
Under review as a conference paper at ICLR 2024

CLA-RA: COLLABORATIVE ACTIVE LEARNING
AMIDST RELABELING AMBIGUITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Obtaining diverse and high-quality labeled data for training efficient classifiers re-
mains a practical challenge. Crowdsourcing, which involves employing multiple
weak labelers, is a popular approach to address this issue. However, crowd label-
ers often introduce noise, inaccuracies, and possess limited domain knowledge.
In this paper, we propose a novel framework CLA-RA to optimize the labeling
process by determining what to label next and assigning tasks to the most suit-
able annotators. Our technique aims to optimize classifier efficiency by utilizing
the collective wisdom of various annotators while limiting the influence of error-
prone annotations. The key contributions of our work include an annotator dis-
agreement based instance selection mechanism which identifies the noise present
in annotations of the instances and an instance-dependent annotator confidence
model, which identifies the annotator with the highest confidence to correctly la-
bel an instance.These methods, combined with a similarity based annotator in-
ference method, result in improved classifier accuracy while reducing annotation
efforts. Experimental results over 13 datasets demonstrate significant improve-
ments over state-of-the-art multi-annotator active learning methods, highlighting
the effectiveness of our approach in obtaining high-quality labeled data for train-
ing classifiers with minimal labeling costs and errors.

1 INTRODUCTION

Supervised learning algorithms demand a substantial quantity of labeled data to generate dependable
models. Although unlabeled data is abundant and cost-effective to acquire, the process of obtaining
class labels entails extensive human involvement. As a result, the development of intelligent learning
algorithms to reduce labeling costs have garnered substantial research attention. Active learning has
proven to be a valuable approach for training machine learning models by iteratively selecting infor-
mative instances for annotation, reducing annotation effort while maintaining or improving classifier
performance Cohn et al. (1994); Settles (2009). Traditionally, this process assumes the availability
of an omniscient oracle capable of providing correct labels for all queried instances Herde et al.
(2021); MacKay (1992). However, in many real-world scenarios, obtaining labeled data solely from
a single expert annotator proves challenging, necessitating the utilization of multiple weak annota-
tors, such as crowd workers, to enrich the labeling process and accelerate data annotation process.
This new active learning paradigm presents a new challenge as conventional methods, designed for
an omniscient oracle, struggle to handle the uncertainties and potential inaccuracies introduced by
these weak labelers Urner et al. (2012); Donmez et al. (2009); Rashidi & Cook (2011). Recent
research efforts have recognized this issue, leading to the emergence of methods attempting to ex-
tract valuable labeling information from multiple imperfect annotators Raykar et al. (2010); Dekel
& Shamir (2009); Yan et al. (2011; 2014). However, while leveraging multiple annotators can in-
crease annotation throughput, it introduces new challenges, particularly due to the inherent noise,
inaccuracies, and limited domain knowledge exhibited by these crowd-labelers Paun et al. (2018).
The presence of such errors can adversely impact the classifier’s generalization ability and overall
performance.
In this paper, we propose a novel framework, CLA-RA 1, that harnesses the diverse perspectives
by utilizing the collective wisdom of various annotators (oracles) while effectively mitigating the

1CLA-RA stands for Collaborative Active Learning Amidst Relabeling Ambiguity
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impact of annotator errors on classifier performance. The core idea behind CLA-RA is to recognize
that different annotators possess varying degrees of proficiency across distinct regions of the fea-
ture space. By inferring the expertise level of each annotator and correlating it with the complexity
of the instances, our approach optimizes the annotation process by determining which instances to
label next and assigning them to the most suitable annotators. Consequently, this strategy yields
higher-quality labels and improves classifier effectiveness. Our contributions can be summarized as
follows:

• We develop an annotator agreement-disagreement based instance selection approach,
which aims to query instances with higher label noise due to disagreement amongst an-
notators.

• We propose an instance-dependent annotator confidence model that tailors the annotator
selection to the unique characteristics of instances, significantly enhancing the precision of
annotator assignment.

