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Abstract

The whole-slide pathology images (WSIs) are widely recognized as the golden
standard for cancer survival analysis. However, due to the high-resolution of WSIs,
the existing studies require dividing WSIs into patches and identify key compo-
nents before building the survival prediction system, which is time-consuming and
cannot reflect the overall spatial organization of WSIs. Inspired by the fact that the
spatial interactions among different tumor microenvironment (TME) components
in WSIs are associated with the cancer prognosis, some studies attempt to capture
the complex interactions among different TME components to improve survival
predictions. However, they require extra efforts for building the TME segmentation
model, which involves substantial annotation workloads on different TME compo-
nents and is independent to the construction of the survival prediction model. To
address the above issues, we propose ZTSurv, a novel end-to-end cancer survival
analysis framework via efficient zero-shot TME segmentation on low-resolution
WSIs. Specifically, by leveraging tumor infiltrating lymphocyte (TIL) maps on the
50x down-sampled WSIs, ZTSurv enables zero-shot segmentation on other two
important TME components (i.e., tumor and stroma) that can reduce the annotation
efforts from the pathologists. Then, based on the visual and semantic informa-
tion extracted from different TME components, we construct a heterogeneous
graph to capture their spatial intersections for clinical outcome prediction. We
validate ZTSurv across four cancer cohorts derived from The Cancer Genome
Atlas (TCGA), and the experimental results indicate that our method can not only
achieve superior prediction results but also significantly reduce the computational
costs in comparison with the state-of-the-art methods.

1 Introduction

Histopathology image analysis is a vital technology for cancer survival analysis [1, 2]. Traditional
methods of survival analysis rely heavily on manual interpretation of these images by pathologists,
which is time-consuming and prone to inter-observer variability. To address these challenges,
computational approaches have been explored to assist the analysis process. Early computer-aided
methods focus on handcrafted features extracted from specific regions of interests (ROIs), which
are limited in scalability and generalization ability [3]. Recently, with the rapid development of the
deep learning technology, training deep learning based whole-slide pathology image (WSI) analysis
models for cancer survival prediction has gained significant attentions [4, 5]. However, the main
challenge for survival analysis from the WSIs is that a high-resolution WSI is with large size (e.g.,
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100,000-by-100,000 pixels), and thus it is impractical to directly feed them into deep neural networks
due to memory limitations.

To make the analysis of WSIs memory-efficient, most of the existing studies firstly divide WSIs
into multiple patches and identify key components before constructing the survival prediction model
[6, 7, 8, 9, 10, 11]. Then, the patch-level representations are aggregated using attention [12] or
pooling [13] strategies to predict the clinical outcome. However, dividing high-resolution WSIs into
patches is computationally expensive, and the identified key components are insufficient to reflect
the heterogeneous tumor microenvironment (TME) components and their spatial associations. As a
highly heterogeneous disease, the progression of tumor is not only achieved by unlimited growth of
the tumor cells, but also supported, stimulated, and nurtured by the TME components around (i.e.,
stroma and lymphocyte) [14, 15].

For the purpose of capturing the spatial organizations among different TME components, the existing
studies usually adopt graph neural networks (GNNs) to model the interactions among different
TME components [16, 17, 18, 19, 20, 21, 22]. However, these methods require building the TME
segmentation model for distinguishing different TME components before graph building, which
need extra annotation efforts from the pathologists [3, 2, 23, 24]. Moreover, the existing studies
train the TME segmentation and survival prediction models independently, which ignores the fact
that the survival information could provide additional information to guide the TME segmentation
task. For instance, we have more chance to see the TME component of lymphocyte near the tumor
region for long survival patients, since it is widely recognized that the brisk interactions between
lymphocyte and tumor regions will indicate a better clinical outcome [25]. Additionally, the existing
GNN-based studies only extract visual features of each TME components as node representations
while overlooking their corresponding semantic information, which limits the model’s ability to
distinguish different TME components for graph learning.

Based on the above considerations, in this paper, we propose ZTSurv, a novel end-to-end framework
for cancer survival analysis through zero-shot segmentation of TME components on low-resolution
WSIs. Specifically, instead of working on the high-resolution WSIs, ZTSurv leverages tumor
infiltrating lymphocyte (TIL) maps on the 50x down-sampled WSIs to perform pixel-level zero-
shot segmentation on other two important TME components ( i.e., tumor and stroma) through
pathology-language foundation model (i.e., PLIP). Then, based on the visual and semantic information
extracted from different TME components, we construct a heterogeneous graph to capture their
spatial intersections for clinical outcome prediction. Extensive experiments on four cancer cohorts
derived from The Cancer Genome Atlas (TCGA) validate the effectiveness of ZTSurv, revealing its
superior predictive performance and computational efficiency in comparison with the state-of-the-art
approaches.

We summarize our main contributions as follows:

1. We propose a novel end-to-end framework ZTSurv for survival prediction of human cancers that
can simultaneously segment different TME components and capture their spatial interactions for
clinical outcome prediction.

2. We develop a zero-shot TME segmentation method that can leverage TIL maps to segment
other two TME components (i.e., tumor and stroma) by the aid of pathology-language foundation
model, which can reduce the pixel-level annotation efforts on different types of TME components for
constructing the semantic segmentation model.

3. Instead of working on the high-resolution WSIs, we implement our ZTSurv on the 50× down-
sampled WSIs that can significantly reduce the computational cost in comparison with the existing
studies.

4. We incorporate semantic information alongside the visual features to represent each TME compo-
nent for graph construction, which can more effectively distinguish different TME components.

