFLOWNETS (AC-GFN)

In this section, we analyze GFlowNet objectives using our previous results. The following theo-
rem shows that a naive implementation of the TB objective, which does not account for equivalent
actions, will train a model biased toward graphs with fewer symmetries.
Corollary 1 (TB correction). Assume that G0 is the empty graph or a single node, so that
|Aut(G0)| = 1. Given the complete graph trajectory τ = (G0,

−→e 0, G1, . . . ,
−→e n−1, Gn), the tra-

jectory balance loss can be written as follows:

LTB(τ) =

(
log

Z
∏n−1

t=0 pG(
−→e t|Gt)

|Aut(Gn)|R(Gn)
∏n−1

t=0 qG(
←−e t|Gt+1)

)2

. (1)

The equation follows from Theorem 1 and the application of a telescoping sum.

Implication. Equation (1) shows that we need to multiply the reward by the order of the auto-
morphism group of the terminal state to properly account for equivalent actions. If we do not scale
the reward, we are effectively reducing the rewards for highly symmetric graphs by a factor of
1/|Aut(Gn)|. As a result, even if a model is fully trained, the likelihood of reaching the terminal
state will not align with the desired distribution; instead, the model is penalized for generating sym-
metric graphs, following p⊤S (x) ∝ R(x)/|Aut(Gn)|. This bias can be easily corrected by evaluating
|Aut(Gn)| and scaling the reward accordingly.

We can similarly adjust the DB objective for each transition, which would require two evaluations of
automorphisms for each step. However, we can simply scale the rewards by |Aut(G)|, as in the TB
correction, without needing to count automorphisms for each transition. We state this as a theorem
and provide a proof in Appendix C.4.
Theorem 2 (DB correction). We define the graph-level detailed balance condition, as opposed to
the usual state-level condition, as follows:

F (G)pG(
−→e |G) = F (G′)qG(

←−e |G′).

Note that the graph-level detailed balance condition does not account for equivalent actions for
each transition. If rewards are given by R̃(G) = |Aut(G)|R(G) and the graph-level detailed
balance condition is satisfied for all transitions, then the forward policy samples terminal states
proportionally to the given reward R.

Implication. Together with Corollary 1, we see that scaling the reward alone is sufficient for both
TB and DB objectives. This suggests that other GFlowNet objectives, such as subtrajectory balance
(Madan et al., 2023), can also be used with reward scaling. This provides a straightforward ap-
proach to implementing GFlowNet objectives while reducing the computational burden of counting
automorphisms at each transition.

We can interpret the per-transition adjustment for the DB objective as providing intermediate signals
for the adjustment, similar to the idea of providing intermediate reward signals, as suggested by Pan
et al. (2023). In contrast, reward scaling achieves the same goal by applying the adjustment at the
end. See Figure 6 for an illustration of how the graph-level flows can be matched.

Finally, we provide the adjustment formula for fragment-based generation and defer the detailed
discussion to Appendix D.
Theorem 3 (Fragment correction). Let G represents a terminal state ([G] ∈ X ) generated by con-
necting k fragments {C1, . . . , Ck}. Then, the scaled rewards to offset the effects of equivalent
actions are given by:

R̃(G) =
|Aut(G)|R(G)∏k

i=1 |Aut(Ci)|
(2)

Intuitively, highly symmetric fragments contain many symmetric nodes available for connection,
resulting in multiple forward equivalent actions, even though these actions do not lead to distinct
outcomes. As a result, without correction, symmetric fragments are more likely to be sampled by
the model. Equation (2) corrects this bias by penalizing symmetric fragments.
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Approximate correction method. Additionally, we experimented with a simplified version where
the correction is applied approximately for the fragment-based task. While we can compute exact
correction term as in Equation (2), this approximation provides computational benefits, as it avoids
counting automorphisms. Moreover, similar approximations can be easily implemented even for
more complex generation schemes that do not fit into Equation (2). The approximation works as
follows: we assign a number to each fragment based on how many equivalent actions it is likely to
incur during generation. We adjust the final rewards by dividing them by the product of the assigned
numbers N for the constituent fragments: R(G)/

∏k
i=1 N(Ci). See more details in Appendix H.

Computation. The main additional computation for reward scaling comes from evaluating
|Aut(G)|, which is necessary for each trajectory in both the TB and DB objectives. For frag-
ment correction, we can pre-compute |Aut(C)| in our vocabulary set. While the fastest proven
time complexity for computing |Aut(G)| has remained exp(O(

√
n log n)) for decades (Babai et al.,

1983), graphs with bounded degrees can be handled in polynomial time (Luks, 1982). In our ex-
periments, we used the bliss algorithm (Junttila & Kaski, 2007), included in the igraph package
(Csardi & Nepusz, 2006), and did not observe any significant delays in computation. In contrast,
removing equivalent actions at each step involves comparing the resulting graphs through graph
hashing, which has the same computational cost as graph isomorphism testing. This process re-
quires approximately K × T more computations compared to our method, where K is the average
number of actions per state, and T is the average trajectory length. We provide further analysis on
the computation time of counting automorphisms in Appendix G.

Estimating model likelihood. As GFlowNets are trained to generate terminal states in proportion
to their rewards, one can estimate the maginalized probability p⊤S (x) on a held-out set to compare
with R(x). To address the intractability of marginalizing over all trajectories terminating at x, Zhang
et al. (2022) proposed approximating the model likelihood using importance sampling with qS as a
variational distribution: p⊤S (x) = Eτ∼qS(τ |x)

pS(τ)
qS(τ |x) , where τ ∈ T . However, Zhang et al. (2022)

worked with a restricted class of decision processes where the equivalent action problem is not
present. Instead, we estimate the probability of the terminal state as follows:

p⊤S (x) = Eτ∼qG(τ |x)

[
pG(τ)

|Aut(x)|qG(τ |x)

]
≈ 1

M |Aut(x)|

M∑
i=1

pG(τi)

qG(τi|x)
. (3)

6 EXPERIMENTS

In this section, we conduct experiments to validate our theoretical results and demonstrate the ef-
fectiveness of our method. A detailed description of the experiments, including hyperparameters
and model used, is provided in Appendix H. We use a uniform backward policy throughout all
experiments, and each experiment was run 3 times with different random seeds.

