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ABSTRACT

The robustness of neural networks to adversarial examples has received great at-
tention due to security implications. Despite various attack approaches to crafting
visually imperceptible adversarial examples, little has been developed towards a
comprehensive measure of robustness. In this paper, we provide a theoretical
justification for converting robustness analysis into a local Lipschitz constant es-
timation problem, and propose to use the Extreme Value Theory for efficient eval-
uation. Our analysis yields a novel robustness metric called CLEVER, which is
short for Cross Lipschitz Extreme Value for nEtwork Robustness. The proposed
CLEVER score is attack-agnostic and computationally feasible for large neural
networks. Experimental results on various networks, including ResNet, Inception-
v3 and MobileNet, show that (i) CLEVER is aligned with the robustness indica-
tion measured by the `2 and `∞ norms of adversarial examples from powerful
attacks, and (ii) defended networks using defensive distillation or bounded ReLU
indeed achieve better CLEVER scores. To the best of our knowledge, CLEVER
is the first attack-independent robustness metric that can be applied to any neural
network classifier.

1 INTRODUCTION

Recent studies have highlighted the lack of robustness in state-of-the-art neural network models, e.g.,
a visually imperceptible adversarial image can be easily crafted to mislead a well-trained network
(Szegedy et al., 2013; Goodfellow et al., 2015; Chen et al., 2017a). Even worse, researchers have
identified that these adversarial examples are not only valid in the digital space but also plausible
in the physical world (Kurakin et al., 2016a; Evtimov et al., 2017). The vulnerability to adversarial
examples calls into question safety-critical applications and services deployed by neural networks,
including autonomous driving systems and malware detection protocols, among others.

In the literature, studying adversarial examples of neural networks has twofold purposes: (i) se-
curity implications: devising effective attack algorithms for crafting adversarial examples, and (ii)
robustness analysis: evaluating the intrinsic model robustness to adversarial perturbations to normal
examples. Although in principle the means of tackling these two problems are expected to be inde-
pendent, that is, the evaluation of a neural network’s intrinsic robustness should be agnostic to attack
methods, and vice versa, existing approaches extensively use different attack results as a measure
of robustness of a target neural network. Specifically, given a set of normal examples, the attack
success rate and distortion of the corresponding adversarial examples crafted from a particular at-
tack algorithm are treated as robustness metrics. Consequently, the network robustness is entangled
with the attack algorithms used for evaluation and the analysis is limited by the attack capabilities.
More importantly, the dependency between robustness evaluation and attack approaches can cause
∗Tsui-Wei Weng and Huan Zhang contributed equally

1



Published as a conference paper at ICLR 2018

biased analysis. For example, adversarial training is a commonly used technique for improving the
robustness of a neural network, accomplished by generating adversarial examples and retraining the
network with corrected labels. However, while such an adversarially trained network is made robust
to attacks used to craft adversarial examples for training, it can still be vulnerable to unseen attacks.

Motivated by the evaluation criterion for assessing the quality of text and image generation that
is completely independent of the underlying generative processes, such as the BLEU score for
texts (Papineni et al., 2002) and the INCEPTION score for images (Salimans et al., 2016), we aim
to propose a comprehensive and attack-agnostic robustness metric for neural networks. Stemming
from a perturbation analysis of an arbitrary neural network classifier, we derive a universal lower
bound on the minimal distortion required to craft an adversarial example from an original one, where
the lower bound applies to any attack algorithm and any `p norm for p ≥ 1. We show that this lower
bound associates with the maximum norm of the local gradients with respect to the original ex-
ample, and therefore robustness evaluation becomes a local Lipschitz constant estimation problem.
To efficiently and reliably estimate the local Lipschitz constant, we propose to use extreme value
theory (De Haan & Ferreira, 2007) for robustness evaluation. In this context, the extreme value
corresponds to the local Lipschitz constant of our interest, which can be inferred by a set of inde-
pendently and identically sampled local gradients.With the aid of extreme value theory, we propose
a robustness metric called CLEVER, which is short for Cross Lipschitz Extreme Value for nEtwork
Robustness. We note that CLEVER is an attack-independent robustness metric that applies to any
neural network classifier. In contrast, the robustness metric proposed in Hein & Andriushchenko
(2017), albeit attack-agnostic, only applies to a neural network classifier with one hidden layer.

