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ABSTRACT
Automated Machine Learning (AutoML) offers a promising ap-
proach to streamline the training of machine learning models. How-
ever, existing AutoML frameworks are often limited to unimodal
scenarios and require extensive manual configuration. Recent ad-
vancements in Large Language Models (LLMs) have showcased
their exceptional abilities in reasoning, interaction, and code gen-
eration, presenting an opportunity to develop a more automated
and user-friendly framework. To this end, we introduce AutoM3L,
an innovative Automated Multimodal Machine Learning frame-
work that leverages LLMs as controllers to automatically construct
multimodal training pipelines. AutoM3L comprehends data modal-
ities and selects appropriate models based on user requirements,
providing automation and interactivity. By eliminating the need
for manual feature engineering and hyperparameter optimization,
our framework simplifies user engagement and enables customiza-
tion through directives, addressing the limitations of previous
rule-based AutoML approaches. We evaluate the performance of
AutoM3L on six diverse multimodal datasets spanning classifica-
tion, regression, and retrieval tasks, as well as a comprehensive
set of unimodal datasets. The results demonstrate that AutoM3L
achieves competitive or superior performance compared to tra-
ditional rule-based AutoML methods. Furthermore, a user study
highlights the user-friendliness and usability of our framework,
compared to the rule-based AutoML methods. Code is available at:
https://anonymous.4open.science/r/anonymization_code.
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1 INTRODUCTION
Multimodal data is crucial in various machine learning (ML) tasks as
it provides the ability to capture more comprehensive feature repre-
sentations. Real-world data often combines heterogeneous sources,
such as integrating table product information with associated im-
ages and textual descriptions. Similarly, in the financial sector, user
photos, text, transactions, and other data types are frequently con-
solidated in tabular formats for analysis and management. However,
the inherent diversity of these modalities introduces complexities,
particularly in selecting optimal machine learning or deep learning
model architectures and seamlessly synchronizing features across
modalities Consequently, there is often a heavy reliance on manual
involvement in the ML pipeline.

AutomatedMachine Learning (AutoML) has emerged as a promis-
ing approach to reduce the need for manual intervention in the ML

pipeline [6, 10, 16, 30, 31, 33]. However, a significant gap exists for
multimodal data, as the majority of AutoML solutions primarily
focus on unimodal data. AutoGluon1 made an initial attempt at
multimodal AutoML but suffers from several limitations. Firstly,
it lacks comprehensive automation of feature engineering, which
is crucial for effectively handling multimodal data. Secondly, it
presents a steep learning curve for users to become familiar with
its configurations and settings, contradicting the user-friendly au-
tomation principles that AutoML aims to embody. Moreover, Auto-
Gluon’s adaptability is constrained by pre-set settings such as the
search space, model selection, and hyperparameters, necessitating
significant manual intervention. Lastly, extending AutoGluon’s ca-
pabilities by integrating new techniques or models often requires
complex manual code modifications, hindering its agility and po-
tential for growth.

The scientific community has been captivated by the rapid rise of
large language models (LLMs), particularly due to their transforma-
tive potential in task automation [2, 4, 29, 34]. LLMs have evolved be-
yond their initial purpose as text generators and have now become
highly autonomous entities capable of self-initiated planning and
execution [14, 27, 32, 35, 36]. This evolution presents a compelling
opportunity to enhance the performance and adaptability of mul-
timodal AutoML systems. Leveraging this potential, we introduce
AutoM3L, an innovative LLM framework for Automated Multimodal
Machine Learning. Unlike platforms such as AutoGluon, which are
constrained by predefined pipelines, AutoM3L distinguishes itself
through its dynamic user interactivity. Specifically, it seamlessly
integrates ML pipelines tailored to user instructions, enabling un-
paralleled scalability and adaptability throughout the entire process,
from data pre-processing to model selection and optimization.

The major contributions are four-fold, summarized as follows.
(1) We introduce AutoM3L, a novel framework that automates the
development of machine learning pipelines for multimodal data.
AutoM3L enables users to derive accurate models for each modality
from a diverse pool of models and generates an executable script for
cross-modality feature fusion, all with minimal natural language
instructions. This approach simplifies the process of building multi-
modal ML pipelines and makes it more accessible to a wider range
of users. (2) We advance the automation of feature engineering by
leveraging a LLM to intelligently filter out attributes that could
hinder model performance while simultaneously imputing miss-
ing data. This automated feature engineering process reduces the
need for manual intervention and improves the overall quality of
the input data. (3) We automate hyperparameter optimization by
combining the LLM’s self-generated suggestions with external API
calls. This approach eliminates the need for labor-intensive manual
explorations and enables more efficient and effective hyperparame-
ter tuning. (4) We conduct comprehensive evaluations, comparing
AutoM3L with conventional rule-based AutoML on a diverse set of

1https://github.com/autogluon/autogluon
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Figure 1: The overall framework of AutoM3L. It consists of five stages: 1○ Infer the modality of each attribute in structured table
data. 2○ Automate feature engineering for feature filtering and data imputation. 3○ Select optimal models for each modality.
4○ Generates executable scripts for model fusion and data processing to assemble the training pipeline. 5○ Search optimal
hyperparameters. The detailed system prompts for LLMs in each stage can be found in Appendix A.

multimodal and unimodal datasets. Additionally, a user study fur-
ther highlighted the distinct advantages of our framework in terms
of user-friendliness and a significantly reduced learning curve.

