
Published as a conference paper at ICLR 2018

A NEW METHOD OF REGION EMBEDDING FOR TEXT
CLASSIFICATION

Chao Qiao⇤‡, Bo Huang†‡, Guocheng Niu‡, Daren Li‡,
Daxiang Dong‡§, Wei He‡, Dianhai Yu‡§, Hua Wu‡§

‡ Baidu Inc., Beijing, China
§ National Engineering Laboratory of Deep Learning Technology and Application, China
{qiaochao, huangbo02, niuguocheng, lidaren,

daxiangdong, hewei06, yudianhai, wu hua}@baidu.com

ABSTRACT

To represent a text as a bag of properly identified “phrases” and use the represen-
tation for processing the text is proved to be useful. The key question here is how
to identify the phrases and represent them. The traditional method of utilizing
n-grams can be regarded as an approximation of the approach. Such a method can
suffer from data sparsity, however, particularly when the length of n-gram is large.
In this paper, we propose a new method of learning and utilizing task-specific dis-
tributed representations of n-grams, referred to as “region embeddings”. Without
loss of generality we address text classification. We specifically propose two mod-
els for region embeddings. In our models, the representation of a word has two
parts, the embedding of the word itself, and a weighting matrix to interact with the
local context, referred to as local context unit. The region embeddings are learned
and used in the classification task, as parameters of the neural network classifier.
Experimental results show that our proposed method outperforms existing meth-
ods in text classification on several benchmark datasets. The results also indicate
that our method can indeed capture the salient phrasal expressions in the texts.

1 INTRODUCTION

Text classification is an important task for many applications, including topic categorization, search
query classification, and sentiment analysis, which has been studied for years. A simple yet effec-
tive approach for text classification is to represent documents as bag-of-words, and train a classifier
on the basis of the representations using methods such as logistic regression, support vector ma-
chines (Joachims, 1998; Fan et al., 2008), and naive Bayes (McCallum et al., 1998). Although
bag-of-words methods are effective and efficient, they also have limitations. The representations do
not take into account the word order information which has been proved to be useful at least in some
applications such as sentiment analysis (Pang et al., 2002).

To make effective use of word order information for text classification, people have traditionally
exploited n-grams, i.e., short sequences of words in the texts. Previous work shows that the use of
n-grams is effective in the text classification task (Pang et al., 2002; Wang & Manning, 2012; Joulin
et al., 2016). Although n-grams are very useful, they have certain limitations. 1) The number of
n-grams increases exponentially when the length of n-gram n increases. This makes it difficult to
exploit large n-grams (e.g., n > 4). 2) Since the number of parameters in an n-gram model is very
large, the estimation of the parameters usually suffers from the data sparsity problem.

Recently, the method of FastText has been proposed (Joulin et al., 2016), which can learn and use
distributed embeddings of n-grams. More specifically, the embedding of an n-gram is defined as a
low-dimensional vector representation of the n-gram. Note that the n-grams in a vocabulary can also
be represented as one-hot vectors Wang & Manning (2012).

⇤chao.qiao@outlook.com
†bohuang0321@gmail.com

1



Published as a conference paper at ICLR 2018

In this paper, we propose to learn embeddings of n-grams for a specific task (e.g., classification),
which are more compact and thus easy to obtain. We call the embeddings region embeddings, fol-
lowing the work in Johnson & Zhang (2015). Our method significantly differs from their method,
however, in the sense that the region embeddings in our method are task-dependent and acquired
from supervised learning, while those in their method are task-independent and acquired from un-
supervised learning. Our method is also largely different from FastText, as it learns richer models
for region embeddings.

Intuitively, the meaning of a word is defined by the meaning of itself as well as the meanings of
words in the surrounding context. The extended embedding of a word in an n-gram thus consists of
two parts, the embedding of the word itself and a matrix to interact with the local context, named
“local context unit”. The embedding of a word is a column vector, and the local context unit of a
word is a matrix in which the columns are used to interact with words in the local context. The
region embedding of an n-gram is then constructed by the extended embeddings of all words in the
n-gram. In this paper, we introduce two models for region embeddings.