• We introduce an annotator inference model based on past annotation knowledge which
labels certain instances without the need of querying the annotator.

• We conduct extensive experiments on 13 diverse datasets to emperically demostrate the
effectiveness of our approach over existing SOTA methods.

2 RELATED WORK

Many active learning (AL) strategies assume that there is a single, omniscient annotator who can
provide correct labels for the instances. A comprehensive overview of these strategies can be found
in Fu et al. (2013). However, with the emergence of Web-based applications has led to active learn-
ing problems involving multiple non-expert labelers providing weak labels for the same instances.
To address this challenge, researchers have proposed methods that aggregate annotations from mul-
tiple annotators. In this section, we will discuss related AL strategies that take into account the
possibility of error-prone annotators.

There have been numerous active learning algorithms that consider the availability of not only mul-
tiple annotators but also the prospect of them being incorrect. In 2009, IEThresh introduced by
Donmez et al. (2009) considered imperfect annotators. Relabeling is a common approach for han-
dling multiple noisy annotators, involving repeated queries and majority voting for label aggre-
gation. In 2010, IEAdjCost introduced by Zheng et al. (2010) extended IEThresh. It assessed
annotator proficiency and excluded low-performing annotators. A drawback of the above methods
is their unrealistic assumption of uniform performance across instances. Proactive, introduced by
Moon & Carbonell (2014), estimates class-dependent annotator performance, using known anno-
tations when available or approximations. Instance and Annotator selection occur simultaneously
using uncertainty sampling. Later CEAL Huang et al. (2017) and ALIO by Chakraborty (2020)
take a step further by assuming instance-dependent annotation performances. Another research di-
rection emphasizes relabeling samples as a means to reduce noise. Wauthier & Jordan (2011) active
learning algorithm can balance relabeling and obtaining labels for new examples. However, they
do not explicitly identify or explore this tradeoff, and their solution depends on gold labels and
a custom classifier. Lin et al. (2016) requires relabelling each instance multiple times. Very re-
cently DAAL, presented by Baumler et al. (2023) first estimates a model that predicts annotator
entropy trained using very few multiply-labeled examples. Later it collects annotations on examples
where the entropy of the estimated model and annotator entropy are the most different. Existing ap-
proaches exhibit limitations such as they either demand substantial computational resources, rely on
initial ground truth labels for model initialization, or presume prior knowledge regarding annotator
expertise. In response to these challenges, our paper introduces a novel framework. This framework
leverages the collective knowledge of multiple annotators and intelligently assigns instances to the
most suitable annotators by carefully balancing the trade-off between exploration and exploitation.
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Figure 1: The Active Learning Framework of CLA-RA

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Let X be the input feature space and Y be the label space where |Y| = C C being the number
of classes. Given a set of unlabeled instances U = {xi}Mi=1 where x = (x1, . . . , xk)

T ∈ X , a
budget B and a set of annotators A = {A1, . . . , AN} where each annotator Aj can be queried for
an instance xi to obtain a label lij , which could be noisy. The goal is to train a classifier model
gϕ : X → Y which predicts the true class label y for a given instance x.

To solve the above problem, we propose a novel multi-annotator active learning framework CLA-
RA. It consists of an instance selection strategy to select the instances to be queried, an annotator
selection strategy that determines which annotator to query for a given instance, and a knowledge
base that gets populated during the active learning phase and facilitates a reduction in subsequent
queries. We elaborate on each of the components of our framework in detail in the following sec-
tions.

3.2 CLA-RA FRAMEWORK

Our framework consists of an instance selection strategy (AAD) which combines uncertainty-based
selection with annotator agreement-disagreement to determine which instance needs to be queried
for a new label. We also develop an annotator model fθ : x → z where z = (z1, . . . , zN ). Here zj
denotes the confidence of annotator Aj to correctly label the instance x. The annotator model is used
to select the annotator for a chosen instance x. Finally, we have a knowledge base KBj : X → Y
for each annotator Aj which is populated via already queried instances and is used to infer the label
of a new instance x without querying the annotator and thus not consuming budget.