2 Related Work

2.1 Survival Analysis in Gigapixel WSIs

Gigapixel WSIs provide crucial insights for cancer prognosis but are challenging to process directly
due to their large size [26]. Existing studies typically divide WSIs into multiple fixed-size patches and
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Figure 1: The overview of our proposed end-to-end framework ZTSurv for survival prediction
of human cancers, which can simultaneously segment key TME components and capture their
interactions for clinical outcome prediction.

extract useful information from these patches for survival prediction [6, 7, 27, 28, 8, 9, 11, 12, 13].
For instance, Mobadersany et al. [27] have presented a CNN-based survival prediction model based
on the annotated ROIs extracted from WSIs. Zhu et al. [6] exploited and utilized all discriminative
patches in WSIs to predict patients’ survival status. Based on [6], Yao et al. [12] further employed an
attention-based aggregation strategy to fuse informative patches for survival prediction. However,
these methods fail to capture long-range spatial interactions of different patches in WSIs. To address
the above challenges, a bunch of graph learning based survival prediction models are presented. For
instance, Li et al. [21] proposed to model WSIs as graphs and then developed a graph convolutional
neural network (graph CNN) with attention learning that better served the survival prediction by
rendering the optimal graph representations of WSIs. Chen et al. [16] presented a spatially-resolved
GCN [29] which hierarchically aggregated patch-level features to model local and global topological
structures in WSIs. Di et al. [19] proposed a big-hypergraph factorization neural network to encode
the correlation among vertices and hyperedges into two low-dimensional latent semantic spaces
for better survival analysis. However, most of the graph learning studies overlook to discuss the
interactions among different TME components that are important for cancer prognosis [25]. Also,
they usually work on the high-resolution WSIs that will bring significant computational burden.

2.2 Capturing TME Heterogeneity for Survival Analysis

Recent studies have shown that capturing the heterogeneity of the TME is critical for improving
the accuracy of survival prediction, as different TME components and their spatial interaction play
important roles for patient outcome prediction [14, 30]. For instance, the studies in [31, 32, 23]
have attempted to extract the TME information from WSIs for survival prediction. Han et al. [24]
introduced a multi-scale heterogeneity-aware hypergraph representation framework to characterize
the interactions between different TME components. Wu et al. [3] incorporated the concepts of
prototype for TME analysis. Although these methods have shown promising results, they typically
require dividing WSIs into patches, followed by training a dedicated segmentation or classification
model, or fine-tuning a foundation model, to identify TME component types and select key patches
before constructing graphs. However, such a patch pre-selection process relies heavily on additional
annotations from pathologists to train a satisfactory classifier or segmentor, which is both labor-
intensive and impractical when handling large volumes of high-resolution WSIs. What’s more, they
often neglect to incorporate semantic features during graph construction, limiting their ability to
capture the biological significance of the interactions between different TME components.

3 Method

Fig. 1 presents the overview of our proposed ZTSurv. We leverage tumor infiltrating lymphocyte
(TIL) maps on the 50x down-sampled WSIs to perform pixel-level zero-shot segmentation on other
two important TME components (i.e., tumor and stroma). The segmentation results are then used
to construct a heterogeneous graph, where the different TME components are represented as nodes
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based on their visual and semantic features. We capture the interactions between these components
to form the graph edges. The constructed heterogeneous graph is updated through graph learning,
which ultimately enables the prediction of survival outcomes.

3.1 Zero-shot TME Segmentation

Our objective is to segment TME tissue regions that are widely considered to be crucial for cancer
prognosis (e.g., lymphocyte [33], stroma [30], tumor [34]) on low-resolution WSIs using the corre-
sponding TIL maps, where only the lymphocyte class is available as ground truth for training. To
this end, we first down-sample the high-resolution WSI to match the size of the TIL map with width
W ′ and height H ′. We employ the PLIP [35] vision encoder, which divides the image into n patches
with a patch size of p′, and incorporate a learnable vision prompt to extract visual representations,
including the [cls] token g ∈ Rd′

and vision embedding Z = {z1, z2, . . . ,zn} ∈ Rn×d′
, where d′ is

the feature dimension of the PLIP model. Specifically, the input embeddings from the l-th multi-head
attention (MHA) module of the ViT-based encoder in PLIP are represented as {gl, zl

1, z
l
2, . . . ,z

l
n}.

We add a learnable vision prompt P l = {pl
1,p

l
2, . . . ,p

l
m} into the input and the l-th MHA module

processes the tokens as follows (detailed illustrations are available in the Appendix C):

[gl,Zl, _] = Layerl[gl−1,Zl−1,P l−1]. (1)

Instead of using generic text prompts like "a photo of {}" , we generate class-specific textual
descriptions Ĥ that capture the appearance attributes of various TME components using a large
language model (LLM) (details in Appendix D). These descriptions are encoded via the PLIP text
encoder to obtain text embeddings H ∈ RC×d′

, where C is the number of classes. A projector ψp,
composed of three linear layers, maps the text embeddings to prototypes E = ψp(H) ∈ RC×d′

.
Inspired by [36], we adopt a mask decoder consisting of three layers of lightweight transformers
to segment the TME components at the pixel level. The input Q(query),K(key),V (value) are
computed as:

Q = ψq(E ⊙ g) ∈ RC×d′
, K = ψk(Z) ∈ Rn×d′

, V = ψv(Z) ∈ Rn×d′
, (2)

where ⊙ is the Hadamard product, ψq, ψk, and ψv represent linear transformations. At each
transformer layer, the query Q is updated to better capture the semantic correlations with the visual
embeddings. To obtain the predicted mask, we calculate the score map using scaled dot-product
attention from the final layer with a Sigmoid activation to ensure that the segmentation results of each
class are independently generated:

ScoreMap = Sigmoid(
QKT

√
dk

) ∈ RC×n, (3)

where
√
dk is the dimension of the keys as a scaling factor. The score map is then reshaped to

C × (H ′/p′)× (W ′/p′), and the final segmentation mask M ∈ RH′×W ′
is obtained by applying an

Argmax operation along the class dimension followed by an up-sampling step to restore the original
spatial resolution. We train the zero-shot segmentation model using focal loss [37] and dice loss
[38, 39]. Notably, only the lymphocyte class, which is visible in the TIL map, contributes to the loss
calculation, while other classes are ignored.