6.1 SMALL GRAPHS

We first conduct experiments in a small graph-building environment where graphs are constructed
sequentially by adding nodes and edges. We limit maximum number of nodes and edges such that
computing the exact model likelihood is tractable (|X | = 2, 999). Rewards are assigned based on the
number of cycles a graph contains. Since we can compute the exact probabilities of any given state,
we compare the probability vectors p⊤S (x) and R(x)/Z for evaluation without approximations. We
compare three methods: the TB objective without correction (TB), TB trained on an environment
where equivalent actions were removed (TB+RM), and TB with automorphism correction (TB+AC).
TB+RM is only feasible for small environments due to the substantial CPU resources required for
graph isomorphism tests. However, it provides a baseline that we aim to achieve through reward
scaling.

The results are presented in Figure 3. The naive implementation of TB results in limited performance
in terms of correlation and L1 errors between probability vectors. In contrast, our method (TB+AC)
achieves significantly better performance, reaching similar results of TB+RM, where the equivalent
action problem is absent. Upon inspecting the trained normalizing constant, we observed that with
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Figure 3: Training results of three methods on the Small Graphs environment. The mean and stan-
dard deviation from 3 random seeds are shown in the left two plots, while the rightmost figure is
generated from one of the trained models. Symmetries indicate |Aut(x)|, and the ratio represents
the target-to-model state probability ratio.

correction, the estimated Z is 6073, closely matching the true value Z = 6464. Without correction,
however, Z is estimated to be 3277, approximately half of the true value.

The rightmost figure highlights that the results align with our theoretical analysis. The figure shows
strip plots grouped by symmetries |Aut(x)|. We define the target-to-model state probability ratio as
R(x)

Z̃p⊤
S (x)

, where Z̃ is the normalizing constant of the biased target, Z̃ =
∑

x∈X
R(x)
|Aut(x)| . Our anal-

ysis suggests that the ratio should recover |Aut(x)| for TB, while it remains constant for unbiased
methods. The dashed lines in the plot show our theoretical projection of the ratio for each method.
The plot demonstrates that trained sampling distributions match our analysis, revealing the bias in
vanilla GFlowNets. Additional results for the DB objective and for uniform targets are shown in
Appendix I.

6.2 MOLECULE GENERATION

Task description. We investigate whether accurately modeling a given target distribution helps
generate diverse and high-reward samples in practice. We examine the atom-based generation task
from Jain et al. (2023b) and the fragment-based generation task from Bengio et al. (2021). In the
atom-based task, the goal is to generate molecules by sequentially adding new atoms, edges, or
setting their attributes. Rewards are provided by a proxy model trained on the QM9 dataset, which
predicts the HOMO-LUMO gap. In the fragment-based task, we use a predefined set of fragments,
each with a predefined set of attachment points—nodes on the fragment where edges can connect.
The task involves building a tree graph, where each node represents a fragment, and edges specify
the attachment points on the two connected fragments. Rewards are determined by a proxy model
that predicts the binding energy of a molecule to the sEH target.

For the atom-based task, we simply scale the final rewards by the order of the automorphism group
as described in Equation (1). For the fragment-based task, we additionally correct for fragment
automorphisms as described in Equation (2). In GFlowNets, the reward exponent β is used to focus
sampling on high-reward regions in the state space. The correction is applied after rewards are
exponentiated: C(x)R(x)β , where C(x) is the correction term.

Evaluation. We sampled 5,000 molecules from each method and evaluated the following metrics:

• Top K diversity. The average pairwise Tanimoto distance among the top K reward molecules.
• Top K reward. The average reward of the top K molecules.
• Diverse top K. The average reward of the top K molecules, ensuring that each pair has a

Tanimoto distance greater than 0.7.
• Uniq. fraction. The fraction of unique molecules in the generated samples.
• FCS. Flow Consistency in Sub-graphs (FCS) is the average total variation between the marginal
p⊤S and the target (Silva et al., 2024).

We selected K = 50, which corresponds to the top 10% of molecules for our evaluation. When
reporting rewards, we adjust them to remove the effects of reward scaling and reward exponents.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Results for molecule generation task. Highest scores are highlighted.

Task Method Top K div. Top K reward Div. Top K Uniq. frac. FCS

Atom TB 0.051±0.02 1.044±0.015 1.044±0.015 0.991±0.012 0.920 ±0.058

TB+AC 0.073±0.03 1.081±0.029 1.081±0.029 0.999±0.001 0.936 ±0.036

Fragment
TB 0.153±0.003 0.941±0.002 0.941±0.002 1.0±0.0 0.957±0.025

TB+XC 0.164±0.008 0.949±0.006 0.949±0.006 1.0±0.0 0.908±0.011

TB+AC 0.151±0.002 0.952±0.003 0.952±0.003 1.0±0.0 0.975±0.017

Results. The results summarized in Table 2 show that accurately modeling the target distribution
yields the best results in terms of generating diverse and high-reward samples for both atom-based
and fragment-based tasks. This result is noteworthy, given that rewards are negatively correlated
with the number of automorphisms in the atom-based task, with a Spearman correlation of -0.36.
For the fragment-based task, the Top K diversity remains within the confidence bounds, while the
sampled molecules show higher rewards when corrected for automorphisms. We also observe that
the approximate correction (TB+XC) already enables the generation of high-reward samples, under-
scoring the effectiveness and importance of the correction. Without correction, the trained model
tends to excessively favor components that incur multiple forward equivalent actions during genera-
tion. For example, among 5000 sampled molecules, the vanilla GFlowNet produced 5220 instances
of cyclohexane (C1CCCCC1) as its fragments, whereas the corrected method produced only 1042.
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Figure 4: Pearson correlations between rewards
and model likelihoods. Left: Atom. Right: Frag-
ment.