2 METHODS
In this paper, we propose an Automated Multi-Modal Machine
Learning (AutoM3L) framework that utilizes Large LanguageModels
(LLMs) to automate the machine learning pipeline for multimodal
scenarios. This section begins by introducing the organization of
the multimodal dataset in Sec.2.1. In Sec.2.2 to 2.6, we elaborate on
the five functional components enhanced by LLMs in AutoM3L: (1)
modality inference, (2) automated feature engineering, (3) model se-
lection, (4) pipeline assembly, and (5) hyperparameter optimization,
as illustrated in Fig. 1.

2.1 Organization of Multimodal Dataset
Most existing studies utilize the JavaScript Object Notation (JSON)
to represent multimodal data. However, JSON cannot capture the
interplay between different modalities, making it unsuitable for
analysis by language models. To address this limitation, we fol-
low [3, 12, 15, 28] and employ the structured tables to represent
multimodal data. Structured tables offer a clear representation that
captures the interaction between different modalities and effec-
tively aggregates information from various formats into a unified
structure. Additionally, these tables encompass a diverse range of
data modalities, including images, text, tabular data, and more.

Figure 2: (a) Modality Inference with MI-LLM. It displays
MI-LLM’s capability to determine the modality of each col-
umn in a dataset. Attributes are annotated in red to indicate
the inferred modality. (b) Data Refinement with AFE-LLM.
It highlights AFE-LLM’s dual role in feature filtering and
data imputation. The left part displays attributes marked
in red that are filtered out, while the right part shows red
annotations identifying attributes that undergo imputation.

2.2 Modality Inference Module
AutoM3L begins with theModality Inference-LLM (MI-LLM) com-
ponent, which identifies the associated modality for each column
in the structured table. To simplify its operation and minimize ad-
ditional training costs, MI-LLM leverages in-context learning. As
illustrated in Fig. 2(a), the guiding prompt for MI-LLM consists of
three essential parts: (1) An ensemble of curated examples is utilized
for in-context learning, assisting MI-LLM in establishing strong
correlations between column names and their associated modalities,
thereby generating the desired format responses. These examples
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Figure 3: Illustration of themodel zoo andMS-LLM. (a) Model
addition process: This stage showcases how new models are
incorporated into the model zoo, visualized as a vector data-
base. Themodel card’s embedding vector serves as the unique
identifier or key, paired with its corresponding model config-
uration as the value. (b) Model retrieval process: This stage
illustrates the model selection process. Given user directives,
the system initiates a query to identify the top 5 models that
align with each input modality. From this refined subset, MS-
LLM then determines and selects the most suitable model.

serve as a foundation for MI-LLM to learn from and adapt to the
specific dataset at hand, enabling it to accurately infer the modality
of each column based on the provided examples. (2) A subset of
the input structured table, consisting of randomly sampled data
items paired with their respective column names, is included. The
semantic richness of this subset acts as a guiding force, directing
MI-LLM towards accurate identification of modalities. By providing
a representative sample of the dataset, MI-LLM can better under-
stand the context and characteristics of each column, allowing it
to make more informed modality inferences. (3) User directives
go beyond mere instructions, enriching the process with deeper
contextual information. These directives leverage the LLM’s excep-
tional interactivity to enhance the refinement of modality inference.
For instance, a directive such as “This dataset delves into the diverse
factors influencing animal adoption rates” provides MI-LLM with
valuable contextual information, enabling a more insightful in-
terpretation of column descriptors. This additional context helps
MI-LLM to make more accurate and relevant modality inferences
by considering the overall theme and purpose of the dataset.

2.3 Automated Feature Engineering Module
Feature engineering is a critical pre-processing phase to address
common data challenges, such as handling missing values. While
conventional AutoML solutions rely heavily on rule-based feature
engineering, our AutoM3L framework leverages the exceptional ca-
pabilities of LLMs to enhance this process. Specifically, we introduce
the Automatic Feature Engineering-LLM (AFE-LLM), as illustrated
in Fig. 2(b). This module utilizes two distinct prompts, resulting
in two core components: AFE-LLMfilter and AFE-LLMimputed. The
AFE-LLMfilter component effectively sifts through the data to elim-
inate irrelevant or redundant attributes. On the other hand, the
AFE-LLMimputed component is dedicated to data imputation, ensur-
ing the completeness and reliability of essential data. Importantly,
these components work together in synergy. After AFE-LLMfilter

refines the features, AFE-LLMimputed then addresses relevant data
gaps in the dataset.