3.2 Heterogeneous Graph Construction

To explicitly model the heterogeneity and spatial organization of the TME, we construct a hetero-
geneous graph G = (V, E ,A,R) based on the predicted segmentation mask M , where V, E ,A,R
represent the set of entities (vertices or nodes), the set of relations (edges), the set of entity types, the
space of edge attributes, respectively. Each node v ∈ V is associated with a type through a mapping
function τ(v) ∈ A. An edge e = (s, r, t) ∈ E connects a source node s to a target node t, where
the edge type is given by ϕ(e) = r ∈ R. Each node v has a d-dimensional feature vector x ∈ X ,
where X represents the embedding space for node feature. Specifically, we divide the down-sampled
WSI into a set of non-overlapping patches using a fixed window size s′ × s′. For each patch, we
determine its tissue label y ∈ A based on the dominant class within the patch area. Patches labeled
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as background are discarded, and the remaining patches are retained as graph nodes V . To construct
node features X , we first extract visual features f vis ∈ Rdv for each patch using the PLIP vision
encoder. In addition, considering the semantic gap and inherent heterogeneity among different TME
components, we further obtain semantic embeddings f text ∈ Rdt by feeding the corresponding class
name into the PLIP text encoder. Then, the final node representation can be calculated as:

x = [f vis ∥f text] ∈ Rdv+dt , x ∈ X . (4)

Here, ∥ denotes the concatenation operation. The node types and node features reflect the biological
roles of different TME components and preserve both visual and semantic heterogeneity at the node
level. Based on the defined nodes and their feature representations, we establish edges and assign
edge attributes to capture neighborhood relationships. For each node v ∈ V , we apply the k-nearest
neighbor algorithm to identify the k most similar nodes to it, and create directed edges connecting
v to each of its neighbors. For each edge e ∈ E , we compute the Pearson correlation coefficient
u ∈ U between the feature vectors of the source and target nodes as its continuous attribute, where
U represents the set of continuous edge attributes. The edge type r ∈ R is labeled as “positive” if
the coefficient is positive and “negative” otherwise. The edge attributes introduce heterogeneity at
the relational level and help to highlight implicit meta-relations among different tissue regions in
the WSI. To reduce potential noise introduced by uncertain or spurious correlations, we apply data
augmentation strategies during training, including random edge and feature dropout.

3.3 Heterogeneous Graph Learning for Survival Analysis

Traditional graph attention mechanisms fail to effectively address the heterogeneity inherent in
the graph structure [3]. To address this challenge, we incorporate node features that capture both
visual representations and type-specific information, alongside continuous edge attributes, into
the aggregation process, which allows the model to capture the complex interactions and diverse
relationships between different TME components.

Edge Updating. For each edge e ∈ E , we project its continuous attributes ul−1 ∈ U from the
(l − 1)-th graph learning layer to the l-th layer ul =Wedgeu

l−1 using a linear projector Wedge.

Node Updating. Instead of using edge similarity as weights for node updates, we account for the
heterogeneity inherent in both edges and nodes (detailed illustrations are available in the Appendix F).
Specifically, in each layer, we update the embedding of a node v ∈ V by aggregating information
from all its neighbors. We refer to node v as target node t, with its neighbors denoted as V(t) =
{s1, s2, . . . , sN}, where V(t) represents the set of source nodes that point to the target node t,
and N is the number of neighbors. The set of edges associated with node t is denoted as E(t) =
{e1, e2, . . . , eN}. At layer l, for each (si, ei, t) and attention head h, we first project the target node
t into a query vector F h

query using a linear projector W h
τ(t), and the source node into key and value

vectors F h
key,i and F h

value,i using W h
τ(si):

F h
query = W h

τ(t)x
l−1
t , F h

key,i = W h
τ(si)x

l−1
si , F h

value,i = W h
τ(si)x

l−1
si , (5)

where xl−1
si and xl−1

t represent the node features of the source node si and target node t at the
(l− 1)-th layer, and τ(·) ∈ A is a mapping function that assigns the corresponding type to each node.
Then we calculate the attention score for each edge ei on h-th attention head using the query vector
F h

query and the key vector F h
key,i modulated by the edge’s continuous attribute ui, and apply the

Softmax function across all edges in E(t) to obtain the normalized attention scores:

atth(t, ei) = F h
key,i · ui · F

h
query/

√
dv + dt, (6)

wh(t, e) = Softmax
∀e∈E(t)

(atth(t, e)), (7)

where
√
dv + dt is the scaling factor to ensure numerical stability, wh(t, e) ∈ RN represents the final

attention score of the edges associated with target node t on h-th attention head. Finally, the updated
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embedding of the target node t is computed by aggregating the weighted value vectors:

xt =

N∑
i=1

(∥ h∈[1,H]w
h(t, ei) · F h

value,i), (8)

where ∥ h∈[1,H] denotes the concatenation of all attention heads. The aggregation process results in
an updated feature that effectively combines both node-type and edge-attribute information, thereby
capturing the graph’s heterogeneity. After completing the L-th layer of graph learning, we employ a
global attention based pooling [40] to dynamically calculate a weighted sum of the node features in
the graph, transforming them into a WSI-level embedding representation. The representation is then
passed through a MLP to predict the final survival risk score. For the k′-th patient, we can model
the survival function f (k