We highlight the main contributions of this paper as follows:

• We propose a novel robustness metric called CLEVER, which is short for Cross Lipschitz
Extreme Value for nEtwork Robustness. To the best of our knowledge, CLEVER is the
first robustness metric that is attack-independent and can be applied to any arbitrary neural
network classifier and scales to large networks for ImageNet.

• The proposed CLEVER score is well supported by our theoretical analysis on formal ro-
bustness guarantees and the use of extreme value theory. Our robustness analysis extends
the results in Hein & Andriushchenko (2017) from continuously differentiable functions to
a special class of non-differentiable functions – neural+ networks with ReLU activations.

• We corroborate the effectiveness of CLEVER by conducting experiments on state-of-the-
art models for ImageNet, including ResNet (He et al., 2016), Inception-v3 (Szegedy et al.,
2016) and MobileNet (Howard et al., 2017). We also use CLEVER to investigate defended
networks against adversarial examples, including the use of defensive distillation (Papernot
et al., 2016) and bounded ReLU (Zantedeschi et al., 2017). Experimental results show that
our CLEVER score well aligns with the attack-specific robustness indicated by the `2 and
`∞ distortions of adversarial examples.

2 BACKGROUND AND RELATED WORK

2.1 ATTACKING NEURAL NETWORKS USING ADVERSARIAL EXAMPLES

One of the most popular formulations found in literature for crafting adversarial examples to mis-
lead a neural network is to formulate it as a minimization problem, where the variable δ ∈ Rd to
be optimized refers to the perturbation to the original example, and the objective function takes into
account unsuccessful adversarial perturbations as well as a specific norm on δ for assuring similar-
ity. For instance, the success of adversarial examples can be evaluated by their cross-entropy loss
(Szegedy et al., 2013; Goodfellow et al., 2015) or model prediction (Carlini & Wagner, 2017b). The
norm constraint on δ can be implemented in a clipping manner (Kurakin et al., 2016b) or treated as a
penalty function (Carlini & Wagner, 2017b). The `p norm of δ, defined as ‖δ‖p = (

∑d
i=1 |δi|p)1/p

for any p ≥ 1, is often used for crafting adversarial examples. In particular, when p = ∞,
‖δ‖∞ = maxi∈{1,...,d} |δi| measures the maximal variation among all dimensions in δ. When
p = 2, ‖δ‖2 becomes the Euclidean norm of δ. When p = 1, ‖δ‖1 =

∑p
i=1 |δi| measures the

total variation of δ. The state-of-the-art attack methods for `∞, `2 and `1 norms are the iterative
fast gradient sign method (I-FGSM) (Goodfellow et al., 2015; Kurakin et al., 2016b), Carlini and
Wagner’s attack (CW attack) (Carlini & Wagner, 2017b), and elastic-net attacks to deep neural net-
works (EAD) (Chen et al., 2017b), respectively. These attacks fall into the category of white-box
attacks since the network model is assumed to be transparent to an attacker. Adversarial examples
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can also be crafted from a black-box network model using an ensemble approach (Liu et al., 2016),
training a substitute model (Papernot et al., 2017), or employing zeroth-order optimization based
attacks (Chen et al., 2017c).