For the text classification task, a document is viewed as a bag of region embeddings, and the bag of
region embeddings is fed into a classifier. The parameters of the local context units and word em-
beddings are trained together with the parameters of the classifier which is a fully connected neural
network. Our models achieve better results than the state-of-the-art methods on several benchmark
datasets of text classification. Experiments show that our proposed models can really capture im-
portant information for the task.

2 RELATED WORK

Text classification has been studied for years, traditional approaches focused on feature engineering
and using different types of machine learning algorithms. For feature engineering, bag-of-words
features are efficient and popular. In addition, the hand-crafted n-grams or phrases are added to
make use of word order in text data, which has been shown effective on Wang & Manning (2012).
For machine learning algorithms, linear classifiers are widely used, such as naive bayes (McCallum
et al., 1998), logistic regression and support vector machines (Joachims, 1998; Fan et al., 2008).
However, these models commonly suffer the data sparsity problem.

Recently, several neural models have been proposed, the pre-trained word embeddings of
word2vec (Mikolov et al., 2013) have been widely used as inputs to deep neural models such as
recursive tensor networks (Socher et al., 2013). On the other hand, some simple and efficient
models which can directly learn task specific word embeddings or fine-tune on pre-trained word
embeddings have been proposed recently, such as Deep Averaging Networks (Iyyer et al., 2015),
FastText (Joulin et al., 2016). Several neural models have been proposed to make use of word order
information, most models are based on convolutional neural network (CNN) (Kim, 2014; Johnson
& Zhang, 2014; Zhang et al., 2015) and recurrent neural network (RNN) (Tang et al., 2015; Lai
et al., 2015; Yogatama et al., 2017). More recently, the Transformer (Vaswani et al., 2017), a se-
quence transduction model based solely on attention mechanisms has been proposed. Although
Transformer was not designed for the text classification task, it has similarities with our work. In the
rest of this section, we will briefly introduce FastText, CNN and Transformer, which are the most
relevant to our work.

FastText FastText averages the word embeddings to represent a document, and uses a full con-
nected linear layer as the classifier. The word embeddings are trained for each task specifically.
To utilize the local word order information of small regions, FastText uses hand-crafted n-grams as
features in addition to single words. With the simple architecture, FastText has been proved to be
effective and highly efficient on text classification tasks. Similarly, our models use bag of region em-
beddings to represent a document, and use the same linear classifier. Differently, our models directly
learn the semantics of regions based on word sequence, hand-crafted features are not required.

CNN CNN is a feed-forward network with convolutional layers interleaved with pooling layers,
which are originally used for image processing tasks. For natural language processing, words are
commonly converted to vectors. CNN directly applies convolutional layer on word vectors, both
word vectors and the shared (word independent) kernels are the parameters of CNN, which can be

2



Published as a conference paper at ICLR 2018

learned to capture the predictive structures of small regions. The essence of CNN is to learn embed-
dings for small fixed size regions, each kernel of the convolutional layer tries to capture a specific
semantic or structural feature. Our purpose is similar with CNN, which tries to learn task specific
representations of regions. Unlike CNN, we apply local context units on word vectors, which are
word dependent, moreover, the convolution kernels extract the predictive features by applying con-
volution operation on word sequences, while we use local context units as distinct linear projection
functions on context words in corresponding relative positions to get region representations.

Transformer Vaswani et al. (2017) proposed a sequence transduction model, the Transformer,
based solely on attention mechanisms. Both Transformer and our method can capture word order
information without any CNN or RNN component, and the scalar form of context units (introduced
in our ablation experiments) can be regarded as a kind of local attention. There are also some
differences here: the motivation we proposed local context units is to address word specific influence
between word and its context, while Vaswani et al. (2017) has proposed a parallelable sequence
transduction framework based entirely on attention; To utilize position information, in our method,
words are interacted with context words at different relative positions by corresponding columns in
their context units, while Transformer use fixed sin and cos function based position encoding.

3 METHOD

In this paper, we focus on learning the representations of small text regions which preserve the local
internal structural information for text classification. The regions in a document can be considered
as fixed length contiguous subsequences of the document. More specifically, with wi standing for
the i-th(starting from 0) word of the document, we use region(i, c) to denote the 2 ⇥ c + 1 length
region with middle word wi. For instance, given a sentence such as The food is not very good in this

hotel, region(3, 2) means the subsequence food is not very good.