′)
surv(T ≥ t,D(k′)) and hazard function f (k

′)
hazard(T = t|T ≥ t,D(k′)) given

the relative clinical information D(k′) = (X(k′), c(k
′), t(k

′)), where X(k′) represents the patient’s
WSI, c(k

′) ∈ {0, 1} indicates the censoring status, and t(k
′) ∈ R+ denotes the overall survival

time. After graph learning, we learn the representation f(D(k′)) and compute the survival loss
Lsurv({f(D(k′)), t(k

′), c(k
′)}ND

k′=1) of all patients, whereND is the number of samples in the training
set. Specifically, we adopt the negative log-likelihood (NLL) loss [41] to quantify the difference
between the predicted survival risk and the actual clinical outcomes (details can be found in the
Appendix B):

Lsurv = −
ND∑
k′=1

c(k
′)log(f (k

′)
surv(t|f(D(k′)))) (9)

+ (1− c(k
′))log(f (k

′)
surv(t− 1|f(D(k′)))) (10)

+ (1− c(k
′))log(f

(k′)
hazard(t|f(D

(k′)))). (11)

3.4 Overall Loss

The overall loss consists of the zero-shot TME segmentation loss Lseg and the survival loss Lsurv,
which can be formulated as follows:

L = Lseg + γLsurv = αLfocal + βLdice + γLsurv, (12)
where {α, β, γ} are coefficients that balance the contributions of different losses. In Appendix H, we
further analysis the time complexity of ZTSurv.

4 Experiments

4.1 Datasets

We conduct experiments on four cancer cohorts: Breast Invasive Carcinoma (BRCA) (1,016 cases),
Uterine Corpus Endometrial Carcinoma (UCEC) (520 cases), Lung Adenocarcinoma (LUAD) (540
cases), and Bladder Urothelial Carcinoma (BLCA) (369 cases). All WSIs for these cancer types
are sourced from The Cancer Genome Atlas (TCGA) repository [42] 2. The corresponding 50x
down-sampled tumor-infiltrating lymphocyte (TIL) maps are obtained from [43] 3.

4.2 Experimental Settings

Implementation Details. For each cancer cohort, we evaluate model performance using a 5-fold
cross-validation strategy. We use openslide [44] tool to process and down-sample the high-resolution
WSIs. The WSI segmentation is implemented with the open-source MMSegmentation toolbox
[45] with PyTorch 1.10.1. We employ the pre-trained PLIP ViT-B/32 model to extract visual and
textual features, with a feature dimension of 512. GPT-4 [46] is used as the LLM to generate class

2https://portal.gdc.cancer.gov/
3https://www.cancerimagingarchive.net/analysis-result/til-wsi-tcga/

6



Table 1: Comparisons of C-index (mean ± std) for survival prediction with SOTA methods over
four cancer datasets. The best and the second-best results are highlighted in bold and underlined.
p. represents methods sampling patches from WSIs; g. denotes graph-based methods; t. refers to
methods considering TME heterogeneity; w. represents methods without splitting WSIs into patches.

Model Design BRCA UCEC LUAD BLCA Overall
CLAM-SB [51] p. 0.581 ± 0.041 0.550 ± 0.113 0.549 ± 0.053 0.563 ± 0.049 0.561
CLAM-MB [51] p. 0.541 ± 0.119 0.551 ± 0.118 0.556 ± 0.067 0.601 ± 0.070 0.562

Co-Pilot [28] p. 0.544 ± 0.076 0.557 ± 0.112 0.571 ± 0.083 0.587 ± 0.056 0.564
DeepAttnMISL [12] p. 0.598 ± 0.066 0.639 ± 0.068 0.601 ± 0.041 0.597 ± 0.028 0.609

DSMIL [11] p. 0.548 ± 0.080 0.581 ± 0.164 0.538 ± 0.047 0.552 ± 0.052 0.555
WSISA [6] p. 0.514 ± 0.071 0.539 ± 0.114 0.575 ± 0.055 0.581 ± 0.050 0.552

DeepGraphSurv [21] p.+g. 0.587 ± 0.033 0.622 ± 0.097 0.595 ± 0.011 0.584 ± 0.037 0.597
HGSurvNet [22] p.+g. 0.624 ± 0.093 0.614 ± 0.034 0.587 ± 0.045 0.578 ± 0.041 0.601
PatchGCN [16] p.+g. 0.608 ± 0.043 0.678 ± 0.128 0.614 ± 0.007 0.599 ± 0.034 0.625

H2GT [24] p.+g.+t. 0.618 ± 0.032 0.671 ± 0.096 0.629 ± 0.046 0.623 ± 0.058 0.635
TMEGL [2] p.+g.+t. 0.623 ± 0.017 0.700 ± 0.053 0.631 ± 0.023 0.627 ± 0.029 0.645

ProtoSurv [3] p.+g.+t. 0.625 ± 0.009 0.705 ± 0.131 0.638 ± 0.026 0.629 ± 0.043 0.649

ZTSurv (ours) w.+g.+t. 0.642 ± 0.029 0.726 ± 0.113 0.637 ± 0.033 0.637 ± 0.042 0.661

BRCA UCEC LUAD BLCA

p-value: 2.50e-04 p-value: 9.91e-05 p-value: 7.41e-03 p-value: 7.21e-04

Figure 2: Kaplan–Meier curves for predicted high-risk (red) and low-risk (green) groups across four
cancer datasets. A p-value < 0.05 indicates statistical significance.

descriptions for different tissue categories. For graph construction, we set the window size s′ = 64
and select k = 8 neighbors per node. Data augmentation is applied by randomly dropping node
and edge features with a dropout rate of 0.2. The layer for graph learning L is set to 2, with H = 4
attention heads. The hyperparameters for the loss function are set as α = 20, β = 1, and γ = 20.
We use the AdamW optimizer [47] with a learning rate of 2× 10−5 and a weight decay of 1× 10−5.
The batch size is set to 8, and we train the model for 2K iterations. A detailed parameter analysis is
provided in the Appendix H.5.