In addition, we measured FCS metric and
the Pearson correlation between the model’s
log likelihood log p⊤S (x) and the log reward
logR(x) on the test set. The purpose of these
metrics is to measure the goodness-of-fit of
our model to the target distribution. Figure 4
shows that for the atom-based task with a proxy
trained on the QM9 dataset, matching the re-
wards is relatively difficult. This is also evi-
denced by FCS metric in the Table 2. In con-
trast, we observe an overall high correlation for
the fragment-based task, with further improve-
ments made through corrections.

7 DISCUSSION AND CONCLUSION

GFlowNets were first proposed as an alternative to previous methods, such as MaxEnt RL (Haarnoja
et al., 2017), which are biased toward states with multiple action sequences leading to them in non-
injective cases. However, incorrect modeling of state-action probabilities introduces another type of
bias in graph generation. While it is unclear how previous works addressed the equivalent action
problem, it is likely that they employed the approximation pS(a|s) ≈ pG(

−→e |G). Although we
believe that the previous experimental results remain valid if interpreted carefully with the problem
in mind, we recommend being explicit about the correction method in all future work.

In this paper, we analyzed the properties of equivalent actions and proposed a simple correction
method that allows for unbiased sampling from the target distribution. Our analysis shows that,
without correction, highly symmetric graphs are less likely to be sampled, while symmetric frag-
ments are more likely to be sampled, which is crucial for molecule discovery. We demonstrated that
the reward scaling technique works for both TB and DB objectives. Experimental results suggest
that reward scaling effectively removes bias, allowing for accurate modeling of the target distri-
bution, which is essential for sampling diverse, high-reward molecules. A potential limitation of
this paper is that the proposed correction method is demonstrated primarily on specific objectives
(TB and DB) and datasets relevant to molecule discovery. Future work could explore applying the
method to tasks with different symmetry patterns and reward structures.
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REPRODUCIBILITY

A detailed description of the task, network architecture, and hyperparameters is provided in Ap-
pendix H. The proofs of the lemmas and theorems are included in Appendix C. We used an open-
source code repository for the molecule generation experiments, which is described in Appendix H.
Our code will be made publicly available upon the paper’s release.
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A NOTATIONS & DEFINITIONS

In this section, we introduce the key notations and definitions used throughout the paper.

Table 3: Notation

Graph

Set of graphs G
Set of vertices V
Set of edges E
Node labeling function ln
Edge labeling function le
Graph labeling function lg
Permutation π
Set of automorphisms of graph G Aut(G)
Equivalence class of graph G [G]
Orbit of a node u Orb(G, u)
Stabilizer of a node u Stab(G, u)
Set of graph editing actions E
Graph transition function TG
Set of backward graph editing actions Ē
Backward graph transition function T̄G
Forward policy over graphs pG
Backward policy over graphs qG
Set of forward equivalent actions A(G,−→e )
Set of backward equivalent actions A(G,←−e )

GFlowNet

Set of states S
Set of actions A
State transition function TS
Set of terminal states X
Reward function R
Set of complete trajectories T
Forward policy over states pS
Backward policy over states qS
Terminating probability induced by pS p⊤S
State flow function F

Here we provide the list of actions considered in the paper.

• AddNode(u, v, t) adds a new node v of type t and connects it to node u.

• AddEdge(u, v, t) adds a new edge (u, v) of type t.

• AddFragment(C) adds a fragment C.

• RemoveNode(v) removes node v and all edges connected to it.
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• RemoveEdge(u, v) removes the edge (u, v).
• RemoveFragment(C) removes the subgraph C.
• SetNodeAttribute(u, t) sets the node-level attribute t for node u.
• SetEdgeAttribute(u, v, t) sets the edge-level attribute t for the edge (u, v).
• SetGraphAttribute(t) sets a graph-level attribute t.

The Stop action can be considered as setting a terminal flag, and thus, SetGraphAttribute
can serve as a replacement. Some actions may overlap; for example, rather than allowing AddNode
to determine the node type, SetNodeAttribute could be used instead. It is crucial to design ac-
tions in a manner that preserves the DAG structure, ensuring the correct functionality of GFlowNets.

Next, we provide precise definitions of orbits for each action type.

Table 4: Orbit of an action
AddNode(u, v, t) Orb(G, u)
AddEdge(u, v, t) Orb(G, u, v)
AddFragment(C) Orb(G,V )
RemoveNode(v) Orb(G, v)
RemoveEdge(u, v) Orb(G, u, v)
RemoveFragment(C) Orb(G,C)
SetNodeAttribute(u, t) Orb(G, u)
SetEdgeAttribute(u, v, t) Orb(G, u, v)
SetGraphAttribute(t) Orb(G,V )

B COMPARISON TO PRIOR WORK

To the best of our knowledge, Ma et al. (2024) is the only paper addressing the equivalent action
problem prior to our work. While the issue of equivalent actions in GFlowNets was identified and
partially addressed by Ma et al. (2024), the discussion was limited to experimental validation. In
contrast, our work provides the first rigorous theoretical foundation for automorphism correction,
demonstrating that this issue is not just experimental but a fundamental and systematic challenge
tied to graph symmetries, both for atom-based and fragment-based generation. This finding carries
significant implications, especially given that GFlowNets were initially popularized for their reward-
matching capabilities. We provide detailed comparison in Table 5.