Our method comprises 2 phases - the Boot Phase and the Active Learning Phase. During the Boot
Phase, we initiate the bootstrapping process for both the model classifier and the annotator model.
Additionally, we initialize the knowledge bases of each annotator. In the Active Learning phase,
instances and annotators are chosen iteratively based on the classifier, and annotator models and la-
bels for these instances are obtained through either querying the annotator or through the knowledge
base. The instances along with their corresponding labels are then used to further improve the mod-
els and the knowledge bases. Figure 1 illustrates the boot phase and the annotator-instance selection
process for each active cycle. In subsequent sections we describe in detail each of the components
of our framework.
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3.3 BOOT PHASE

We assume to possess only unlabeled data U in the beginning along with an untrained annotator
model fθ, an untrained classification model gϕ and empty knowlege bases for each annotator. Thus,
to address the challenge of cold-start, we propose a boot phase which is used to bootstrap both the
models and the individual knowledge bases.

We begin by sampling a limited collection of randomly chosen samples from the unlabeled pool of
instances U . We refer to this as boot set UB . The rest of the instances are kept in active learning
set UA. We proceed by querying all available annotators for each instance in UB and thus obtaining
a complete annotation set li = (li1, . . . , liN ) for every xi ∈ UB . Next, we use the boot set instances
along with the obtained annotations to train the annotator model fθ. Details about annotator model
training is present in section 3.4. Next, for each instance xi ∈ UB , we determine the corresponding
label yi using the weighted majority of the annotations li where weights are obtained from the
annotator model fθ. Dg = {(xi, yi)} is then used to train the classifier model gϕ.

Finally, we use the instances xi ∈ Ub along with the corresponding annotation li and weights from
the annotator model zi to initialize the knowledge base of each annotator. Complete details about
knowledge base creation can be found in 3.5.

3.4 ANNOTATOR MODEL

Recent multi-annotator active learning algorithms (DAAL Baumler et al. (2023)) randomly choose
the annotator to annotate a given instance. This leads to sub-optimal performance since different
annotators have different areas of expertise and therefore are not equally likely to label any given
instance correctly. Hence, in order to increase the performance of our active learning framework,
we choose the most competent annotator for a given instance x by using the annotator model fθ
which predicts the confidence of each annotator to label an instance correctly. The model takes as
input an instance x and outputs the confidence score vector z = (z1, . . . , zN )T where zj indicates
the confidence of annotator Aj to correctly label the instance x. The confidence scores are used to
determine which annotator is most likely to label the instance correctly.

One major challenge in training such an annotator model is the lack of labeled data. Since we assume
that we do not have access to any labeled data, hence it is difficult to train the annotator model. To
generate labeled data for training the annotator model, we use annotator agreement to determine the
confidence of an annotator. Let l = (l1, . . . lk) be the set of annotations obtained for an instance x
and let lmaj be the majority label from the set l. We assign confidence score cj to annotator Aj as
follows:

cj =

{
1 if lj = lmaj ,

0 otherwise
(1)

In other words, we assign the confidence score of 1 if the label obtained from the annotator matches
the majority label else 0. Using equation 1 we generate the confidence scores of all instances which
have been queried atleast 3 times (We add this restriction since majority label does not make sense
with 2 or less annotations). With this we create the training dataset for the annotator model Df =
{(xi, ci,mi)} where xi has been queried atleast 3 times. Here mi = (mi1, . . . ,miN )T is the query
mask for the instance xi where mij = 1 if annotator Aj is queried for instance xi else mij = 0. To
train the model we use masked mean squared error loss defined as follows:

Lθ =
1

|Df |
∑

(xi,ci,mi)∈Df

N∑
j=1

mij(cij − zij)
2 (2)

3.5 KNOWLEDGE BASE

One of the limitations of existing active learning frameworks is that to obtain a label for an instance,
they always need to query the annotator. Thus the number of labeled instances that can be used to
train the classifier model is limited by the budget B. However, one can use the knowledge from
the labeled instance queried so far to determine the label of a given instance without querying the
annotator. Thus, as an alternative source of labeling without consuming budget, we propose the
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creation of knowledge base KBj : X → Y for each annotator Aj . KBj consists of a set of
instances whose labels were already obtained from querying annotator Aj : Kj = {(xjp, ljp)}.