In this work, we use the interactions between words and their local context based on word embed-
dings as well as the local context units to produce region embeddings. In the rest of this section,
we will introduce the local context units firstly, and two architectures to generate the region embed-
dings through local context units will be introduced, finally we will introduce how we use the region
embeddings on text classification.

(a) Word-Context Region Embedding (b) Context-Word Region Embedding

Figure 1: Architectures of region embedding using local context units in different perspectives

3.1 LOCAL CONTEXT UNIT

In natural language processing, words are commonly converted to low dimensional vectors(word
embeddings) as the inputs to neural networks. More formally, the embedding ew of word w is

3



Published as a conference paper at ICLR 2018

represented by a column in a matrix E 2 Rh⇥v with a look up layer, where v is the size of the
vocabulary, h is the embedding size.

To utilize the information of words’ relative positions and local context, we learn a local context unit
for each word in addition to the word embedding, and both the unit and word embedding are learned
as model parameters. Formally, we define the local context unit Kwi 2 Rh⇥(2⇥c+1) of wi as a
matrix which can be looked up in the tensor U 2 Rh⇥(2⇥c+1)⇥v by wi’s index in the vocabulary.

Each column in Kwi can be used to interact with the context word in corresponding relative position
of wi. In fact, the columns of a unit matrix can be regarded as distinctive linear projection functions
on the embeddings of words in the local context. The parameters of these projection functions(i.e.,
columns of each unit matrix) can be learned to capture the semantic and syntactic influence of the
word to its context. Word embeddings are used as inputs to the projection functions, and we call the
outputs projected word embeddings.

Formally, let pi
wi+t

be the projected word embedding of wi+t in i-th word’s view, and Kwi,t be the
(c + t)-th column in Kwi (�c <= t <= c), given the unit Kwi of wi and the embedding ewi+t of
wi+t, we use an element-wise multiplication(denoted by �) to compute p

i
wi+t

:

p

i
wi+t

= Kwi,t � ewi+t (1)

For a context word in a particular relative position of wi, there is a corresponding linear projection
function(a particular column of Kwi ), thus our proposed local context units can utilize the local
ordered word information in a novel way. Note that the middle column Kwi,0 of Kwi can be
regarded as a linear projection function on ewi itself, which transforms ewi to the same space as
other projected embeddings.

3.2 WORD-CONTEXT REGION EMBEDDING

We proposed two architectures to perform the region embedding from different perspectives. We
consider the semantics of a given region is derived from the mutual influences of the words in this
region. In this paper, the regions can be regarded as snapshots of a window sliding on a document,
whose middle words are contiguous, hence we can compose the semantics of a give region only by
the middle word’s influences on the context words, or the context words’ influences on the middle
word.

In the first proposed architecture, we focus on addressing the middle word’s influences on the context
words. For example, in the sentence The food is not very good in this hotel, the occurrence of word
not might bring a semantic reversal to the local region.

We use the local context unit of the middle word and the original word embeddings in a region
to perform the projected embeddings in a word-to-context view, where the projected embeddings
can reflect the middle word’s influences on the context words. Once the projected embeddings are
obtained, a max pooling operation is applied to extract the most predictive features in the region.
The output of the max pooling operation can be regarded as a task related region embedding in a
word-to-context view, i.e. Word-Context region embedding.

Formally, we use the context unit Kwi of middle word wi and embeddings of all words in a region
region(i, c) to compute the projected embedding matrix by equation (1), then the Word-Context re-
gion embedding r(i,c) can be obtained through a max pooling operation on the projected embedding
matrix:

r(i,c) = max([p

i
wi�c

p

i
wi�c+1

... p

i
wi+c�1

p

i
wi+c

]) (2)

where max standing for the max pooling operation on the column dimension of the input matrix.
Finally, we get r(i,c) as a vector representation of region(i, c) with dimension h. Figure 1a shows
the details of the first model architecture.