To enhance feature filtering, AFE-LLMfilter incorporates the fol-
lowing prompts: (1) An ensemble of examples for in-context learn-
ing, which includes introducing attributes from diverse datasets and
intentionally incorporating irrelevant attributes. The objective of
AFE-LLMfilter is to effectively distinguish and eliminate irrelevant
attributes (2) Column names in the structured table, containing
abundant semantic information about each feature component,
thereby enhancing the LLM’s capability to distinguish between
crucial and dispensable attributes. (3) Modality inference results
derived from MI-LLM, guiding the LLM to remove attributes of
limited informational significance. For instance, when comparing a
binary attribute that indicates whether someone is over 50 with a
continuous attribute such as age, it becomes apparent that the bi-
nary attribute may be somewhat redundant. In this case, the binary
attribute can be identified and removed. (4) User instructions or task
descriptions can be embedded when available, aiming to establish
a connection between column names and the corresponding task.

On the other hand, the AFE-LLMimputed component is dedicated
to data imputation, ensuring the completeness and reliability of
essential data. Regarding data imputation, AFE-LLMimputed exploits
its inferential capabilities to effectively identify and fill missing
data. The prompt for this aspect includes the following: (1) Data
points with missing values, enabling AFE-LLMimputed to fill these
gaps by discerning patterns and inter-attribute relationships. (2) A
selected subset of data instances from the training set that involves
deliberately masking individual attributes and presenting them
in Q&A pairs, laying down an inferential groundwork. (3) Where
available, user instructions or task descriptions are incorporated,
offering a richer context and further refining the data imputation
process.

Importantly, these components work together in synergy. After
AFE-LLMfilter refines the features, AFE-LLMimputed then addresses
relevant data gaps in the dataset. By combining feature filtering and
data imputation, this module ensures that the dataset is optimized
for the subsequent steps in the AutoM3L pipeline.

2.4 Model Selection Module
Upon successfully performing the modality inference and auto-
mated feature engineeringmodules, AutoM3L proceeds to determine
the optimal model architecture for each data modality. The candi-
date models are cataloged within a model zoo, with each model
stored as a model card. The model card captures a wide range of
details, including the model’s name, type, applicable data modali-
ties, empirical performance metrics, hardware requirements, and
other relevant information. To streamline the generation of these
cards, we leverage LLM-enhanced tools, such as ChatPaper[37],
to eliminate the need for laborious manual writing processes. We
generate embeddings for these model cards using a text encoder,
thereby allowing users to retrieve relevant model cards and seam-
lessly expand the model zoo by appending new cards, as illustrated
in Fig. 3(a).

Following the model card generation, we propose the Model
Selection-LLM (MS-LLM) to effectively match each modality with
the appropriatemodel.We view this task as a single-choice dilemma,



where the context provides a range ofmodels for selection. However,
due to limitations on the context length of LLM, it is not feasible to
present a complete array of model cards. Hence, we initially filter
the model cards based on their applicable modality type and keep
only those that are aligned with the specified data modality. Next,
a subset of the top 5 models is identified using text-based similarity
metrics to compare the user’s requirements with the model cards’
descriptions. These high-ranking model cards are then incorporated
into the prompt of MS-LLM, along with user instructions and data
descriptions. This combination guides MS-LLM in making its final
decision, ultimately identifying the most suitable model for the
given modality, as illustrated in Fig. 3(b).

The MS-LLM prompt fuses the following components: (1) A
selected subset of five model cards, providing insight into poten-
tial model candidates. (2) An input context that intertwines data
descriptions and user instructions. The data descriptions clarify
important aspects such as data type, label type, and evaluation stan-
dards. Meanwhile, user instructions can provide clarification on
specific model requirements. For example, a user instruction such
as “deploy the model on the CPU device” would guide MS-LLM to
models optimized for lightweight deployments. This enhances the
user-friendliness and intelligence of the framework by enabling
interactive execution.

2.5 Pipeline Assembly Module
After retrieving the unimodal models, a crucial step involves fusing
them. We employ a late fusion strategy for integration, which can
be mathematically expressed as:

F𝑖 = feature_adapter𝑖 (model𝑖 (x𝑖 )), (1)

Fcat = concat(F1, ..., F𝑛), (2)

logitsfuse = fusion_head(fusion_model(Fcat)), (3)

where concat denotes concatenation, x𝑖 represents the input data
of modality 𝑖 (𝑖 = 1, · · · , 𝑛), and feature_adapter𝑖 adapts the out-
put of model𝑖 to a consistent dimension. The fusion_head and
fusion_model are the target models that need to be built. Deter-
mining the architectures for fusion_head and fusion_model us-
ing rule-based methods that require manual scripting is impractical,
as the architectures depend on the number of input modalities.
Instead, we reframe this process as a code generation challenge,
where the Pipeline Assembly-LLM (PA-LLM) is responsible for gen-
erating the fusion model architecture. PA-LLM leverages the code
generation capabilities of LLMs to produce executable code for both
model fusion and data processors, as depicted in Fig. 4(a). This is
achieved by providing the module with relevant model configu-
ration files within the prompt. The data processors are generated
based on the specified data preprocessing parameters in the con-
figuration file. We prioritize the integration of pre-trained models
from various modalities, sourced from well-known libraries such
as HuggingFace and Timm. By establishing ties with the wider ML
community, we have significantly enhanced the versatility and
applicability of our model zoo.

Figure 4: (a) The PA-LLM is responsible for generating ex-
ecutable code, ensuring seamless model training and data
processing. (b) On the other hand, the HPO-LLM deduces
optimal hyperparameters and defines appropriate search in-
tervals for hyperparameter optimization.