Table 5: Comparison to “Baking Symmetry into GFlowNets”

Ma et al. (2024) Ours

Theory No theoretical guarantees Theoretical guarantees on biased sam-
pling is provided

Method Approximately identify equivalent ac-
tions at each transition

Exactly correct for bias by scaling re-
wards

Types
(Generality) Node types Node types, edge types, fragments

Experiment Synthetic graphs Real molecules and synthetic graphs

Computation
(Exact) Multiple isomorphism tests for each

transition
Computation of |Aut(G)| once for
each trajectory

Computation
(Approximate) Multiple positional encoding computa-

tions for each transition
Summation over the number of frag-
ments for each trajectory
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C PROOFS

C.1 PROOF OF LEMMA 1

We restate Lemma 1.
Lemma 1 (Restatement of Lemma 1). For a given graph G and action type, actions applied to the
same orbit are equivalent. That is, if Orb(G,−→e ) = Orb(G,−→e ′), then TG(G,−→e ) ∼= TG(G,−→e ′).
For backward actions, Orb(G,←−e ) = Orb(G,←−e ′) implies T̄G(G,←−e ) ∼= T̄G(G,←−e ′).

Our assertion is that graph editing actions of the same type applied to the same orbit are equivalent.
This is intuitive for attribute-level actions, and we provide a proof for the SetNodeAttribute
action.
Lemma C.1 (SetNodeAttribute). Let G[ln(u) = t] denote the graph where the attribute of node u
in graph G is changed to t. If Orb(G, u) = Orb(G, v), then G[ln(u) = t] ∼= G[ln(v) = t].

Proof. Let us denote the node labeling function of G[ln(u) = t] as ln[u=t]. If u and v are in the
same orbit, then by definition, there exists π ∈ Aut(G) such that π(u) = v. This permutation
π satisfies ln[u=t](u) = ln[v=t](v) = ln[v=t](π(u)) = t, which implies that π is an isomorphism
between G[ln(u) = t] and G[ln(v) = t].

The proof is nearly identical for the SetEdgeAttribute action, with nodes replaced by edges.
We now proceed to prove the case for the AddEdge action.
Lemma C.2 (AddEdge). Let G[E∪(u, v)] and G[E∪(h, k)] denote the graphs induced by E∪(u, v)
and E ∪ (h, k), respectively. If (u, v) and (h, k) are in the same orbit in G, then G[E ∪ (u, v)] and
G[E∪(h, k)] are isomorphic. In other words, Orb(G, u, v) = Orb(G, h, k) implies G[E∪(u, v)] ∼=
G[E ∪ (h, k)].

Proof. If (u, v) and (h, k) are in the same orbit, then there exists π ∈ Aut(G) such that
(π(u), π(v)) = (h, k). Since π is an automorphism, it also satisfies π(E) = E. Thus,
π(E ∪ (u, v)) = π(E) ∪ (π(u), π(v)) = E ∪ (h, k), indicating that π is an isomorphism between
G[E ∪ (u, v)] and G[E ∪ (h, k)].

Corollary C.1 (RemoveEdge). Let G[E \ (u, v)] and G[E \ (h, k)] denote graphs induced by E \
(u, v) and E \ (h, k) respectively. Then, (u, v) and (h, k) are in the same orbit in graph G if and
only if G[E \ (u, v)] and G[E \ (h, k)] are isomorphic.

Proof. Let G̃ = (V, Ẽ) where Ẽ = E \ {(u, v), (h, k)}. Then G̃[Ẽ ∪ (u, v)] = G[E \ (h, k)] and
G̃[Ẽ ∪ (h, k)] = G[E \ (u, v)]. Applying Lemma C.2 to the modified graph G̃, we can easily obtain
the desired result.

The proof for RemoveNode is provided by Chen et al. (2021) in Appendix 2. AddNode can
similarly be proved by converting it to RemoveNode action.

C.2 PROOF OF LEMMA 2

We restate Lemma 2 below for completeness.
Lemma 2 (Restatement of Lemma 2). Let G′ = TG(G,−→e ), where−→e ∈ E represents an action that
either adds a node, an edge, or modifies an attribute in the graph G. Then, the following relationship
holds:

|Orb(G,−→e )|
|Orb(G′,←−e )|

=
|Aut(G)|
|Aut(G′)|

.

We need the following definition.
Definition C.1 (Stabilizer). The stabilizer of a node u ∈ V in graph G is the set of automorphisms
that fix node u: Stab(G, u) = {π ∈ Aut(G) : π(u) = u}. The stabilizer of an edge (u, v) is defined
as Stab(G, u, v) = {π ∈ Aut(G) : π(u) = u, π(v) = v}. Similarly, the stabilizer of a node set S
is defined as Stab(G,S) = {π ∈ Aut(G) : S = π(S)}.
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G0

|Aut(G0)| = 1

G1

|Aut(G1)| = 2

G2

|Aut(G2)| = 2

G3

|Aut(G3)| = 6

|Orb(G0,
−→e 0)| = 1

|Orb(G1,
←−e 0)| = 2

|Orb(G1,
−→e 1)| = 2

|Orb(G2,
←−e 1)| = 2

|Orb(G2,
−→e 2)| = 1

|Orb(G3,
←−e 2)| = 3

Figure 5: Graphs representing three transitions from the initial graph G0. The ratio |Aut(Gt)| :
|Aut(Gt+1)| = |Orb(Gt,

−→e t)| : |Orb(Gt+1,
←−e t)| holds for t = 0, 1, 2. Nodes in the same orbit

are given the same color.

We first prove Lemma 2 for the AddEdge action. See Figure 5 for an illustration of the lemma.
Lemma C.3. Let G = G′[E′ \ (u, v)] and G′ = G[E ∪ (u, v)] two successive graphs. Then the
following equation holds:

|Orb(G, u, v)|
|Orb(G′, u, v)|

=
|Aut(G)|
|Aut(G′)|

.