We only keep those instances in the knowledge base of annotator Aj for which the annotator is
highly confident. To do so, we add a queried instance x along with its corresponding queried label l
to Kj iff j = argmax z and zj > ηa where z = fθ(x) is the confidence score vector of x obtained
from the annotator model and ηa is the predefined confidence threshold hyperparameter. Thus we
quantitatively capture the expertise of each annotator through their knowledge base KBj .

Our intention through this work is to provide our classification model with a higher number of quality
training samples without violating the pre-defined budget. In order to do so we realize the necessity
of finding an alternative labelling source except for querying the annotators (which consumes our
budget). To obtain free additional labels we intend to quantitatively capture the expertise of each
annotator. Therefore we propose to create individual knowledge base for each annotator which
shall store the instances along with their predicted labels on which the particular annotator is highly
confident.

KBj(x) denotes the label obtained using the knowledge base KBj for an instance x. KBj(x) is
defined by the following equation:

KBj(x) =

ljp if p = argmax
k|(xjk,ljk)∈Kj

sim (x,xjk) and sim (x,xjp) > ηsim

−1 otherwise
(3)

i.e we first select the instance xjp from the knowledge base which is most similar to the new instance
x and assign it the label ljp which was given to xjp by annotator Aj if similarity between x and
xjp is greater than some similarity threshold ηsim otherwise we do not assign any label (indicated
by -1). In this way we obtain label for a new instance x without querying the annotator Aj based on
the instances the annotator had labeled before.

3.6 ACTIVE PHASE

After having bootstrapped the classifier model gϕ, the annotator model fθ and the knowledge bases
{KBj}Nj=1, we begin our active learning phase. First, we calculate remaining budget Bactive =
B − |UB | × N , by subtracting the budget that we utilized in the boot phase. Next, we iteratively
select an instance in the active learning set UA and a corresponding annotator to query based on our
instance and annotator selection strategies. After obtaining the label from the annotator, we suitably
update our classifier training dataset Dg and our annotator training dataset Df and train both the
models. We also update the knowledge base of the queried annotator with the new instance-label
pair as mentioned in section 3.5. Since model training is expensive, we train the models after a
batch of iterations and not after every single iteration. This process continues till the budget Bactive

is exhausted. We now describe in details our instance selection and annotator selection strategies in
the subsequent sections.

3.6.1 INSTANCE SELECTION

Traditional active learning methods use uncertainty based techniques such as entropy to select the
instances that are needed to be annotated. While such methods perform reasonably well in the case
of single annotator where the obtained labels are accurate, their effectiveness reduces in the presence
of multiple noisy annotators. This is because due to the presence of noisy labels, the classifier model
might become incorrectly confident about certain instances and not query them again. This will lead
to decrease in the performance of the classifier model. To tackle this issue, we propose a novel
instance selection technique AAD which utilizes Annotator Agreement-Disagreement to determine
how noisy the label is for a particular instance.

To begin with, we define two sets of instances: the explore set E (which will contain instances that
have never been queried) and the queried set Q (which will contain the instances that have been
queried atleast once). E is initialized with all the instances in the active pool UA and Q is initially
empty. We next define an exploration parameter ϵ. In every active learning iteration, with probability
ϵ we choose to explore a new instance from E and with probability 1 − ϵ we choose to relabel a
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previously annotated instance from Q. Whenever we decide to explore, we use the entropy measure
to choose the instance which the model is least confident about. Since the instances in the explore set
have never been queried before, they do not suffer from the issue of noisy labels and hence selecting
instances based on entropy becomes a viable approach. Once an annotator has been queried for the
selected instance, it is then removed from the explore set and added to the queried set.