For instance, in the sentence The food is not very good in this hotel, the projected word embeddings
in the region(3, 2) are composed by the element-wise multiplications between columns in the local

4



Published as a conference paper at ICLR 2018

context unit of not and word embeddings of food, is, not, very and good. The embedding r3,2 of
region(3, 2) can be obtained by max pooling on the projected word embedding matrix.

3.3 CONTEXT-WORD REGION EMBEDDING

The second architecture goes as a different view, which addresses the local context words’ influences
on the middle word in the region, and we call this Context-Word region embedding. Similarly, for a
region(i, c), the projected embeddings are computed by the original word embedding of the middle
word and the context units of all words in the region, then the Context-Word region embedding can
be obtained by a max pooling operation through the column dimension of the projected embedding
matrix:

r(i,c) = max([p

i�c
wi

p

i�c+1
wi

... p

i+c�1
wi

p

i+c
wi

]) (3)

Figure 1b shows the details of the second model architecture. our two models take different ways
to produce the projected word embeddings, the Word-Context model uses context units of middle
words and word embeddings of context words, while the Context-Word model uses context units of
context words and word embeddings of the middle word.

3.4 REGION EMBEDDING FOR TEXT CLASSIFICATION

For text classification, documents are usually variable-sized, which need to be represented as fixed
size vectors. In order to show the effectiveness of our proposed region embedding models, we
just sum up the embeddings of all regions to represent a document, and feed it to an upper Full-
Connected layer for text classification task.

Formally, the model can be represented as following:

f(x;E,U,W,b) = g(W�(

nX

i=0

r(i,c)) + b) (4)

where x denotes the input text sequence, W and b denote the weight matrix and bias of the fully
connected layer respectively, g denotes the softmax function of the output layer, � denotes the soft-
sign function and n denotes the number of regions in a document, r is the region embedding which
can be computed by the equation (2) or (3). E, U, W and b can be updated in the training period.

4 EXPERIMENTS

We report experiments with proposed models in comparison with previous models.

4.1 DATASETS

We use publicly available datasets from Zhang et al. (2015) to evaluate our models. There are in
total 8 text classification datasets, corresponding to sentiment analysis, news classification, question-
answer, ontology extraction tasks, respectively. Table 1 shows the descriptive statistics of datasets
used in our experiments. To guarantee comparable indications, same evaluation protocol of Zhang
et al. (2015) is employed.

4.2 BASELINES

Our models are compared with several widely used supervised text classification models. We report
the n-grams and TFIDF baselines from Zhang et al. (2015), as well as the character level con-
volutional model (char-CNN) of Zhang & LeCun (2015), the character based convolution recur-
rent network (char-CRNN) of Xiao & Cho (2016), the very deep convolutional network (VDCNN)
of Conneau et al. (2016), the Discriminative LSTM (D-LSTM) of Yogatama et al. (2017) and the
bigram FastText (bigram-FastText) of Joulin et al. (2016).

5



Published as a conference paper at ICLR 2018

Table 1: Statistics of Datasets

Dataset Classes Average
Lengths

Train
Samples

Test
Samples Tasks

Yelp Review Polarity 2 156 560,000 38,000
Sentiment
Analysis

Yelp Review Full 5 158 650,000 50,000
Amazon Review Polarity 2 91 3,000,000 650,000
Amazon Review Full 5 93 3,600,000 400,000
AG’s News 4 44 120,000 7,600 News

ClassificationSogou News 5 579 450,000 60,000

Yahoo! Answers 10 112 1,400,000 60,000 Question
Answer

DBPedia 14 55 560,000 70,000 Ontology
Extraction

4.3 IMPLEMENTATION DETAILS

For data preprocessing, all the texts of datasets are tokenized by Stanford tokenizer and all words are
converted to lower case. Words that appear only in one document are treated as out-of-vocabulary
(OOV) items, and all stop words as well as symbols are kept. Additionally, length of c padding are
added to both the head and tail of each document.