2.6 Automated Hyperparameter Optimization
Module

In conventional ML pipelines, hyperparameters such as learning
rate, batch size, hidden layer size, and loss weight are commonly
adjusted manually, which is labor-intensive and time-consuming.
Although external tools like ray.tune allow users to conduct op-
timization by specifying hyperparameters and their search inter-
vals, there is still room for further automation. To bridge this gap,
we propose the HyperParameter Optimization-LLM (HPO-LLM),
which extends the foundational capabilities of ray.tune. The core
functionality of HPO-LLM lies in its ability to determine optimal
hyperparameters and their corresponding search intervals through
careful analysis of a provided training configuration file, as depicted
in Fig. 4(b). Leveraging the extensive knowledge base of LLMs in
ML training, we first utilize LLM to generate comprehensive de-
scriptions for each hyperparameter specified in the configuration
file. The descriptions, combined with the original configuration file,
constitute the prompt for HPO-LLM, which then provides recom-
mendations on the most suitable hyperparameters for optimiza-
tion. The input prompt provided to HPO-LLM encompasses the
following components: (1) The training configuration file, contain-
ing a comprehensive set of hyperparameters, assists HPO-LLM
in selecting the most suitable hyperparameters for optimization.
(2) LLM-generated text descriptions for each hyperparameter, en-
abling HPO-LLM to gain a comprehensive understanding of the
significance of each hyperparameter. (3) Optional user directives
provide a personalized touch, allowing users to incorporate addi-
tional instructions that guide HPO-LLM’s decision-making process.
These directives can include emphasizing specific hyperparameters
based on unique requirements, resulting in a tailored optimization
approach. By integrating the capabilities of ray.tune with our
HPO-LLM, we have pioneered an approach that enhances hyper-
parameter optimization by combining automation with advanced
decision-making.
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Table 1: Task and structure of multimodal datasets

Dataset Name #Train #Test Task Metric Prediction Target
PAP 13493 1499 multiclass accuracy category of adoption speed

MMSD 17833 1981 binary auc whether utterances contains an ironic sentiment
PPC 8920 993 regression rmse pawpularity score
PARA 25398 2822 regression rmse image aesthetics assessment
SPMG 5000 1000 retrieval auc whether data pair is in the same class

CH-SIMS 2052 228 multiclass accuracy category of sentiment

Table 2: Evaluation for modality inference. AutoM3L can ef-
fectively determine the data modality, even on data that Au-
toGluon misclassifies or unclassifies. * means the result of
manual corrections in modality inference.

Dataset AutoGluon AutoM3L

PAP↑ 0.415(0.011) 0.409(0.014)
MMSD↑ 0.958(0.004) 0.956(0.004)
PPC↓ 17.78(0.307) 17.71(0.315)
PARA↓ 0.568(0.019) 0.571(0.021)
SPMG↑ 0.985(0.003) 0.986(0.003)
CH-SIMS↑ 0.543(0.032)∗ 0.575(0.029)

Table 3: Evaluation for feature engineering. AutoM3L filters
out noisy features and performs data imputation, effectively
mitigating the adverse effects of noisy data. *means the result
of manual corrections in modality inference.

Dataset AutoKeras AutoGluon AutoM3L

PAP↑ 0.379(0.018) 0.402(0.014) 0.407(0.012)
MMSD↑ 0.920(0.008) 0.951(0.004) 0.956(0.004)
PPC↓ 25.18(0.302) 18.38(0.298) 17.82(0.304)
PARA↓ 0.782(0.025) 0.576(0.020) 0.574(0.020)
SPMG↑ / 0.984(0.003) 0.986(0.003)
CH-SIMS↑ / 0.540(0.031)∗ 0.575(0.029)

3 EXPERIMENTS
3.1 Experimental Settings
3.1.1 Datasets. To assess the effectiveness of the AutoM3L sys-
tem, we performed experiments on six multimodal datasets, includ-
ing some obtained from the Kaggle competition platform. These
datasets cover various tasks, such as classification, regression, and
retrieval. Table 1 describes the details of the datasets. We utilized
three classification datasets as follows: (1) PetFinder.my-Adoption
Prediction (PAP): This dataset aims to predict the adoptability of
pets by analyzing image, text, and tabular modalities. (2) Multi-
Modal Sarcasm Detection (MMSD): This dataset is curated to de-
termine whether an utterance contains ironic sentiment, utiliz-
ing image and text modalities. (3) CH-SIMS: This dataset focuses
on sentiment recognition and leverages video and text modalities.
Turning our attention to regression, we utilized two datasets: (1)
PetFinder.my-Pawpularity Contest dataset (PPC): This dataset aims
to predict the popularity of shelter pets by leveraging image and
tabular modalities. (2) PARA: This dataset provides diverse image
and tabular attributes for personalized image aesthetics assessment.
For the retrieval-based tasks, we employed the Shopee-Price Match
Guarantee dataset (SPMG), which aims to determine if two products
are identical, relying on data from image and text modalities. Our
performance metrics include accuracy for multiclass classification
tasks, the area under the ROC curve (AUC) for binary classification
tasks and retrieval tasks, and the root mean square error (RMSE)
for regression tasks. We also evaluated AutoM3L on a large number
of unimodal datasets from the AutoML Benchmark[10] available
from OpenML2, which cover regression and binary/multiclass clas-
sification tasks. The metrics include logarithmic loss (Log-Loss) for
multiclass classification tasks, the root mean square error (RMSE)

2https://www.openml.org/

for regression tasks, and the area under the ROC curve (AUC) for
binary classification tasks.