Proof. Using the orbit-stabilizer theorem, we obtain:
|Orb(G, u, v)|
|Orb(G′, u, v)|

=
|Aut(G)|
|Aut(G′)|

⇐⇒ |Aut(G)|
|Orb(G, u, v)|

=
|Aut(G′)|

|Orb(G′, u, v)|
⇐⇒ |Stab(G, u, v)| = |Stab(G′, u, v)|,

so we can prove the lemma by showing |Stab(G, u, v)| = |Stab(G′, u, v)|. We prove this by
showing that Stab(G, u, v) = Stab(G′, u, v). First, we show that Stab(G, u, v) ⊆ Stab(G′, u, v).
Let π ∈ Stab(G, u, v). Then, (π(u), π(v)) = (u, v), and π(E ∪ (u, v)) = π(E) ∪ (π(u), π(v)) =
E ∪ (u, v), which implies that π ∈ Stab(G′, u, v).

Conversely, let π′ ∈ Stab(G′, u, v), which means (π′(u), π′(v)) = (u, v) and π′(E ∪ (u, v)) =
π′(E) ∪ (u, v) = E ∪ (u, v). For the sake of contradiction, assume π′(E) ̸= E. Then, π′ must
map some element in E to (u, v), which implies |π′(E) ∪ (u, v)| ≠ |E ∪ (u, v)| leading to a
contradiction.

For AddNodeAttribute(u, t), the proof is simpler. Since the only difference between G and G′

is the attribute of node u, it is straightforward to see that Stab(G, u) = Stab(G′, u). The proof for
AddEdgeAttribute is nearly identical. Next, we prove the same result for the AddNode.
Lemma C.4. Let G′ = (V ′, E′) be the graph resulted by adding node v to node u in graph G =
(V,E). Then,

|Orb(G, u)|
|Orb(G′, v)|

=
|Aut(G)|
|Aut(G′)|

.

Proof. We decompose AddNode(u, v) as a sequence of two actions: 1) adding an isolated node v to
the connected graph G; 2) connecting two nodes u and v. Let the intermediate graph be denoted as
G′′ = G[V ∪ v]. Using the orbit-stabilizer theorem, we need to show |Stab(G, u)| = |Stab(G′, v)|.
First, note that |Stab(G, u)| = |Stab(G′′, u)|, because permutations in both stabilizers fix the node
u, while isolated node v in G′′ does not introduce additional symmetry. Then, we only need to show
|Stab(G′′, u)| = |Stab(G′, v)|, but this is established in Lemma C.3.

C.3 PROOF OF THEOREM 1

Theorem 1 (Restatement of Theorem 1). Let (G,−→e ,G′) be a graph transition in atom-based graph
generation, and (s, a, s′) be a state transition such that s = [G], a = A(G,−→e ), and s′ = [G′]. If
we use permutation-equivariant functions for pG and qG , then

pS(a|s)
qS(s, a|s′)

=
|Aut(G)|
|Aut(G′)|

· pG(
−→e |G)

qG(
←−e |G′)

.
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Proof. We can prove the theorem through the following chain of equations using two lemmas in
succession:

pS(a|s)
qS(s, a|s′)

=

∑
−→e ′∈A(G,−→e ) pG(

−→e ′|G)∑
←−e ′∈A(G′,←−e ) qG(

←−e ′|G′)

=
|A(G,−→e )| · pG(−→e |G)

|A(G′,←−e )| · qG(←−e |G′)

=
|Orb(G,−→e )| · pG(−→e |G)

|Orb(G′,←−e )| · qG(←−e |G′)

=
|Aut(G)|
|Aut(G′)|

· pG(
−→e |G)

qG(
←−e |G′)

.

C.4 PROOF OF THEOREM 2

Before proving Theorem 2, we first prove the existence of a policy that satisfies graph-level DB
constraints.

Lemma C.5. For any given reward function R, there exist pG , qG , and F̃ that satisfy the graph-level
detailed balance constraints for all transitions (G,−→e ,G′), defined as follows:

F̃ (G)pG(
−→e |G) = F̃ (G′)qG(

←−e |G′) (4)

Note that this differs from the usual state-level detailed balance condition:

F (s)pS(a|s) = F (s′)qS(s, a|s′). (5)

Proof. By Theorem 1, state-level detailed balance constraints can be rewritten as graph transition
probabilities as follows:

|Aut(G)|F (G)pG(
−→e |G) = |Aut(G′)|F (G′)qG(

←−e |G′). (6)

Defining F̃ (G) = |Aut(G)|F (G), then F̃ , pG , and qG satisfy the graph-level detailed balance
constraints for a given R.

Theorem 2 (Restatement of Theorem 2). If the rewards are scaled by |Aut(G)| and the graph-level
detailed balance constraints are satisfied for pG , qG , and F̃ , then the corresponding forward policy
will sample proportionally to the reward.

Proof. For a given complete trajectory G0,
−→e 0, . . . , Gn, we have:

F̃ (G0)pG(
−→e 0|G0) = F̃ (G1)qG(

←−e |G1),

· · ·
F̃ (Gn−1)pG(

−→e n−1|Gn−1) = |Aut(Gn)|R(Gn)qG(
←−e n−1|Gn).

Multiplying the left- and right-hand sides of all the equations, we get:

F̃ (G0)

n−1∏
t=0

pG(
−→e t+1|Gt) = |Aut(Gn)|R(Gn)

n−1∏
t=0

qG(
←−e t|Gt+1).