For our models, optimal hyperparameters are tuned with 10% of the training set on Yelp Review Full
dataset, and identical hyperparameters are applied to all datasets: the dimension of word embedding
is 128, the region size is 7 which means the shape of local context unit matrix of each word is 128⇥7,
the initial learning rate is set to 1⇥ 10

�4, and the batch size is 16. For optimization, the embeddings
of words and the units are randomly initialized with Gaussian Distribution. Adam (Kingma & Ba,
2014) is used as the optimizer. We do not use any extra regularization methods, like L2 normalization
or dropout. Algorithms are entirely implemented with TensorFlow and trained on NVIDIA Tesla
P40 GPUs. The code 1 is publicly available on the Internet.

4.4 RESULTS

Table 2: Test Set Accuracy [%] Compared to other Methods on several Datasets

Model Yelp P. Yelp F. Amz. P. Amz. F. AG Sogou Yah. A. DBP
BoW 92.2 58.0 90.4 54.6 88.8 92.9 68.9 96.6
ngrams 95.6 56.3 92.0 54.3 92.0 97.1 68.5 98.6
ngrams TFIDF 95.4 54.8 91.5 52.4 92.4 97.2 68.5 98.7
char-CNN 94.7 62.0 94.5 59.6 87.2 95.1 71.2 98.3
char-CRNN 94.5 61.8 94.1 59.2 91.4 95.2 71.7 98.6
bigram-FastText 95.7 63.9 94.6 60.2 92.5 96.8 72.3 98.6
VDCNN 95.7 64.7 95.7 63.0 91.3 96.8 73.4 98.7
D-LSTM 92.6 59.6 - - 92.1 94.9 73.7 98.7
W.C.region.emb 96.4 64.9 95.1 60.9 92.8 97.6 73.7 98.9
C.W.region.emb 96.2 64.5 95.3 60.8 92.8 97.3 73.4 98.9

Table 2 is the summary of the experimental results. We use underscores to represent the best pub-
lished results, and bold the best records. On six datasets of eight, our models beat or match the
state-of-the-art with a performance gain highest to 0.7%. We beat all the previous models on all
datasets except VDCNN, while the latter performs almost best on all classification tasks before. As
a result, we slightly win VDCNN on six datasets and lost in two of Amazon datasets. Detailed
experimental results including best performance epoch and training time for all listed datasets are
reported in Appendix A.

1
https://github.com/text-representation/local-context-unit

6



Published as a conference paper at ICLR 2018

Furthermore, the upper layer structure of our models only uses a summing up operation, which is
more concise and robust than any other deep or complex models. In fact, both of our two proposed
models are effective against previous models.

4.5 EXPLORATORY EXPERIMENTS

In this subsection, we are going to do a set of exploratory experiments to study the effect of each
component of our model. Typical cases will be analyzed to validate properties of various aspects of
our models. Considering the limitation of paper space, we only analyzed the Word-Context region
embedding model in our exploratory experiments.

4.5.1 EFFECT OF REGION SIZE AND EMBEDDING SIZE

Our method uses a fixed size of region as contextual information just like CNN. So the selection
of region size really matters. A small region may lose some long distance patterns, whereas large
regions will bring into more noises. Luckily, our models seem to be fairly insensitive towards kinds
of datasets. Actually, we just use identical region size 7 for all datasets and it is able to outperform
the best published results ever.

Figure 2a describes the performance on Yelp Review Full with different region sizes, and when the
size equals to 1, the result is quite close to unigram FastText(accuracy 60.7%), but still gets a 0.6%
promotion. Intuitively, the middle word cannot influence other words except itself when the size
equals to 1. The performance increases with the growth of region size up to 7.

(a) (b)

Figure 2: Effect of the hyperparameters (region size and embedding size) on Yelp Review Full
dataset. (a) shows the comparison of single fixed region size 7 and multi sizes combination [3,5,7]
and (b) shows the effect of different settings of embedding size among four kinds of models, unigram
FastText, bigram FastText, CNN and ours. We use region size 7 for CNN and ours.

Furthermore, we experiment our models with the combination of multi region sizes. Here we use
the approach of sharing context units among each region, where the parameters of local context
units of smaller regions are just the slice of the longest one. Region embeddings of different sizes
are concatenated for final classification. In figure 2a, the combination of multi region sizes 3,5,7 is
slightly better than the best single region size 7. The effectiveness of multi-size combination can be
explained by the difference of influence ranges between words. For example, in sentiment analysis,
word very only emphasizes the next word while however may lay stress on a wide range of the
following words.