2.2 EXISTING DEFENSE METHODS

Since the discovery of vulnerability to adversarial examples (Szegedy et al., 2013), various defense
methods have been proposed to improve the robustness of neural networks. The rationale for defense
is to make a neural network more resilient to adversarial perturbations, while ensuring the resulting
defended model still attains similar test accuracy as the original undefended network. Papernot et al.
proposed defensive distillation (Papernot et al., 2016), which uses the distillation technique (Hinton
et al., 2015) and a modified softmax function at the final layer to retrain the network parameters with
the prediction probabilities (i.e., soft labels) from the original network. Zantedeschi et al. (2017)
showed that by changing the ReLU function to a bounded ReLU function, a neural network can be
made more resilient. Another popular defense approach is adversarial training, which generates and
augments adversarial examples with the original training data during the network training stage. On
MNIST, the adversarially trained model proposed by Madry et al. (2017) can successfully defend
a majority of adversarial examples at the price of increased network capacity. Model ensemble has
also been discussed to increase the robustness to adversarial examples (Tramèr et al., 2017; Liu
et al., 2017). In addition, detection methods such as feature squeezing (Xu et al., 2017) and example
reforming (Meng & Chen, 2017) can also be used to identify adversarial examples. However, the
CW attack is shown to be able to bypass 10 different detection methods (Carlini & Wagner, 2017a).
In this paper, we focus on evaluating the intrinsic robustness of a neural network model to adversarial
examples. The effect of detection methods is beyond our scope.

2.3 THEORETICAL ROBUSTNESS GUARANTEES FOR NEURAL NETWORKS

Szegedy et al. (2013) compute global Lipschitz constant for each layer and use their product to
explain the robustness issue in neural networks, but the global Lipschitz constant often gives a very
loose bound. Hein & Andriushchenko (2017) gave a robustness lower bound using a local Lipschitz
continuous condition and derived a closed-form bound for a multi-layer perceptron (MLP) with a
single hidden layer and softplus activation. Nevertheless, a closed-form bound is hard to derive
for a neural network with more than one hidden layer. Wang et al. (2016) utilized terminologies
from topology to study robustness. However, no robustness bounds or estimates were provided for
neural networks. On the other hand, works done by Ehlers (2017); Katz et al. (2017a;b); Huang
et al. (2017) focus on formally verifying the viability of certain properties in neural networks for
any possible input, and transform this formal verification problem into satisfiability modulo theory
(SMT) and large-scale linear programming (LP) problems. These SMT or LP based approaches
have high computational complexity and are only plausible for very small networks.

Intuitively, we can use the distortion of adversarial examples found by a certain attack algorithm as a
robustness metric. For example, Bastani et al. (2016) proposed a linear programming (LP) formula-
tion to find adversarial examples and use the distortions as the robustness metric. They observe that
the LP formulation can find adversarial examples with smaller distortions than other gradient-based
attacks like L-BFGS (Szegedy et al., 2013). However, the distortion found by these algorithms is
an upper bound of the true minimum distortion and depends on specific attack algorithms. These
methods differ from our proposed robustness measure CLEVER, because CLEVER is an estimation
of the lower bound of the minimum distortion and is independent of attack algorithms. Additionally,
unlike LP-based approaches which are impractical for large networks, CLEVER is computationally
feasible for large networks like Inception-v3. The concept of minimum distortion and upper/lower
bound will be formally defined in Section 3.

3 ANALYSIS OF FORMAL ROBUSTNESS GUARANTEES FOR A CLASSIFIER

In this section, we provide formal robustness guarantees of a classifier in Theorem 3.2. Our robust-
ness guarantees are general since they only require a mild assumption on Lipschitz continuity of
the classification function. For differentiable classification functions, our results are consistent with
the main theorem in (Hein & Andriushchenko, 2017) but are obtained by a much simpler and more
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Table 1: Table of Notation

Notation Definition Notation Definition
d dimensionality of the input vector ∆p,min minimum `p distortion of x0