Evaluation Metrics. To evaluate TME segmentation performance, we use the mean of class-
wise Intersection over Union (mIoU) on lymphocyte, i.e., the only TME component with available
ground truth annotations, to measure the overlap between predicted and reference regions. To assess
predictive performance, we use the concordance index (C-index) [48] for evaluating the ability to
correctly rank the survival risk of different patients. For qualitative assessment, we employ Kaplan-
Meier curves [49] with log-rank test [50] to visualize patient stratification, distinguishing between
low and high-risk patients with two separate survival distributions. More details can be found in
Appendix G.

4.3 Comparison with State-Of-The-Art Methods.

We compare our proposed method with several state-of-the-art approaches for survival prediction: (1)
CLAM-SB [51], (2) CLAM-MB [51], (3) Co-Pilot [28], (4) DeepAttnMISL [12], (5) DSMIL [11], (6)
WSISA [6], (7) DeepGraphSurv [21], (8) HGSurvNet [22], (9) PatchGCN [16], (10) H2GT [24], (11)
TMEGL [2], (12) ProtoSurv [3]. Among them, CLAM-SB, CLAM-MB, Co-Pilot, DeepAttnMISL,
DSMIL, and WSISA are classical WSI survival prediction approaches; DeepGraphSurv, HGSurvNet,
and PatchGCN model spatial relationships by constructing homogeneous graphs for survival predic-
tion; H2GT, TMEGL, and ProtoSurv leverage the heterogeneity of the TME for survival analysis. All
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Table 2: Comparisons of mIoU (mean ± std) for TME segmentation with SOTA methods over four
cancer datasets. The best and the second-best results are highlighted in bold and underlined.

Model BRCA UCEC LUAD BLCA Overall
ZegFormer [52] 0.536 ± 0.109 0.459 ± 0.125 0.566 ± 0.021 0.561 ± 0.047 0.531
ZegCLIP [53] 0.547 ± 0.105 0.475 ± 0.121 0.572 ± 0.040 0.570 ± 0.055 0.541
TagCLIP [54] 0.541 ± 0.117 0.474 ± 0.141 0.568 ± 0.036 0.579 ± 0.059 0.541

ZTSurv-Seg 0.552 ± 0.096 0.478 ± 0.150 0.579 ± 0.050 0.589 ± 0.056 0.550
ZTSurv (ours) 0.574 ± 0.023 0.506 ± 0.147 0.595 ± 0.023 0.608 ± 0.055 0.571

stroma tumorlymphocyte

TCGA-3C-AALI (BRCA)

stroma

tumor

CONCH :

PLIP :

lymphocyte

tumor

CONCH :

PLIP : tumor

CONCH :

PLIP :

tumor

Figure 3: Zero-shot TME segmentation comparison of ZTSurv, CONCH, and PLIP.

these methods require splitting WSIs into patches as an essential processing step, while ZTSurv can
avoid this step and directly utilize low-resolution WSIs for training an end-to-end survival prediction
model.

As shown in Table 1, ZTSurv outperforms all classical [51, 28, 12, 11, 6] and graph-based [21, 22, 16]
methods by a margin of 1.8%-4.8%, demonstrating the effectiveness of our method that incorporates
TME heterogeneity for more accurate survival prediction. Compared to recent TME-aware models
such as H2GT [24], TMEGL [2], and ProtoSurv [3], ZTSurv still achieves the highest C-index on 3
out of 4 cancer datasets, with an improvement of 0.8%-2.1%. These results highlight the strength of
ZTSurv that can simultaneously realize the TME segmentation and survival prediction tasks, while
the existing studies treat these two tasks independently that miss the inherent correlation among them.

4.4 Patient Stratification

We perform Kaplan–Meier analysis by separating patients into high-risk and low-risk groups based
on predicted risk scores, using the median value within each validation set as the cut-off. The
log-rank test [50] is then applied to compute p-values that assess the statistical significance of survival
differences between the two groups, with smaller p-values indicating better stratification. In Fig. 2
and Appendix H.1, we present the stratification ability of our method across four cancer datasets and
compare it with two best competitors (i.e., ProtoSurv and TMEGL). The results clearly show that our
method achieves more distinct separation between high-risk (red) and low-risk (green) groups across
all cohorts with lower p-values, which further demonstrates the effectiveness of our method.

4.5 Ablation Study and Analysis

Component Ablation. To further investigate the contribution of each component in ZTSurv, we
conduct an ablation study by removing or replacing key modules in Appendix H.2: 1) w/o text
prompt: Removing text prompt of zero-shot segmentation. 2) w/o vision prompt: Removing vision
prompt of zero-shot segmentation. 3) w/o node type: Constructing a homogeneous graph without
considering node types during graph construction. 4) w/o semantic feature: Without considering
semantic feature for node representation during graph construction. 5) w/o vision feature: Without
considering vision feature for node representation during graph construction. 6) w/o edge attribute:
Without considering edge attribute during graph construction and learning. As can be observed from
Table 4 in Appendix, ZTSurv is superior to its variants, indicating that each component of our method
is effective in improving survival prediction performance.

Comparison of Zero-shot TME Segmentation. We compare the zero-shot TME segmentation
performance with several state-of-the-art methods: (1) ZegFormer [52], (2) ZegCLIP [53], (3)
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Table 3: Effect of tissue category choices on C-index (mean ± std) over four cancer datasets.
BRCA UCEC LUAD BLCA Overall

lymphocyte + tumor 0.628 ± 0.020 0.713 ± 0.128 0.629 ± 0.06 0.629 ± 0.047 0.650
lymphocyte + stroma 0.634 ± 0.043 0.704 ± 0.056 0.633 ± 0.065 0.623 ± 0.049 0.649

lymphocyte + tumor + stroma 0.642 ± 0.029 0.726 ± 0.113 0.637 ± 0.033 0.637 ± 0.042 0.661
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Figure 4: Comparison of Average Memory Usage and Inference Time per WSI.