In addition to the analysis of region sizes, we further study the influence of word embedding di-
mensions. Figure 2b lists the comparative results on Yelp Review Full with different embedding
dimensions. The result shows that our model is more robust to overfitting than FastText and CNN
with the word embedding dimension increasing. In fact, the amount of parameters in our models
is relatively large. Since we learn a specific unit for each word, under the same word embedding
dimension, our parameter size has been expanded by region size times, the parameters number is
v ⇥ h + v ⇥ (2 ⇥ c + 1) ⇥ h + h ⇥m +m, where m is the number of classes. Specific numbers
parameters for different region sizes are listed in Appendix A. Notice that the sizes of parameters
are relatively consistent among 1024 in FastText, 1024 in CNN and 128 in ours.

7



Published as a conference paper at ICLR 2018

4.5.2 EFFECT OF CONTEXT UNIT

In this section, we explore some comparative experiments to show the effectiveness of our proposed
word specific context unit. The experiments are employed based on unigram FastText baseline,
which has similar upper layer structure with our models. Table 3 illustrates the results.

Table 3: Comparative decomposition results on Yelp Review Full dataset. For Fast-
Text(Unigram), embedding dimension is 10. For FastText(Win-pool), W.C.region.emb(Scalar) and
W.C.region.emb(our model), region size is 7 and embedding dimension is 128
.

Decomposition Performance(%)
FastText(Unigram) 60.73
FastText(Win-pool) 61.01(+0.28)
W.C.region.emb(Scalar) 63.18(+2.45)
W.C.region.emb(Our model) 64.9(+4.17)

Firstly, we remove the entire context units from our model, which means it is just a variant version of
unigram FastText, we call it FastText(Win-pool). The difference is that FastText sums up the word
embeddings directly while FastText(Win-pool) sums up the window pooled embeddings in a stride
of 1. It yields a slightly accuracy gain of 0.28% than unigram FastText.

Secondly, we apply a simplified scalar version of context units to FastText(Win-pool). Distinguish-
able, the context unit of each word has the shape with 1 ⇥ (2 ⇥ c + 1), hence it can be regarded
as a broadcasting operation on corresponding word embeddings of its local context. We name this
method W.C.region.emb(Scalar). Compared to the non-scalar method, it yields a huge parameter
size reduction, but it already yields a significant gain of 2.45%.

Furthermore, W.C.region.emb(our model) is the variant version of W.C.region.emb(Scalar) where
each column of scalar context unit is expanded to a dense vector. Each word’s context unit has a
shape with h⇥(2⇥c+1). Adding the low dimensional dense context unit improves the performance
by 4.17%. We can sense much from the procedure of decomposition, with the help of context unit,
even a simpler scalar version promotes a lot.

To have a better understanding of what context unit actually capture, heat maps are plotted for chosen
word samples. Representative adversarial conjunctions like however, but, modifiers like very, good,
bad and nouns like food, morning are listed in Figure 3.

For each row of the figure, the intensity of the surrounding color box reflects the emphasis degree
in the view of the middle word. Qualitative but not fully rigorous, a normalized L2-norm of each
column in context unit is used to render the shade. Region size 7 is adopted default, annotation
li(i 3) is denoted as left columns of the specific context unit, while ri(i 3) denoted as the right
part.

What the figure reflects are consistent with intuitive priors of human beings. In the perspective of
however, right contexts play the key role for classification polarity because of the emotional reversal,
the color is indeed deeper in ri than li, so does but. For word very, r1 is more prominent than the
rest of all, which captures some modified patterns like very happy or very sad. For word good,
tendencies will be completely different for patterns like not good, very good and not that good,
which are intensive negative, intensive positive and slightly hesitated, separately, the position of l1
will be strengthened as a result, so does word bad. There are significant differences between two
nouns food and morning. The heat map of word food implies patterns like delicious food or food

was mediocre, while the word morning has fewer valuable patterns for classification.

Actually, from the motivation of word specified context units, we would like to believe this feature
helps capture syntactic and semantic influences of words on surrounding words at relative positions.