On the other hand, whenever we decide to relabel an instance from the queried set, we first calculate
annotator disagreement score ad score for each instance in the queried set and choose the instance
with the highest disagreement score for relabeling. To calculate the ad score for an instance xi,
we first calculate the aggregate confident scores of each class label Y based on the annotators who
have previously annotated xi as Y . Next we obtain the weighted majority label Ymaj based on
the aggregated confidence scores. ad score is defined as the 1 minus the average of the absolute
difference between the confidence score of each class label Y with Ymaj which is mathematically
expressed as follows:

ad score = 1− 1

C − 1

∑
Y ̸=Ymaj

|conf score(Ymaj)− conf score(Y ))| (4)

where conf score(Y ) =
∑
j

zij × mij . Here zij is the jth element of the confidence vector

zi = fθ(xi) and mij is the jth entry of the query mask mi. The intuition behind the annotator
disagreement score is that the score should be higher when equally confident annotators disagree
with each other and the score should be lower when a more confident annotator disagrees with a
less confident annotator with the score being 0 when all annotators agree with full confidence (con-
fidence score of 1). Once ad score is calculated for all the instances in Q, the instance with the
highest disagreement score is chosen for relabeling. Once all the annotators of a chosen instance are
queried, it is then removed from the queried set Q as well.

3.6.2 ANNOTATOR SELECTION

Once an instance xi is selected for annotation, we decide which annotator to query using the an-
notator model fθ. We select the annotator Aj who has the highest confidence score for the in-
stance xi amongst the annotators remaining to be queried for that instance. given by the equation:
j = argmax

k
(zik × (1−mik)) where zik is the kth entry of the confidence vector zi = fθ(xi) and

mik is the kth entry of the query mask mi.

Next we try to fetch the label from the knowledge base of annotator Aj (equation 3). If a label is
obtained, we annotate the instance xi with the label KBj(x) without consuming any budget. If a
label could not be fetched from the knowledge base, then we actually query the annotator to get the
label. We then add the instance along with the queried label to the annotator’s knowledge base if it
satisfies the condition mentioned in 3.5. Finally, we update the classifier training data Dg and the
annotator training data Df with the new instance-label pair. We train the models using the updated
datasets after a batch of iterations have passed.

4 EXPERIMENT

In this section, we introduce the datasets we use, experimental details, and the baseline methods
against which we compared our approach.

4.1 DATASETS

We selected 11 diverse sets of publicly available UCI benchmark data sets Lichman et al. (2013)
from various domains to ensure the robustness and generalizability of our framework. We also se-
lected two real-world text classification datasets such as Reports Mozilla and Reports Compendium
Hernández-González et al. (2018), these were annotated by real-world annotators, providing an au-
thentic and practical dimension to our evaluations. These datasets exhibit differences in features,
classes, annotators, and annotator accuracies. For the remaining datasets, annotators were simulated
based on instance-dependent performance Fang et al. (2012). In this simulation, the probability of
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Characteristics min max average
features 6 100 36
number of classes 2 8 3
number of annotators 4 6 4
annotator accuracies 34 84 53
size of unlabelled samples 124 577 350
size of test samples 84 384 233

Table 1: Dataset Statistics

an annotator providing a correct annotation depended on both the annotator’s characteristics and
the cluster to which the instance belonged. To determine these clusters, we employed a k-means
clustering approach Hartigan & Wong (1979) with k equal to the number of annotators. Basic data
statistics have been summarized in Table 4.1

4.2 SETUP AND BASELINES

We maintained a consistent 60-40 train-test split for all datasets throughout our experiments. In the
CLA-RA framework, the boot phase utilized 3% of the training data making sure that the number
of boot instances is at least equal to the number of classes. We set the annotation budget at 20%
of the total available annotations for each dataset, maintaining this constant across all methods. No
such ground-truth labels are available for the training set. To ensure fairness in the comparison,
considering CLA-RA’s boot and active learning phases, we deducted the total annotations used
during the boot phase from the budget, establishing a uniform total number of annotations for all
methods. We set 0.75 as exploration threshold ϵ, 0.7 as confidence threshold ηa and 0.99 as similarity
threshold ηsim for considering the KB. We used Extra trees Geurts et al. (2006) as the classifier
model gϕ and a simple 2 layer feed-forward neural network with layer norm and ReLU Agarap
(2018) as the activation function. Dimension of both the hidden layers were chosen to be 32.