TagCLIP [54]. We also evaluate a variant of our method, ZTSurv-seg, which is trained solely with
segmentation loss and without survival-guided information. As shown in Table 2, ZTSurv consistently
outperforms all compared methods across four cancer datasets, achieving the highest overall mIoU
of 0.571. Additionally, compared to its variant ZTSurv-seg, which lacks survival guidance, ZTSurv
shows consistent gains in segmentation performance across all cohorts. These results suggest that
incorporating survival supervision can provide informative signals that help refine the segmentation
process, resulting in more prognostically meaningful TME delineation. In Fig. 3, we further present
the visualization results of segmentation and compare it with CONCH [55] and PLIP [35]. As shown
in Fig. 3, our method accurately captures key TME components, while existing survival analysis
approaches that rely on pathology foundation models, like CONCH and PLIP, often struggle to
identify non-tumor components, limiting their ability to fully capture TME heterogeneity. The results
further highlight the effectiveness of our approach in zero-shot TME segmentation, enabling more
comprehensive and precise survival analysis. In the Appendix H.4, we provide more visualization
results on other three datasets (i.e., BLCA, LUAD, and UCEC).

Comparison of Survival Prediction with Different Zero-shot Classifiers. In Appendix H.3, we
compare ZTSurv with three alternative approaches for the zero-shot TME segmentation stage (i.e.,
CONCH [55], PLIP [35], and a UNI classifier [56] finetuned as described in [3]) for survival outcome
prediction. As shown in Fig. 9 in Appendix, ZTSurv consistently achieves superior C-index scores
across all four cancer datasets, demonstrating that our method achieves better performance.

Effect of Different Tissue Categories. In our work, we consider three key TME components, (i.e.,
lymphocyte, tumor, and stroma), to capture the complex TME. To further investigate the impact of
different tissue categories on survival prediction, we conduct experiments with different combinations
of tissue components (i.e., lymphocyte + tumor, lymphocyte + stroma) to evaluate their influence
on survival analysis. As shown in Table 3, including a more comprehensive set of tissue categories
(i.e., lymphocyte + tumor + stroma) consistently achieves the highest C-index across four datasets,
indicating that capturing a broader TME leads to better survival prediction.

Time and Memory Analysis. Compared with conventional patch-based methods that divide high-
resolution WSIs into thousands of tiles, ZTSurv offers significant advantages in both time and
memory efficiency. As shown in Fig. 4, on a single NVIDIA RTX 4090 GPU, ZTSurv reduces
average memory usage per WSI by approximately 3,000 times and decreases average inference time
by about 6 times compared to other methods. This is primarily because ZTSurv directly processes the
down-sampled WSI without the need to generate and store thousands of small patches, significantly
reducing computational overhead and memory requirements, which further demonstrates its superior
scalability and efficiency for large-scale whole-slide image analysis.
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5 Conclusion

In this paper, we propose ZTSurv, a novel end-to-end framework for cancer survival analysis that
integrates survival prediction with zero-shot TME segmentation on low-resolution WSIs. ZTSurv
eliminates the need for manual annotations by leveraging TIL maps to segment key TME components,
and introduces survival-guided segmentation to enhance the identification of prognostically TME
regions. By performing segmentation directly on 50× down-sampled WSIs, the framework signif-
icantly reduces computational cost. Furthermore, the incorporation of semantic features in graph
construction allows the model to better capture complex tissue interactions. Extensive experiments
on four TCGA cohorts demonstrate the effectiveness and efficiency of ZTSurv, indicating its strong
potential for scalable and practical histopathology analysis.
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results?
Answer: [Yes]
Justification: We provide detailed descriptions of the hyperparameter and optimizer setup in
section 4.2.
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• The assumptions made should be given (e.g., Normally distributed errors).
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on the computer resources in section 4.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All the data we used comes from public datasets, and there are no violations of
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss potential societal impacts in appendix I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release data and pretrained models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets used in our paper are properly credited and the license and terms of
use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: All the data we used comes from public datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: All the data we used comes from public datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We used GPT-4 as the LLM to generate detailed text descriptions for different
tissue categories.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Overview

In this appendix, we first provide detailed analysis of survival prediction in B. We then provide the
detailed illustrations of vision prompt and text prompt for zero-shot TME segmentation in C and
D, respectively. In E and F, we present the detailed illustrations of mask decoder of zero-shot TME
segmentation and node updating in graph learning, respectively. Then, we provide the evaluation
metric for survival prediction in G. In H, we present more experiments and analysis, including
comparisons of patient stratification H.1, ablation study of main components H.2, comparisons
of survival prediction with different zero-shot classifiers H.3, more zero-shot TME segmentation
visualization results H.4, parameter analysis H.5, time complexity analysis H.6, and discussions of
limitations and future work H.7. Finally, we discuss the potential ethical issues which may arise in
our study in I.

B Survival Analysis

Survival prediction aims to model the time until an event occurs, typically formulated as an ordinal
regression problem. In clinical data, the event (e.g., death) is not always observed due to censoring,
such as when a patient is lost to follow-up. These right-censored cases introduce uncertainty, as we
only know that the event did not occur before the last recorded time.