Defining F̃ (G0) = Z, this reduces to the state-level trajectory balance condition with corrections,
which ensures p⊤G (x) ∝ R(x), as shown by Proposition 1 of Malkin et al. (2022).
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Figure 6: Illustration of the effect of reward adjustment. Above: State transitions from and to s2.
Below: Graph transitions from and to G2. Due to the effect of the scaled reward R̃, state flows are
also scaled by |Aut(G)|, leading to F̃ (G) = F (s)|Aut(G)|. The edge flows remain unchanged
in this figure. Note that the graph-level detailed balance condition holds, while the termination
probability is proportional to R(s).

|Aut(G)| = 1

G

|Aut(G′)| = 6

G′
|Orb(G′, C)| = 1

|Orb(G,C)| = 1

Figure 7: Transition representing the AddFragment action.

D DISCUSSION ON THE FRAGMENT-BASED GENERATION

In the case of adding a fragment C to the existing graph G, resulting in G′ = G ∪ C, we must
account for the additional symmetries introduced by the fragment. See Figure 7 for an illustration.

As in atom-based generation, the number of equivalent actions is related to the order of some orbits.
We define the orbit of adding a fragment as Orb(G,V ), whose cardinality is 1. This is the number of
forward equivalent actions because we only need to choose a fragment from the fragment vocabulary,
without considering the existing partial graph. For the backward actions, however, we can remove
either C or any subgraph of G∪C that is isomorphic to C. In general, the set of subgraphs of G∪C
that are isomorphic to C under some automorphism in Aut(G ∪ C) are those that, when removed,
lead to a graph isomorphic to G. This set is precisely the orbit of C, denoted as Orb(G ∪ C,C) =
{V ′ : ∃π ∈ Aut(G ∪ C), π(VC) = V ′}.
Next, we can extend Lemma 2 to accommodate the AddFragment action, accounting for the
symmetries of both the existing graph and the fragment.

Lemma D.1. Let G = (VG, EG) be a graph representing the current state. We consider augmenting
the graph G by adding a fragment C = (VC , EC). Let G ∪ C = (VG ∪ VC , EG ∪ EC) denote the
union of the two graphs (without any edges connecting G and C). Then, we have:

|Orb(G,V )|
|Orb(G ∪ C,C)|

=
|Aut(G)| · |Aut(C)|
|Aut(G ∪ C)|

.
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Figure 8: A fragment with attachment points highlighted. Attachment points are designed such
that they break symmetries of the fragment. Rightmost graph represent the terminal state where
attachment points are removed.

Proof. Since |Orb(G,V )| = 1, we only need to consider |Orb(G∪C,C)|. The stabilizer Stab(G∪
C,C) is the set of automorphisms in Aut(G ∪ C) that does not mix the labels of G and C; it acts
independently on G and C. Therefore, the order of Stab(G ∪ C,C) is |Aut(G)| · |Aut(C)|. Using
the orbit-stabilizer theorem, we obtain:

|Orb(G ∪ C,C)| = |Aut(G ∪ C)|
|Stab(G ∪ C,C)|

=
|Aut(G ∪ C)|

|Aut(G)| · |Aut(C)|
.

Using Lemma D.1, we obtain fragment correction formula in Theorem 3. Unlike atom-based gen-
eration, the fragment terms |Aut(C)| do not cancel out through a telescoping sum. Therefore, these
terms must be explicitly accounted for in the correction, both for reward scaling and estimating the
model likelihood.

We need to be cautious when applying Lemma D.1, as the exact process of adding fragments may
vary depending on the method used. A common approach in the GFlowNet literature is to predefine
a set of attachment points for each fragment, which are nodes where an edge can connect to other
fragments. Attachment points should be treated as node attributes, even if they are artifacts of the
generation process rather than actual molecular properties. This is because they restrict the set of
possible actions, including equivalents actions. Thus, even if two nodes, u and v, are in the same
orbit, they should be considered different if one of them is an attachment point.

These considerations may lead to a situation where we need to define actions like
RemoveAttachmentPoints, as shown in Figure 8. Conceptually, a graph receives its reward af-
ter the attachment points are removed, so that attachment points do not affect the reward. However,
this modification introduces three distinct backward actions from the terminal state in the figure,
which may complicate the calculation of the backward probabilities. This issue does not arise, how-
ever, if we arrange attachment points such that nodes in different orbits (orbits with attachments
considered) remain different even after the attachment points are removed. We observe that this
holds for the fragments used in Bengio et al. (2021).

E RELATION TO NODE ORDERINGS

Some previous work on graph generation uses a distribution over permutations (or node orderings)
π, treating it as a random variable (Li et al., 2018; Chen et al., 2021). Since the node ordering
determines the generation order of a graph, the joint probability over the node ordering and state is
given by the following:

P (sn, π) = P (s0:n, π) = q(π|s0:n)pS(s0:n). (7)
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Chen et al. (2021) derived the exact formula for q(π|s0:n) and trained a model for pS(s0:n). How-
ever, the joint probability P (s0:n, π) can be easily obtained by multiplying graph-level transition
probabilities, without needing to model pS(s0:n) or adjusting for equivalent actions:

P (s0:n, π) = pG(G0:n). (8)

This result follows because, given a state sequence s0:n, the number of different node orderings is
equal to the number of possible paths generated by following equivalent actions. In other words, we
can interpret different actions that are equivalent as different node orderings that induce the same
state sequence. However, previous work on graph generation is not clear about how corrections
for equivalent actions were made. This provides a simple formula for computing P (s0:n, π) and
highlights the importance of distinguishing between graphs and states. See Chen et al. (2021) for
more details on using node orderings as a random variable.

F PROPERTIES OF GRAPH NEURAL NETWORKS

The key design principle of a graph neural network is permutation equivariance, which ensures that
the output remains consistent regardless of how the nodes in the input graph are ordered.
Definition F.1. Let X ∈ Rn×d be the node feature matrix of a graph G with n nodes. A matrix-
valued function f is permutation equivariant if it satisfies π(f(X,E)) = f(π(X), π(E)), where π
permutes the rows of the matrices.