We compared the proposed algorithm against the best state-of-the-art methods: Cost Effective Ac-
tive Learning (CEAL) proposed by Huang et al. (2017), Proactive proposed by Moon & Carbonell
(2014), ALIO proposed by Chakraborty (2020) and we implemented Disagreement aware Active
Learning (DAAL) proposed by Baumler et al. (2023).

5 RESULTS

In this section, our primary focus centers on evaluating the test accuracy of the classifier trained
using data for which labels were acquired during the active learning phase. Our experimental design
aims to provide comprehensive insights by addressing the following key research questions:

• RQ1: Does CLA-RA framework effectively leverage the collective wisdom of multiple
annotators to improve classifier performance compared to existing active learning methods?

• RQ2: How effective is the instance-dependent annotator model in helping to choose the
best annotator for a given instance?

• RQ3: Does the strategic instance selection mechanism improve the efficiency of the anno-
tation process?

• RQ4: How accurate is the annotator knowledge base in capturing the proficiency and how
helpful it is in the overall active learning framework

5.1 EFFECTIVENESS OF CLA-RA FRAMEWORK IN HARNESSING COLLECTIVE ANNOTATOR
WISDOM

We compare the accuracy of the classifier of CLA-RA framework with state-of-the-art multi-
annotator active learning algorithms with the same budget and train test split over 13 datasets com-
prising both binary and multi-class setups. Table 2 provides an overview of the performance of
various active learning methods on these datasets. Notably, our proposed CLA-RA framework out-
performs the other approaches in 10 out of the 13 datasets. The CEAL method demonstrates compet-
itive performance in the titao and mushroom’s datasets. However, its performance is not consistently
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Dataset CEAL ALIO Proactive DAAL CLA-RA
car 59.17 67.92 55.83 62.08 73.33
ecoli 69.63 74.81 74.07 75.55 83.70
ionosphere 70.92 68.79 70.92 75.88 92.08
mushroom 92.50 91.67 88.33 84.16 90.83
reports-compendium 50.13 50.91 41.04 42.33 52.21
reports-mozilla 53.33 48.52 54.81 59.25 60.26
ringnorm 66.25 68.33 65.83 67.08 92.08
sonar 70.24 71.43 59.52 70.23 73.81
spambase 76.67 76.25 74.58 79.16 82.92
splice 48.75 50.83 47.50 40.83 62.08
titato 73.33 71.67 70.83 57.5 71.25
vehicle 59.59 61.65 64.31 50.14 62.54
krvsp 68.33 70.0 68.33 60.41 78.75

Table 2: Accuracy (in percentage) of the various Active Learning approaches. Best results are shown
in bold.

high across all datasets. This inconsistency in performance is also observed in the Proactive across
various datasets. When considering the average classifier accuracy across all datasets, the perfor-
mance ranking of the various models can be summarized as follows: CLA-RA consistently achieves
the highest accuracy, followed by ALIO, CEAL, Proactive, and DAAL.
In the subsequent sections, we’ll analyze our model’s components and their role in achieving top
accuracies across datasets. To improve readability, we’ve experimented on a curated subset of 8
datasets, balancing label types, annotator skills, and feature spaces.

5.2 QUALITY OF LABELS ACQUIRED VIA INSTANCE-DEPENDENT ANNOTATOR

Next, we assess the impact of the Annotator Model fθ on annotator selection and label quality,
addressing the second research question. In this experimental analysis, we examined the accuracy
of labels provided by the annotators across all methods. Figure 2 presents the percentage accuracy of
labeling unlabeled instances for the subset datasets by each method. Notably, our proposed approach
attains the highest labeling accuracy in all 8 datasets. Thus using fθ annotator model helps in
selecting the most suitable annotators for annotating each sample.