Following our notation in Sec. 3.3, let D = (X, c, t) represent the patient’s clinical data, where X is
patient’s pathology image, t ∈ R+ denotes the overall survival time, c ∈ {0, 1} specifies whether
the data is right-censored. We denote T as a continuous random variable representing survival time.
The survival function fsurv(T ≥ t,D) estimates the probability of a patient surviving beyond time t,
while the hazard function fhazard(t|D) = fhazard(T = t|T ≥ t,D) quantifies the risk of the event
occurring at time t given survival up to that point, which is defined as:

fhazard(T = t) = lim
∂t→0

P (t ≤ T ≤ t+ ∂t | T ≥ t)

∂t
, (13)

which can be used to estimate f (k
′)

surv(T ≥ t,D(k′)) by integrating the hazard function fhazard. The
most common model for learning hazard functions is the Cox Proportional Hazards (CoxPH) model,
where the hazard is modeled as:

fhazard(t|D) = f0hazard(t) exp(θ
⊤D). (14)

Here, f0hazard(t) is the baseline hazard, and θ contains parameters that modulate risk based on the
input features D. In deep learning applications, θ is typically produced by the final layer of a neural
network and is optimized using the partial log-likelihood of the Cox model via stochastic gradient
descent.
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Figure 5: Illustration of vision prompt for zero-shot TME segmentation.

C Vision Prompt of Zero-shot TME Segmentation

In Sec. 3.1, we use the vision prompt, as shown in Fig. 5, to enhance the extraction of visual features
from low-resolution WSIs. The [cls] token, patch embeddings, and learnable prompts are passed
through each layer, with only the learnable prompts being trainable.
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Figure 6: A detailed illustration of mask decoder in zero-shot TME segmentation.

D Text Prompt of Zero-shot TME Segmentation

In Sec. 3.1, we generate class-specific textual descriptions which capture the appearance attributes
of TME components using the LLM. Specifically, instead of using generic prompts like "a photo
of {}", we use the following prompts fed into the LLM: "Describe {} in the pathology image in
detail, including features such as color and shape". We list the textual descriptions for key TME
components (i.e., lymphocyte, stroma, tumor) as follows:

• "lymphocyte": This is the lymphocyte in the pathology image, typically appearing as small,
round cells with a light blue cytoplasm and dark purple nuclei.

• "stroma": This is the stroma in the pathology image, typically appearing as fibrous tissue in
pale pink or beige tones, supporting the surrounding cells.

• "tumor": This is the tumor in the pathology image, typically appearing as irregularly shaped
cells with darker purple or blue cytoplasm and enlarged, pleomorphic nuclei.

E Detailed Illustrations of Mask Decoder

In Fig. 6, we present a detailed illustration of the mask decoder inspired by [36] in zero-shot TME
segmentation, which progressively refines feature representations to generate accurate segmentation
masks.

F Detailed Illustrations of Node Updating

In Fig. 7, we provide a detailed illustration of node updating in graph learning, where the target node
is solely associated with source nodes A and B in this example.

G Evaluation Metric for Survival Analysis

We use the concordance index (C-index) to evaluate the predictive accuracy of survival analysis
models, which evaluates a model’s ability to correctly rank pairs of samples based on their predicted
risk of experiencing an event (e.g., death) within a given time frame. Specifically, samples are sorted
by their predicted survival scores, and the C-index reflects the proportion of correctly ordered pairs.
The metric is defined as:

C-index =
1

N ′(N ′ − 1)

N∑
i=1

N∑
j=1

I(Ti < Tj)(1− cj), (15)
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where N ′ is the total number of patients, and I is the indicator function that returns 1 when the
condition holds and 0 otherwise.

H More Experiments and Analysis

H.1 Patient Stratification

In addition to evaluating prognostic performance using the C-index, patient stratification is another
key aspect of cancer survival analysis, enabling the identification of subgroups with distinct clinical
outcomes for personalized treatment. We compare the patient stratification ability of ZTSurv with its
two best competitors (i.e., ProtoSurv and TMEGL) in Fig. 8, and the results demonstrate that ZTSurv
consistently achieves clearer separation between risk groups, indicating more accurate prognosis.

H.2 Component Ablation

Table 4 shows the ablation results of ZTSurv on C-index across four cancer datasets. As shown
in Table 4, removing either the text prompt or vision prompt in TME segmentation results in a
noticeable drop in performance across all datasets, with the overall C-index decreasing to 0.644
and 0.650 respectively, confirming the effectiveness of prompt-based guidance for zero-shot seg-
mentation. In terms of graph construction, we further examine the influence of node types and
feature representations. It is clear that removing node type information, i.e., treating all nodes as
homogeneous, leads to a noticeable performance drop, underscoring the importance of preserving
semantic distinctions among TME regions. Furthermore, excluding the vision feature results in the
most significant degradation, indicating that visual cues derived from WSIs are critical for accurate
survival prediction. The absence of semantic features also degrades performance, suggesting their
complementary value in capturing contextual information. Additionally, eliminating edge attributes
weakens the model’s ability to capture spatial relationships, resulting in a further drop in the overall
C-index to 0.651. The results emphasize the critical role of each component in our framework.

H.3 Comparison of Survival Prediction with Different Zero-shot Classifiers

In Fig. 9, we compare ZTSurv with three alternative approaches for the zero-shot TME segmentation
stage (i.e., CONCH [55], PLIP [35], and a UNI classifier [56] finetuned as described in [3]) to predict
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ZTSurv
(ours)

ProtoSurv

TMEGL

BRCA UCEC LUAD BLCA

p-value: 2.50e-04 p-value: 9.91e-05 p-value: 7.41e-03 p-value: 7.21e-04

p-value: 2.54e-03 p-value: 1.23e-02 p-value: 2.49e-02 p-value: 9.28e-03

p-value: 2.27e-03 p-value: 8.16e-03 p-value: 1.39e-02 p-value: 5.20e-03

Figure 8: Kaplan–Meier curves for predicted high-risk (red) and low-risk (green) groups across
four cancer datasets under different comparative methods. A p-value < 0.05 indicates statistical
significance.