3.1.2 Baseline. Given the scarcity of specialized multimodal Au-
toML frameworks, our experimental evaluations were exclusively
performed using the AutoKeras3 and AutoGluon framework. Au-
toKeras is dedicated to neural architecture search (NAS) and hy-
perparameter optimization for a given dataset. Setting up training
pipelines in AutoGluon required meticulous manual configurations.
This involved specifying which models to train and conducting
an extensive pre-exploration to determine the suitable parameters
for hyperparameter optimization, including their respective search
ranges. It’s crucial to highlight that the automation and intelligence
levels of AutoGluon remain challenging to quantify, and in this re-
search, we innovatively measure them through the user study from
the human perspective. See Appendix E for detailed experimental
settings.

3.1.3 IRB Approval for User Study. The user study conducted in
this research has received full approval from the Institutional Re-
view Board (IRB). All methodologies, protocols, and procedures
pertaining to human participants were carefully reviewed to ensure
they align with ethical standards.

3.2 Quantitative Evaluation
We first carried out quantitative evaluations, drawing direct com-
parisons with AutoKeras and AutoGluon, focusing on the modality
inference, automated feature engineering, and the automated hyper-
parameter optimizationmodules. For modality inference evaluation,
apart from the modality inference component, all other aspects of
the frameworks are kept consistent. For feature engineering and

3https://github.com/keras-team/autokeras
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Table 4: Evaluation on the hyperparameter optimization. AutoM3L’s self-recommended search space rivals, and in some cases
surpasses, manually tuned search spaces. * means the result of manual corrections in modality inference.

Method PAP↑ MMSD↑ PPC↓ PARA↓ SPMG↑ CH-SIMS↑
AutoKeras 0.385(0.012) 0.925(0.007) 23.21(0.285) 0.744(0.021) / /
AutoGluon w/o HPO 0.415(0.011) 0.958(0.004) 17.78(0.307) 0.568(0.019) 0.985(0.003) 0.543(0.032)∗
AutoGluon w/ HPO 0.442(0.008) 0.963(0.004) 17.60(0.217) 0.561(0.015) 0.990(0.002) 0.564(0.026)∗
AutoM3L 0.440(0.012) 0.967(0.004) 17.47(0.211) 0.563(0.016) 0.992(0.003) 0.591(0.027)

hyperparameter optimization, we aligned the modality inference
from AutoKeras and AutoGluon with the results of AutoM3L to
analyze their respective impacts on performance. To enhance the
robustness of our results, we performed 10-fold cross-validation
experiments on all datasets. The accuracy is reported as the mean
value with its corresponding standard deviation. Afterwards, we
evaluate the pipeline assembly module in terms of intelligence and
usability through user study in the next section, due to its inherent
difficulty in quantitative evaluation.

3.2.1 Evaluation for Modality Inference. Table 2 depicts the com-
parative performance analysis between AutoGluon’s modality in-
ference module and our LLM-based modality inference approach
across various multimodal datasets. Since AutoKeras utilizes manu-
ally predefined data modality for each column, we excluded it from
the comparisons in this experiment. Within AutoGluon, modality
inference operates based on a set of manually defined rules. For
instance, an attribute might be classified as a categorical modality
if the count of its unique elements is below a certain threshold.
Upon observing the results, it’s evident that AutoM3L offers accu-
racy on par with AutoGluon for most datasets. This similarity in
performance can be primarily attributed to the congruence in their
modality inference outcomes. However, a notable divergence is ob-
served with the CH-SIMS dataset. Due to the manually defined rules
in AutoGluon being unable to infer video modality and misclassi-
fied the "text" attribute as "categorical", the assembly of the training
pipeline was hindered, resulting in the failure of the training task.
We manually corrected the misinference of the "text" attribute in
AutoGluon, achieving the accuracy of 0.543(0.032). In comparison,
AutoM3L demonstrated a significantly superior accuracy, with a
notable 3.2% improvement. Such a result highlights the robustness
of our LLM-based modality inference approach, which effectively
infers modality details from column names and their associated
data through in-context learning with only a few examples, making
it significantly more efficient than cumbersome manually designed
rules.

3.2.2 Evaluation for Feature Engineering. Table 3 illustrates the
comparisons of data preprocessing modules using AutoGluon and
AutoKeras with our LLM-based automated feature engineering
module on multimodal datasets. Given the completeness of these
datasets, we randomly masked portions of the tabular data and man-
ually introduced noisy features from unrelated datasets to assess
the effectiveness of automated feature engineering. For datasets
without tabular modality, only noise features are introduced. Note
that, AutoGluon lacks a dedicated feature engineering module for
multimodal data, making this experiment a direct assessment of

our automated feature engineering. We observed that automated
feature engineering, which implements feature filtering and data
imputation, effectively mitigates the impact of noisy data. Across
all test datasets, automated feature engineering showed improve-
ments, while AutoGluon and AutoKeras suffered from performance
degradation as they struggled to handle noisy data. Since retrieval
tasks and video modality inputs are not supported, we did not test
AutoKeras on relevant datasets.