4.5.3 VISUALIZATION

In this subsection, we will try to visualize the contribution of each word and selected phrase to
classification. Detailed visualization techniques have been introduced in Li et al. (2015). Here we
generalize it to the color rendering of multi-category version. Notice that for our model, not the

8



Published as a conference paper at ICLR 2018

Figure 3: Heat maps of chosen words trained on Yelp Review Polarity, which is a binary sentiment
analysis dataset. Each row represent the context unit of the middle word. Region size is 7 and
embedding size is 128.

original embedding acts here, but the accumulation of the projected embedding of each word on its
surrounding words.

Table 4: Visualization of chosen samples on Yelp Review Polarity dataset. Green denotes positive
contribution while red denotes negative. Two methods are compared without context unit(No C-unit)
and with context unit(With C-unit).

Method Sentence Samples Phrase
No C-unit get your wallet ready , the prices are crazy high prices are crazy high
With C-unit get your wallet ready , the prices are crazy high prices are crazy high
No C-unit nothing remarkable , but not bad either but not bad either
With C-unit nothing remarkable , but not bad either but not bad either

For clarity, we choose a binary classification task of sentiment analysis. In Table 4, we list two cases
in Yelp Review Polarity dataset, in which our model behaves as expected. Words and artificially
selected phrases are highlighted green if they are positive factors, red if they are negative. The
intensity of the color indicates the degree of the polarity.

To have a better comparison, the results of with and without context unit methods are both visualized.
We abbreviate them as With C-unit and No C-unit, respectively. For sentence get your wallet ready,

the prices are crazy high, if no context unit is adopted, the word color reflects its word embedding,
which is context-free. The polarity of crazy is positive, and high is negative. Because the intensity
of crazy is higher than high, the polarity of phrase prices are crazy high is totally positive, which is
a mistake. But with context unit, things have changed quite a bit, the polarities of words are context
dependent. Under the influence of high, the positive polarity of crazy vanishes and phrase prices

are crazy high performs negative overall. For another case nothing remarkable, but not bad either,
things seem more interesting. Without context-unit , remarkable is positive, while nothing, not, bad

perform negative, respectively. But with context unit, the polarity of the part ahead of but weakens,
meanwhile the polarities of not and bad flips. As a result, phrase but not bad either performs positive
overall.

5 CONCLUSION

This paper proposed two novel architectures for text classification tasks, which learn task specific re-
gion embeddings without hand crafted features. To utilize the word specific influences of each word
on its context words, a local context unit for each word is learned in addition to word embedding.
Our models achieve state-of-the-art performances on six benchmark text classification datasets, and

9



Published as a conference paper at ICLR 2018

the visualization experiments show that our proposed local context unit can capture the semantic
and syntactic information for each word.

Noticed the power of the local context unit on learning task related region embeddings, we are
interested in its ability to unsupervised and semi-supervised learning. At the same time, we are also
curious about whether we can achieve better results by introducing more complex upper layers on
text classification, and other natural language processing tasks.

ACKNOWLEDGMENTS

This paper is supported by National Basic Research Program of China (973 program
No.2014CB340505). We gratefully thank the anonymous reviewers for their insightful comments.

REFERENCES

Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and Yann Lecun. Very deep convolutional net-
works for natural language processing. arXiv preprint arXiv:1606.01781, 2016.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A
library for large linear classification. Journal of machine learning research, 9(Aug):1871–1874,
2008.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. Deep unordered compo-
sition rivals syntactic methods for text classification. In Proceedings of the 53rd Annual Meeting

of the Association for Computational Linguistics and the 7th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers), volume 1, pp. 1681–1691, 2015.

Thorsten Joachims. Making large-scale svm learning practical. Technical report, Technical Report,
SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund, 1998.

Rie Johnson and Tong Zhang. Effective use of word order for text categorization with convolutional
neural networks. arXiv preprint arXiv:1412.1058, 2014.

Rie Johnson and Tong Zhang. Semi-supervised convolutional neural networks for text categorization
via region embedding. In Advances in neural information processing systems, pp. 919–927, 2015.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient
text classification. arXiv preprint arXiv:1607.01759, 2016.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint

arXiv:1408.5882, 2014.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional neural networks for text
classification. In AAAI, volume 333, pp. 2267–2273, 2015.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. Visualizing and understanding neural models
in nlp. arXiv preprint arXiv:1506.01066, 2015.