K number of output classes βL lower bound of minimum distortion
f : Rd → RK neural network classifier βU upper bound of minimum distortion
x0 ∈ Rd original input vector Lj

q Lipschitz constant
xa ∈ Rd adversarial example Lj

q,x0
local Lipschitz constant

δ ∈ Rd distortion := xa − x0 Bp(x0, R) hyper-ball with center x0 and radius R
‖δ‖p `p norm of distortion, p ≥ 1 CDF cumulative distribution function

intuitive manner1. Furthermore, our robustness analysis can be easily extended to non-differentiable
classification functions (e.g. neural networks with ReLU) as in Lemma 3.3, whereas the analysis
in Hein & Andriushchenko (2017) is restricted to differentiable functions. Specifically, Corollary
3.2.1 shows that the robustness analysis in (Hein & Andriushchenko, 2017) is in fact a special case
of our analysis. We start our analysis by defining the notion of adversarial examples, minimum `p
distortions, and lower/upper bounds. All the notations are summarized in Table 1.
Definition 3.1 (perturbed example and adversarial example). Let x0 ∈ Rd be an input vector
of a K-class classification function f : Rd → RK and the prediction is given as c(x0) =
argmax1≤i≤K fi(x0). Given x0, we say xa is a perturbed example of x0 with noise δ ∈ Rd

and `p-distortion ∆p if xa = x0 +δ and ∆p = ‖δ‖p. An adversarial example is a perturbed exam-
ple xa that changes c(x0). A successful untargeted attack is to find a xa such that c(xa) 6= c(x0)
while a successful targeted attack is to find a xa such that c(xa) = t given a target class t 6= c(x0).
Definition 3.2 (minimum adversarial distortion ∆p,min). Given an input vector x0 of a classifier f ,
the minimum `p adversarial distortion of x0, denoted as ∆p,min, is defined as the smallest ∆p over
all adversarial examples of x0.
Definition 3.3 (lower bound of ∆p,min). Suppose ∆p,min is the minimum adversarial distortion of
x0. A lower bound of ∆p,min, denoted by βL where βL ≤ ∆p,min, is defined such that any perturbed
examples of x0 with ‖δ‖p ≤ βL are not adversarial examples.
Definition 3.4 (upper bound of ∆p,min). Suppose ∆p,min is the minimum adversarial distortion of
x0. An upper bound of ∆p,min, denoted by βU where βU ≥ ∆p,min, is defined such that there exists
an adversarial example of x0 with ‖δ‖p ≥ βU .

The lower and upper bounds are instance-specific because they depend on the input x0. While βU
can be easily given by finding an adversarial example of x0 using any attack method, βL is not easy
to find. βL guarantees that the classifier is robust to any perturbations with ‖δ‖p ≤ βL, certifying
the robustness of the classifier. Below we show how to derive a formal robustness guarantee of a
classifier with Lipschitz continuity assumption. Specifically, our analysis obtains a lower bound of
`p minimum adversarial distortion βL = minj 6=c

fc(x0)−fj(x0)

Lj
q

.

Lemma 3.1 (Lipschitz continuity and its relationship with gradient norm (Paulavičius & Žilinskas,
2006)). Let S ⊂ Rd be a convex bounded closed set and let h(x) : S → R be a continuously
differentiable function on an open set containing S. Then, h(x) is a Lipschitz function with Lipschitz
constant Lq if the following inequality holds for any x,y ∈ S:

|h(x)− h(y)| ≤ Lq‖x− y‖p, (1)

where Lq = max{‖∇h(x)‖q : x ∈ S},∇h(x) = (∂h(x)
∂x1

, · · · , ∂h(x)∂xd
)> is the gradient of h(x),

and 1
p + 1

q = 1, 1 ≤ p, q ≤ ∞.