3.2.3 Evaluation for Hyperparameter Optimization. We also con-
duct experiments to evaluate the automated hyperparameter op-
timization module within AutoM3L. Contrasting with AutoKeras
and AutoGluon, which often require users to manually define the
hyperparameter search space, AutoM3L simplifies this process.

From Table 4, it’s evident that the integration of hyperparameter
optimization during the training phase contributes positively to
model performance. Impressively, AutoM3L matches AutoGluon’s
accuracy on most datasets and, due to its effective utilization of
video information, it has realized a 2.7% improvement on the CH-
SIMS dataset. However, the standout advantage of AutoM3L lies in
its automation. While AutoGluon requires a manual setup, which
can often be tedious, AutoM3L significantly reduces the need for
human intervention, providing a more seamless and automated
experience. Another finding is that AutoKeras achieves lower ac-
curacy on all datasets. In our analysis, we attribute it to the net-
work structures obtained within its limited network search space,
which lacks pretraining on large-scale datasets. In contrast, our
approach leverages the strength of pretrained models by linking
with open-source communities such as HuggingFace and Timm.
This integration allows us to access more powerful pretrained mod-
els, contributing to the improved performance demonstrated in our
work.

3.2.4 Uni-Modal Scenario Evaluation. Given that most AutoML
frameworks currently focus on single-modality AutoML, to demon-
strate the scalability of AutoM3L, we also evaluated AutoM3L on a
large-scale single-tubular modality AutoML Benchmark[10] from
OpenML. We compared it with a plethora of popular single-modal
AutoML frameworks[7, 9, 11, 20, 22, 30, 31] on large and represen-
tative datasets from AutoML Benchmark covering binary classifica-
tion, multiclassification, and regression tasks. The metrics include
logarithmic loss (LogLoss) for multiclass classification tasks, the
root mean squared error (RMSE) for regression tasks, and the area
under the ROC curve (AUC) for binary classification tasks. We
reported the mean and standard deviation based on 10-fold cross-
validation.
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Table 5: Evaluation on single-modal datasets, denoted as𝑚𝑒𝑎𝑛(𝑠𝑡𝑑) 𝑓 𝑎𝑖𝑙𝑠 (part1). The red values represent the best results achieved
in all comparison frameworks.

Task ID Task Name Task Type Task Metric AUTOGLUON AUTO-SKLEARN AUTO-SKLEARN 2 FLAML GAMA

146818 australi... binary accuracy 0.940(0.020) 0.932(0.019) 0.940(0.020) 0.939(0.025) 0.940(0.019)
146820 wilt binary accuracy 0.994(0.009) 0.994(0.010) 0.995(0.008) 0.988(0.013) 0.996(0.004)
167120 numerai2... binary accuracy 0.524(0.005) 0.530(0.005) 0.531(0.004) 0.528(0.005) 0.532(0.004)1
168757 credit-g binary accuracy 0.791(0.039) 0.783(0.042) 0.795(0.038) 0.784(0.039) 0.791(0.030)
168868 apsfailu... binary accuracy 0.992(0.002) 0.992(0.002) 0.992(0.003) 0.992(0.003) 0.992(0.002)
190137 ozone-le... binary accuracy 0.934(0.017) 0.920(0.024) 0.933(0.022) 0.925(0.021) 0.926(0.032)
190411 ada binary accuracy 0.920(0.018) 0.917(0.017) 0.920(0.018) 0.924(0.018) 0.921(0.018)
359955 blood-tr... binary accuracy 0.755(0.044) 0.745(0.052) 0.755(0.040) 0.731(0.066) 0.757(0.049)
359956 qsar-bio... binary accuracy 0.941(0.035) 0.929(0.036) 0.937(0.027) 0.928(0.033) 0.937(0.032)
359958 pc4 binary accuracy 0.951(0.018) 0.941(0.020) 0.949(0.017) 0.949(0.019) 0.951(0.019)
359965 kr-vs-kp binary accuracy 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000)
359930 quake regression rmse 0.19(0.0093) 0.19(0.0089) - 0.19(0.0091) 0.19(0.0092)
359931 sensory regression rmse 0.67(0.061) 0.69(0.051) - 0.69(0.054) 0.68(0.055)
359933 space ga regression rmse 0.094(0.013) 0.1(0.025) - 0.1(0.015) 0.096(0.019)
359939 topo21 regression rmse 0.028(0.0049) 0.028(0.0049) - 0.028(0.0048) 0.028(0.0048)
359944 abalone regression rmse 2.1(0.12) 2.1(0.11) - 2.1(0.12) 2.1(0.1)
359946 pol regression rmse 2.6(0.29) 3.3(0.35) - 3.6(0.37) 3.7(0.3)
359936 elevators regression rmse 0.0018(5.2𝑒 − 05) 0.0019(7.3𝑒 − 05) - 0.002(6.5𝑒 − 05) 0.0019(6.5𝑒 − 05)
359954 eucalypt... multiclass logloss 0.690(0.053) 0.716(0.047) 0.704(0.061) 0.779(0.121) 0.700(0.057)
2073 yeast multiclass logloss 1.015(0.087) 1.043(0.080) 1.015(0.084) 1.011(0.083) 1.019(0.081)5
359960 car multiclass logloss 0.004(0.011) 0.004(0.008) 0.002(0.004) 0.003(0.005) 0.012(0.008)
359964 dna multiclass logloss 0.106(0.027) 0.116(0.032) 0.111(0.025) 0.106(0.029) 0.106(0.028)
359984 helena multiclass logloss 2.470(0.016) 2.526(0.018) 2.485(0.031) 2.564(0.019) 2.731(nan)9
359993 okcupid-... multiclass logloss 0.559(0.009) 0.567(0.007) 0.563(0.008) 0.562(0.008) 0.568(0.007)