Andrew McCallum, Kamal Nigam, et al. A comparison of event models for naive bayes text clas-
sification. In AAAI-98 workshop on learning for text categorization, volume 752, pp. 41–48.
Madison, WI, 1998.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information pro-

cessing systems, pp. 3111–3119, 2013.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in

natural language processing-Volume 10, pp. 79–86. Association for Computational Linguistics,
2002.

10



Published as a conference paper at ICLR 2018

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-

cessing, pp. 1631–1642, 2013.

Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recurrent neural network for
sentiment classification. In EMNLP, pp. 1422–1432, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neu-

ral Information Processing Systems 30, pp. 6000–6010. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Sida Wang and Christopher D Manning. Baselines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual Meeting of the Association for Computational

Linguistics: Short Papers-Volume 2, pp. 90–94. Association for Computational Linguistics, 2012.

Yijun Xiao and Kyunghyun Cho. Efficient character-level document classification by combining
convolution and recurrent layers. arXiv preprint arXiv:1602.00367, 2016.

Dani Yogatama, Chris Dyer, Wang Ling, and Phil Blunsom. Generative and discriminative text
classification with recurrent neural networks. stat, 1050:6, 2017.

Xiang Zhang and Yann LeCun. Text understanding from scratch. arXiv preprint arXiv:1502.01710,
2015.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. In Advances in neural information processing systems, pp. 649–657, 2015.

11



Published as a conference paper at ICLR 2018

APPENDIX

A DETAILED EXPERIMENTAL RESULTS

To have a further insight about our reported results, we list the training time and best testing perfor-
mance epoch for kinds of region sizes(5,7,9) in detail. For all the 8 datasets in Table 5, hyperparam-
eters are kept in line with section 4.3. The dimension of word embedding is 128, the region size is
7, the initial learning rate is set to 1⇥ 10

�4, and the batch size is 16. Epoch index starts from 0 and
training time is reported per epoch. We choose the model of word-context region embedding here.

Table 5: Experimental detailed records on several datasets

Dataset Vocabulary
Size

W.C Region
Size

Parameters
Number

Best
Epoch

Training
Time(Mins) Accuracy(%)

Yelp P. 115298
5 88,549,122 3 27 96.34
7 118,065,410 3 36 96.39
9 147,581,698 3 43 96.38

Yelp F. 124273
5 95,442,309 3 34 64.73
7 127,256,197 2 43 64.90
9 159,070,085 2 52 64.74

Amz. P. 394385
5 302,887,938 2 336 95.07
7 403,850,498 2 402 95.23
9 504,813,058 2 589 95.06

Amz. F. 356312
5 273,648,261 1 300 60.83
7 364,864,133 1 395 60.93
9 456,080,005 1 490 61.05

AG 42783
5 32,857,860 6 2 92.81
7 43,810,308 4 3 92.89
9 54,762,756 5 4 92.82

Sogou 99394
5 76,335,237 7 27 97.6
7 101,780,101 9 33 97.63
9 127,224,965 10 39 97.56

Yah.A. 361926
5 277,960,458 1 160 73.42
7 370,613,514 1 210 73.66
9 463,266,570 2 256 73.68

DBP 227863
5 175,000,590 3 37 98.87
7 233,333,518 2 48 98.89
9 291,666,446 3 60 98.94

We also report results of several repeated runs in Table 6 to exclude the effect of randomness and
ensure reproducibility. Five independent runs are conducted on each dataset of Yelp.P and Yelp.F,
where both performance variances are within 0.11% on accuracy.

Table 6: Performance variances through several repeated runs on Yelp Datasets

Dataset Tries Num. W.C region size Best Epoch Accuracy(%) Performance Variance

Yelp P.

0 7 3 96.39

%0.11
1 7 4 96.36
2 7 4 96.41
3 7 3 96.38
4 7 2 96.46

Yelp F.

0 7 2 64.90

%0.11
1 7 2 64.94
2 7 1 64.87
3 7 1 64.86
4 7 2 64.98

12