Since graph neural networks are permutation equivariant, we can show that they produce identical
node representations for nodes in the same orbit.
Theorem F.1. Let f(X,E)[i] represent the i-th row of the matrix output by the function f . Then,
for two nodes u, v ∈ V in the same orbit, we have f(X,E)[u] = f(X,E)[v].

Proof. Since u and v are in the same orbit, there exists a permutation π such that π(X) = X ,
π(E) = E, and π(u) = v. For this permutation π, we have:

f(X,E)[u] = π−1f(πX, πE)[u]

= f(πX, πE)[πu]

= f(X,E)[v],

where we omitted brackets for brevity.

G COMPUTATIONAL COST

While computing the exact |Aut(G)| has inherent complexity, this complexity is unavoidable for
exact computation. In practice, fast heuristic algorithms often perform well, particularly for rela-
tively small graphs, and significantly reduce the computational overhead associated with calculating
|Aut(G)|. We provide computation time of |Aut(G)| for several molecular dataset.

Table 6: Computational cost

Dataset Sample Size Num Atoms Compute time (bliss) Compute time (nauty)
QM9 133,885 8.8 ± 0.5 0.010 ms ± 0.008 0.019 ms ± 0.079
ZINC250k 249,455 23.2 ± 4.5 0.022 ms ± 0.010 0.042 ms ± 0.032
CEP 29,978 27.7 ± 3.4 0.025 ms ± 0.014 0.050 ms ± 0.076
Large 304,414 140.1 ± 49.4 - 0.483 ms ± 12.600

Large dataset refers to the largest molecules in PubChem, which is used in the paper Flam-Shepherd
et al. (2022). Experiments were conducted on an Apple M1 processor.
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Compared to sampling trajectories, which involves multiple forward passes through a neural net-
work, the compute time for |Aut(G)| is negligible. For comparison, we report the speed of molec-
ular parsing algorithms measured using ZINC250k dataset: 0.06 ms ± 0.70 (SMILES → molecule)
and 0.04 ms ± 0.05 (molecule → SMILES). The combination of two parsing steps is often used to
check the validity of a given molecule in various prior works. In words, computing |Aut(G)| is in
an order of magnitude faster than validity checking algorithm.

We used the bliss algorithm for our experiment. It is easy to use as it is included in the igraph
package and is fast enough for our purposes. For large molecules, we can still count automorphisms
in few milliseconds using the nauty package (McKay & Piperno, 2013) as can be seen in the table.
We observed that the pynauty package does not natively support distinguishing between different
edge types, requiring us to transform the input graphs by attaching virtual nodes to handle this. The
reported time in the table reflects these preprocessing steps.

While we believe the compute time is already minimal considering current applications, we provide
two more recipes to even further improve the run time: 1) Data processing tasks can be easily
parallelized across multiple CPUs. Since GFlowNet is an off-policy algorithm, |Aut(G)| can be
computed concurrently with the policy’s learning process. 2) For large graphs, fragment-based
generation is highly likely to be employed. In such cases, we can utilize an approximate correction
formula, as outlined in Appendix D.

H EXPERIMENTAL DETAILS

H.1 SMALL GRAPH

The Small Graphs experiments take place in graph-building environments where homogeneous
graphs are constructed edge-by-edge. To enable the exact computation of model likelihood for any
terminal state, we restricted the graph size. The total number of states, including the initial empty
graph, is 2,300, and the total number of state transitions is 5,734,173.

We used the Adam optimizer (Kingma, 2014) with the default parameters from PyTorch (Paszke
et al., 2019), setting only the learning rate to 0.0001. We stacked 5 GPS layers (Rampášek et al.,
2022). To increase representation power, we augmented node features with one-hot node degree,
clustering coefficient, and 4 dimensions of random-walk positional encoding (Dwivedi et al., 2021).
The maximum gradient norm was limited to 1 to improve learning stability. For exploration, the
policy acted randomly 10% of the time. At each step, 16 samples were collected from the policy,
and 48 samples were uniformly drawn from the buffer. We used 64 processors, each with its own
buffer of size 1000.

For the DB algorithm, we employed a separate target network to predict backward edge-flows, while
the sampling network was trained to match its forward edge-flows to the backward edge-flows. The
target network was updated using a moving average with an update rate of 0.99, meaning the target
network parameters were incrementally updated by averaging them with the current network param-
eters at each step. This technique significantly improved the stability of DB training. Performance
metrics are computed using the sampling network.

H.2 MOLECULE GENERATION

We conducted experiments on small molecule generation tasks following Bengio et al. (2021); Jain
et al. (2023b). More detailed task descriptions can be found in these previous works. We used a
open-source code for tasks.1 We used a graph transformer architecture (Yun et al., 2019) with the
hyperparameters summarized in Table 8 and Table 9.

For the evaluation of Pearson correlation, we used the QM9 test dataset for the atom-based task,
while for the fragment-based task, terminal states were sampled by uniformly selecting random
actions. The model likelihood was computed using Equation (3) for the atom-based task, with a
variant correction term applied for the fragment-based task. We used M = 5, and 2048 samples
were taken for the test set.