Table 6: Evaluation on single-modal datasets, denoted as𝑚𝑒𝑎𝑛(𝑠𝑡𝑑) 𝑓 𝑎𝑖𝑙𝑠 (part2). The red values represent the best results achieved
in all comparison frameworks.

Task ID Task Name Task Type Task Metric H2O AUTOML LIGHT AUTOML MLJAR TPOT AUTOM3L

146818 australi... binary accuracy 0.934(0.020) 0.944(0.021) 0.940(0.024) 0.936(0.024) 0.961(0.017)
146820 wilt binary accuracy 0.993(0.009) 0.994(0.007) 0.994(0.003)5 0.985(0.025) 0.999(0.002)
167120 numerai2... binary accuracy 0.531(0.004) 0.531(0.005) 0.530(0.004) 0.527(0.006) 0.534(0.007)
168757 credit-g binary accuracy 0.782(0.043) 0.788(0.035) - 0.787(0.034) 0.825(0.032)
168868 apsfailu... binary accuracy 0.992(0.002) 0.994(nan)9 0.993(0.002)6 0.989(0.003)1 0.990(0.013)
190137 ozone-le... binary accuracy 0.930(0.016) 0.930(0.016) 0.911(0.019)8 0.916(0.026) 0.950(0.015)
190411 ada binary accuracy 0.921(0.017) 0.922(0.018) 0.921(0.018) 0.917(0.018) 0.920(0.021)
359955 blood-tr... binary accuracy 0.760(0.029) 0.749(0.055) - 0.754(0.043) 0.792(0.045)
359956 qsar-bio... binary accuracy 0.937(0.037) 0.933(0.033) 0.926(nan)9 0.933(0.031) 0.949(0.024)
359958 pc4 binary accuracy 0.945(0.022) 0.950(0.016) 0.951(0.017) 0.943(0.023) 0.960(0.017)
359965 kr-vs-kp binary accuracy 1.000(0.000) 1.000(0.000) 1.000(0.000)7 0.950(0.158) 1.000(0.000)
359930 quake regression rmse 0.19(0.0094) 0.19(0.0099) 0.19(0.0093) 0.19(0.0096) 0.18(0.0106)
359931 sensory regression rmse 0.7(0.062) 0.69(0.061) 0.67(0.043) 0.68(0.054) 0.7(0.063)
359933 space ga regression rmse 0.097(0.012) 0.1(0.017) 0.099(0.018) 0.099(0.018) 0.1(0.011)
359939 topo21 regression rmse 0.028(0.0049) 0.028(0.0049) 0.028(0.0048) 0.028(0.0048) 0.028(0.0042)
359944 abalone regression rmse 2.1(0.11) 2.1(0.12) 2.1(0.12) 2.1(0.11) 2.1(0.10)
359946 pol regression rmse 3.4(0.28) 3.9(0.33) 2.2(0.23) 3.7(0.38) 2.2(0.16)
359936 elevators regression rmse 0.002(0.00013) 0.002(5.7𝑒 − 05) 0.0019(5.8𝑒 − 05) 0.0019(6.4𝑒 − 05) 0.0018(6.4𝑒 − 05)
359954 eucalypt... multiclass logloss 0.702(0.087) 0.695(0.058) 0.646(0.054) 0.752(0.130) 0.677(0.069)
2073 yeast multiclass logloss 1.040(0.091) 1.038(0.094)5 1.004(0.085) 1.029(0.083)5 0.995(0.095)
359960 car multiclass logloss 0.001(0.001) 0.002(0.002) 0.002(0.003) 1.450(3.004) 0.001(0.001)
359964 dna multiclass logloss 0.109(0.030) 0.109(0.026) 0.109(0.025) 0.112(0.025) 0.098(0.026)
359984 helena multiclass logloss 2.794(0.018) 2.504(0.014) 2.575(0.021)1 2.922(0.039) 2.54(0.020)
359993 okcupid-... multiclass logloss 0.567(0.008) 0.560(0.009) 0.563(0.008) 0.569(0.009) 0.565(0.007)

In the experiment, we employed the user instruction: “the model
with the best performance on tabular data” to drive MS-LLM for
model selection, and FT-Transformer was chosen and integrated
with other components to form a training pipeline for subsequent
training. The results in Table 5 and Table 6 demonstrate AutoM3L’s
strong performance even in single-modality settings. Notably, in
most frameworks compared, model ensemble techniques are em-
ployed to produce final predictions. However, in this experiment,
AutoM3L solely utilized a single model for evaluation and achieved

competitive results, even outperforming others on most experimen-
tal tasks. We will showcase more comparative test results in the
upcoming open-source projects.