Table 4: Ablation study of ZTSurv on C-index (mean ± std) over four cancer datasets.
BRCA UCEC LUAD BLCA Overall

w/o text prompt 0.618 ± 0.021 0.706 ± 0.098 0.631 ± 0.035 0.622 ± 0.018 0.644
w/o vision prompt 0.621 ± 0.016 0.723 ± 0.089 0.623 ± 0.026 0.631 ± 0.027 0.650

w/o node type 0.615 ± 0.025 0.702 ± 0.110 0.624 ± 0.019 0.630 ± 0.043 0.643
w/o semantic feature 0.624 ± 0.023 0.701 ± 0.071 0.635 ± 0.015 0.624 ± 0.026 0.646

w/o vision feature 0.611 ± 0.026 0.669 ± 0.075 0.625 ± 0.040 0.621 ± 0.023 0.632

w/o edge attribute 0.632 ± 0.024 0.707 ± 0.072 0.632 ± 0.036 0.632 ± 0.006 0.651

ZTSurv 0.642 ± 0.029 0.726 ± 0.113 0.637 ± 0.033 0.637 ± 0.042 0.661

the survival outcome. The results further demonstrate the effectiveness of our method in capturing
TME heterogeneity.

H.4 More Zero-shot TME Segmentation Visualization

In Fig. 10, we provide more zero-shot TME segmentation visualization results on BLCA, LUAD,
and UCEC cancer datasets. The results demonstrate that ZTSurv can capture key TME components
more accurately.

H.5 Parameter Analysis

We analyze the sensitivity of the number of neighbors k used for connecting nodes and the window
size s′ for node generation. As shown in Table 5, k = 8 yields the best overall performance, while
both smaller (k = 4) and larger (k = 16) values result in performance degradation. For the window
size s′, we observe that s′ = 64 achieves the highest C-index across all datasets, while smaller window
sizes result in overly complex graphs with redundant information and larger sizes fail to capture
sufficient local detail, which highlights the importance of balancing graph density and information
granularity in node construction.
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Figure 9: Comparisons of C-index (mean ± std) with different TME segmentation methods over four
cancer datasets.
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Figure 10: Zero-shot TME segmentation comparison of ZTSurv, CONCH, and PLIP.

H.6 Time Complexity Analysis

The complexity of ZTSurv is dominated by three components. Firstly, zero-shot TME segmentation
on the down-sampled WSI has a complexity ofO(H ′W ′d′). Secondly, the complexity of constructing
a heterogeneous graph with n′ nodes is O(n′(dv + dt)). Finally, the graph neural network performs
message passing over L layers, with a per-layer cost of O(n′k(dv + dt)). In summary, the time
complexity of our ZTSurv is O(H ′W ′d′) +O(n′(dv + dt)) +O(Ln′k(dv + dt)) = O(H ′W ′d′ +
n′(1 + Lk)(dv + dt)).

H.7 Limitations and Future Work

In this work, we focus on capturing key TME components, including lymphocyte, tumor, and
stroma, for survival prediction. However, as demonstrated in Table 3, including a broader range
of TME components can potentially lead to better predictive performance. In future work, we will
explore more diverse tissue types, such as blood vessels, necrosis, and fibroblasts, to capture a more
comprehensive representation of the TME and further enhance model robustness.
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Table 5: Parameter analysis of C-index (mean ± std) over four cancer datasets.
BRCA UCEC LUAD BLCA Overall

k = 4 0.633 ± 0.037 0.703 ± 0.051 0.636 ± 0.047 0.632 ± 0.045 0.651
k = 8 0.642 ± 0.029 0.726 ± 0.113 0.637 ± 0.033 0.637 ± 0.042 0.661
k = 16 0.630 ± 0.022 0.698 ± 0.063 0.622 ± 0.049 0.625 ± 0.041 0.644

s′ = 32 0.635 ± 0.022 0.702 ± 0.073 0.632 ± 0.052 0.634 ± 0.057 0.651
s′ = 64 0.642 ± 0.029 0.726 ± 0.113 0.637 ± 0.033 0.637 ± 0.042 0.661
s′ = 128 0.635 ± 0.037 0.695 ± 0.038 0.631 ± 0.037 0.611 ± 0.024 0.643

I Ethical Discussions

Ethical Considerations. The Cancer Genome Atlas (TCGA) dataset used in this study is a publicly
available resource widely utilized in pathology research. Given its open nature and established use,
its application in this study does not present significant ethical concerns. The TIL maps employed
were generated based on publicly available data without the involvement of any identifiable patient
information, ensuring no individuals are adversely impacted. As such, this study adheres to ethical
guidelines without compromising privacy or rights.

Potential Positive Social Impacts. The proposed method has the potential to improve patient
outcomes by enabling more accurate and comprehensive analysis of tumor microenvironments,
facilitating early diagnosis and personalized treatment planning. Moreover, it can reduce the workload
of pathologists by automating routine analyses, potentially increasing the scalability and efficiency of
cancer diagnosis in clinical practice.

Potential Negative Social Impacts. As this work focuses on cancer survival prediction, it is
important to acknowledge potential social impacts, including but not limited to:

• Diagnostic Errors. Like all AI-based methods, this approach is not immune to errors.
Incorrect predictions or misclassifications could have serious consequences for patient care
and treatment decisions. Therefore, these tools should serve as decision aids, complementing
but not replacing human medical judgment.

• Privacy Concerns. WSI datasets can contain sensitive information, and the leakage of
such data may pose significant privacy risks to patients. To mitigate this, our study exclu-
sively relies on publicly available datasets where personal identifiers are either absent or
appropriately protected.
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