Figure 2: Accuracy of acquired
labels

Figure 3: Instance selection
strategy

Figure 4: Accuracy of Classi-
fier on Test data

5.3 EVALUATING THE AAD INSTANCE SELECTION STRATEGY

We delve deeper into the crucial role played by our AAD instance selection strategy, addressing the
third research question. We compare CLA-RA’s performance against two alternatives: (i) Random
sampling (RA), where samples are randomly selected and labeled using the fθ annotator model,
and (ii) Uncertainty sampling (UA), which targets unlabeled samples with the highest classification
uncertainties for annotation using the proposed fθ annotator model.

Figure 3 illustrates the classifier accuracy achieved with these various instance selection mecha-
nisms. Remarkably, our proposed model outperforms the alternatives in 7 out of 8 datasets. This
performance boost can be attributed to the instance selection strategy, as it constitutes the vari-
able component among the three approaches. The balance between exploration and exploitation,
achieved by selecting instances based on the level of disagreement, contributes significantly to re-
ducing noise in the training data, ultimately enhancing the performance of the classifier model.
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Figure 5: Test Accuracy after
each active learning iteration

Figure 6: Test Accuracy after
each active learning iteration

Figure 7: Accuracy with and
without using Knowledge base

To gain deeper insights into the effectiveness of both the instance-dependent annotator model and
the strategic instance selection model, We compared the performance of CLA-RA, with a random
annotator-instance selection model, referred to as RR. Figure 4 displays the results. Our obser-
vations indicate that CLA-RA consistently outperforms RR by around 11-16 percentage points in
datasets like car, ecoli, and sonar. Notably, the proposed approach proves to be particularly valuable
in scenarios where the average annotator accuracy is relatively low, resulting in a higher probability
of errors in the acquired labels. Conversely, in scenarios with less error-prone annotators, RR can
still achieve reasonable results. This underscores the adaptability of our framework to varying lev-
els of annotator expertise and its ability to enhance classifier accuracy, particularly in challenging
annotation scenarios.

We present the classifier’s accuracy for two datasets, reports-mozilla and reports-compendium, an-
notated by human experts. Figures 6 and 5 illustrate this. The x-axis represents active learning
cycles, and the y-axis denotes test set accuracy. Notably, as cycles progress, the model’s perfor-
mance consistently improves. This improvement is attributed to the model’s ability to effectively
select examples for labeling and re-labeling, all orchestrated by the selection of the most suitable
annotator for each instance.

5.4 GAUGING THE UTILITY OF ANNOTATOR EXPERTISE INFERENCE MODEL

To assess the utility of our Annotator Expertise Inference model, we compare the performance of
CLA-RA with an approach where expertise inference model is not used to acquire labels for new
instances, we refer this approach as NKB. Figure 7 shows the accuracy of the classifier for both
approaches. Notably, when the expertise inference model was not employed, there was a substantial
decrease of 2-5% in the classifier’s performance across the datasets. This decline can be attributed
to the model’s ability to acquire additional high-quality labeled data without explicitly querying the
annotator, effectively optimizing the utilization of the annotation budget.

6 CONCLUSION

In this paper, we proposed CLA-RA, a novel framework for enhancing the acquisition of high-
quality labeled data in the presence of multiple annotators. By harnessing the collective expertise
of annotators and strategically selecting the most suitable annotator-instance pairs, our approach
consistently outperforms state-of-the-art methods across diverse datasets. Our framework’s notable
advantage lies in its ability to optimize the utilization of the annotation budget. It strikes a deli-
cate balance between exploration and exploitation, effectively reducing noise in the training data.
This equilibrium not only enhances classifier accuracy but also ensures the efficient allocation of
resources during the annotation process. By minimizing unnecessary labeling efforts and concen-
trating on the most informative instances, our method also maximizes the efficiency of the annotation
process.
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