3.3 User Study
3.3.1 Hypothesis Formulation and Testing. To assess AutoM3L’s
effectiveness, we conducted a user study focused on whether the
LLM controller can enhance the degree of automation within the
multimodal AutoML framework. We formulated null hypotheses:



Figure 5: Boxplots displaying the distribution of the four
variables collected in the user study.

Figure 6: The workflow of the user study to measure the user-
friendliness of the AutoM3L.

• H1: AutoM3L does not reduce time required for learning and
using the framework.

• H2: AutoM3L does not improve user action accuracy.
• H3: AutoM3L does not enhance overall framework usability.
• H4: AutoM3L does not decrease user workload.

We performed single-sided t-tests to evaluate statistical signifi-
cance. Specifically, we compared AutoM3L and AutoGluon on the
following variables: task execution time, the number of attempts,
system usability, and perceived workload.

3.3.2 User Study Design. As depicted in Fig. 6, our user study’s
workflow unfolds in structured phases. Note that the user study
has been reviewed by IRB and granted full approval. The study
begins with the orientation phase where voluntary participants
are acquainted with the objectives, underlying motivations, and
procedural details of the user study. This phase is followed by a
user background survey, which gleans insights into participants’
professional roles, their prior exposure to technologies such as
LLM and AutoML, and other pertinent details. The core segment
of the study involves hands-on tasks that participants undertake
in two distinct conditions: perform multimodal task AutoML with
AutoGluon and with AutoM3L. These tasks center around exploring
the automation capabilities of the AutoML frameworks, as well as
gauging the user-friendliness of their features such as hyperparam-
eter optimization. Participants, guided by clear instructions, are
tasked with constructing multimodal training pipelines employing
certain models and defining specific hyperparameter optimization
domains.

To ensure a balanced perspective, participants are randomly
split into two groups: the first interacts with AutoGluon, while
the second delves into AutoM3L. Upon task completion, the groups
swap platforms. For a holistic understanding of user interactions,
we meticulously track both the time taken by each participant for
task execution and the number of attempts before the successful
execution. The study culminates with a feedback session, where
participants articulate their impressions regarding the usability and

Table 7: Hypothesis testing results from paired two-sample
one-sided t-tests.

Hypothesis T Test Statistic P-value Null Hypothesis

H1 12.321 8.2 × 10−11 Reject
H2 10.655 9.3 × 10−10 Reject
H3 -5.780 1.0 × 10−5 Reject
H4 3.949 4.3 × 10−4 Reject

perceived workload of both AutoGluon and AutoM3L via question-
naire. Their feedback and responses to the questionnaire, captured
using Google Forms, form a crucial dataset for the subsequent hy-
pothesis testing and analysis. Our study cohort consisted of 20
diverse participants: 6 software developers, 10 AI researchers, and 4
students, which ensured a rich blend of perspectives of the involved
users.

3.3.3 Results and Analysis of Hypothesis Testing. The data we gath-
ered spanned four variables, visualized in Fig. 5. To validate our
hypotheses, we performed paired two-sample t-tests (essentially
one-sample, one-sided t-tests on differences) for the aforemen-
tioned variables across two experimental conditions: AutoGluon
and AutoM3L. These tests were conducted at a significance level of
5%. The outcomes in Table 7 empower us to reject all the null hy-
potheses, underscoring the superior efficacy and user-friendliness
of AutoM3L. The success of AutoM3L can be largely attributed to
the interactive capabilities endowed by LLMs, which significantly
reduce the learning curve and usage costs.

Since most researchers were familiar with LLMs but had limited
AutoML experience, increasing their learning curve on AutoGluon.
Whereas the majority of engineers and students were novices in
both these spheres, facing steeper challenges in grasping Auto-
Gluon. Interestingly, even researchers acquainted with AutoML
felt that AutoM3L demonstrated superior ease of use comparatively.
Collectively across backgrounds, AutoM3L attained higher user rat-
ings, lower task completion times, and fewer failed attempts, which
quantitatively validates its improved user-friendliness.

4 CONCLUSION
In this work, we introduce AutoM3L, an LLM-powered Automated
Multimodal Machine Learning framework. AutoM3L explores auto-
mated pipeline construction, automated feature engineering, and
automated hyperparameter optimization. This enables the realiza-
tion of an end-to-end multimodal AutoML framework. Leveraging
the exceptional capabilities of LLMs, AutoM3L provides adaptable
and accessible solutions for multimodal data tasks. It offers au-
tomation, interactivity, and user customization. Through extensive
experiments and user studies, we demonstrate AutoM3L’s generality,
effectiveness, and user-friendliness. This highlights its potential
to transform multimodal AutoML. AutoM3L marks a significant
advance, offering enhanced multimodal machine learning across
domains. Our future direction is to encompass a diverse range of
data modalities, spanning graph, audio, and point clouds, among
others.
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