1https://github.com/recursionpharma/gflownet
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Table 7: Hyperparameters for Small Graph experiment

Hyperparameters Values

Environment

Maximum Nodes 10
Maximum Edge 10
Maximum Degrees 4
Reward Type 1 + Num. Cycles

Training

Learning Rate (pG , Z) 0.0001 (Adam)
Batch Size (Online) 16
Batch Size (Buffer) 48
Exploration ϵ 0.1
Gradient Clipping (Norm) 1.0
Total Training Steps 300,000

Model

Architecture GPS
Number of Layers 5
Number of Heads 4
Number of Embeddings 256

Table 8: Hyperparameters for atom-based experiments

Hyperparameters Values

Training

Learning Rate (pG , Z) 0.0005
Batch Size (Online) 32
Batch Size (Buffer) 32
Uniform Exploration ϵ 0.1
Gradient Clipping (Layer-wise Norm) 10.0
Reward Exponent β 1
Number of Updates 16,000

Model

Architecture Graph Transformer
Number of Layers 4
Number of Heads 4
Number of Embeddings 128
Number of Final MLP Layers 1

We used the same test samples and model likelihood estimates to compute FCS metrics (Silva et al.,
2024). FSC metric is computed as follows:

FCS = ES∼PS

[
1

2

∑
x∈S
|p⊤S (x;S)− p(x;S)|

]

where S is a set of sub-graphs sampled from PS , a fully-supported probability distribution over all
subsets of X . Marginals p⊤S and the reward distribution R are normalized in the given subset S.

H.3 FRAGMENT CORRECTION METHOD

For fragment-based molecule generation, we used a predefined set of fragments and attachment
points provided by Bengio et al. (2021). There are a total of 72 fragments, each with a varying
number of attachment points. Our method requires pre-computing the number of automorphisms
for each fragment. In Figure 9, we present the number of automorphisms for each fragment used in
our experiment. As discussed in Appendix D, attachment points were treated as distinct attributes
when counting automorphisms.
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Table 9: Hyperparameters for fragment-based experiments

Hyperparameters Values

Training

Learning Rate (pG) 0.0001
Learning Rate (Z) 0.001
Batch Size (Online) 32
Batch Size (Buffer) 32
Exploration ϵ 0.1
Gradient Clipping (Layer-wise Norm) 10.0
Reward Exponent β 16
Number of Updates 30,000

Model

Architecture Graph Transformer
Number of Layers 5
Number of Heads 4
Number of Embeddings 256
Number of Final MLP Layers 2

Figure 9: Predefined fragment set used for the fragment-based task. Attachment points, where a
single bond can connect to another fragment, are highlighted in red. The numbers indicate the order
of the automorphism group of each fragment, |Aut(C)|.

H.4 APPROXIMATE CORRECTION METHOD

For the fragment-based method, we propose an approximate correction formula, which offers com-
putational benefits. This also aids in understanding the principle behind the correction term for the
fragment-based method. The approximation works as follows: we assign a number to each fragment
based on how many equivalent actions it is likely to incur during generation. We adjust the final re-
wards by dividing them by the product of the assigned numbers N for the constituent fragments Ci:
R(X)/

∏k
i=1 N(Ci).

We assigned the number N to each fragment based on how likely it is to incur forward equivalent
actions. This is because fragments that incur multiple forward equivalent actions are more likely to
be selected if no adjustment is applied. For example, cyclohexane (C1CCCCC1) has six attachment
points, all in the same orbit, so it will always incur at least six forward equivalent actions in subse-
quent steps. In contrast, even if a fragment is highly symmetric, if it has only one attachment point,
it will incur no equivalent actions. We assigned N = 1 to such fragments.
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Assuming backward equivalent actions are relatively rare in fragment-based generation, this ap-
proximation should closely match the unbiased correction. These numbers were assigned through
visual inspection of the fragments. The full set of fragments and their assigned numbers for the
approximate correction is provided in Figure 10.

Figure 10: Predefined fragment set used for the fragment-based task. Attachment points are high-
lighted in red. The numbers below each molecule are used for approximate correction.

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 SMALL GRAPHS

As shown in Theorem 2, we can use both TB and DB objectives with reward scaling. A figure
similar to the one in the main text for the DB objective is shown in Figure 11. We observe that
removing equivalent actions (DB+RM) improves per-step training efficiency compared to reward
scaling (DB+AC), but it comes at a significantly higher computational cost, as discussed in the main
text. We utilized 64 processors for DB+RM training, where the wall-clock time became comparable
to standard GFlowNet training.
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Figure 11: Training results for the DB objective on the Small Graphs environment. The mean and
standard deviation from 3 random seeds are shown in the left two plots. The rightmost figure is
drawn from one of the trained models.

We observe that reward scaling is effective across several error metrics, including L1, L2, and L∞,
for both DB and TB objectives. See Figure 12 and Figure 13.

Additionally, we conducted experiments with a uniform target distribution, where a reward of 1 is
assigned to all terminal states. The optimal model is expected to uniformly sample terminal states,
matching p⊤S (x) = 1

Z . However, our theoretical analysis reveals that vanilla GFlowNets will be
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Figure 12: Training results for the DB objective.
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Figure 13: Training results for the TB objective.

trained to match p⊤S (x) = 1
Z̃|Aut(x)| , where Z̃ =

∑
x∈X

1
|Aut(x)| . This is demonstrated in Figure

14. As in the main text, the rightmost figure plots Z̃/p⊤S (x) for all terminal states categorized by the
order of automorphisms. This value, referred as target-to-model state probability ratio in the main
text, remain constant for optimal model, and recover |Aut(x)| for biased model. We omit Pearson
correlation for this experiment, as uniform target has zero variance.
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Figure 14: Training results for the TB objective with a uniform target distribution.

I.2 MOLECULE GENERATION

We investigated which fragments were sampled by each method. We sampled 5,000 terminal states
from one of our trained models, resulting in 44,974 fragments used for TB and 44,978 for TB+AC.
Symmetric fragments were found to be sampled more frequently in TB, which aligns with our pro-
jection, as the fragment correction in TB+AC penalizes symmetric components. However, the pro-
portions of fragments between the two methods are not exactly proportional to the magnitude of the
corrections, as some fragments are more likely to occur together (they are not independent).
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Figure 15: The number of sampled fragments from 5,000 terminal states for TB and TB+AC. We
display the 5 fragments that were sampled most disproportionately.
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