Given Lemma 3.1, we then provide a formal guarantee to the lower bound βL.
Theorem 3.2 (Formal guarantee on lower bound βL for untargeted attack). Let x0 ∈ Rd and
f : Rd → RK be a multi-class classifier with continuously differentiable components fi and let
c = argmax1≤i≤K fi(x0) be the class which f predicts for x0. For all δ ∈ Rd with

‖δ‖p ≤ min
j 6=c

fc(x0)− fj(x0)

Lj
q

, (2)

1 The authors in Hein & Andriushchenko (2017) implicitly assume Lipschitz continuity and use Mean Value
Theorem and Hölder’s Inequality to prove their main theorem. Here we provide a simple and direct proof with
Lipschitz continuity assumption and without involving Mean Value Theorem and Hölder’s Inequality.
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argmax1≤i≤K fi(x0 +δ) = c holds with 1
p + 1

q = 1, 1 ≤ p, q ≤ ∞ and Lj
q is the Lipschitz constant

for the function fc(x) − fj(x) in `p norm. In other words, βL = minj 6=c
fc(x0)−fj(x0)

Lj
q

is a lower
bound of minimum distortion.

Figure 1: Intuitions behind Theorem 3.2.

The intuitions behind Theorem 3.2 is shown in
Figure 1 with an one-dimensional example. The
function value g(x) = fc(x) − fj(x) near point
x0 is inside a double cone formed by two lines
passing (x0, g(x0)) and with slopes equal to
±Lq , whereLq is the (local) Lipschitz constant of
g(x) near x0. In other words, the function value
of g(x) around x0, i.e. g(x0 + δ) can be bounded
by g(x0), δ and the Lipschitz constant Lq . When
g(x0 + δ) is decreased to 0, an adversarial exam-
ple is found and the minimal change of δ is g(x0)

Lq
.

The complete proof is deferred to Appendix A.

Remark 1. Lj
q is the Lipschitz constant of the function involving cross terms: fc(x)− fj(x), hence

we also call it cross Lipschitz constant following (Hein & Andriushchenko, 2017).

To distinguish our analysis from (Hein & Andriushchenko, 2017), we show in Corollary 3.2.1 that
we can obtain the same result in (Hein & Andriushchenko, 2017) by Theorem 3.2. In fact, the
analysis in (Hein & Andriushchenko, 2017) is a special case of our analysis because the authors
implicitly assume Lipschitz continuity on fi(x) when requiring fi(x) to be continuously differen-
tiable. They use local Lipschitz constant (Lq,x0

) instead of global Lipschitz constant (Lq) to obtain
a tighter bound in the adversarial perturbation δ.
Corollary 3.2.1 (Formal guarantee on βL for untargeted attack). 2 Let Lj

q,x0
be local Lipschitz

constant of function fc(x)−fj(x) at x0 over some fixed ballBp(x0, R) := {x ∈ Rd | ‖x−x0‖p ≤
R} and let δ ∈ Bp(0, R). By Theorem 3.2, we obtain the bound in (Hein & Andriushchenko, 2017):

‖δ‖p ≤ min

{
min
j 6=c

fc(x0)− fj(x0)

Lj
q,x0

, R

}
. (3)

An important use case of Theorem 3.2 and Corollary 3.2.1 is the bound for targeted attack:
Corollary 3.2.2 (Formal guarantee on βL for targeted attack). Assume the same notation as
in Theorem 3.2 and Corollary 3.2.1. For a specified target class j, we have ‖δ‖p ≤
min

{ fc(x0)−fj(x0)

Lj
q,x0

, R
}

.

In addition, we further extend Theorem 3.2 to a special case of non-differentiable functions – neural
networks with ReLU activations. In this case the Lipchitz constant used in Lemma 3.1 can be
replaced by the maximum norm of directional derivative, and our analysis above will go through.
Lemma 3.3 (Formal guarantee on βL for ReLU networks). 3 Let h(·) be a l-layer ReLU neural
network withWi as the weights for layer i. We ignore bias terms as they don’t contribute to gradient.

h(x) = σ(Wlσ(Wl−1 . . . σ(W1x)))

where σ(u) = max(0, u). Let S ⊂ Rd be a convex bounded closed set, then equation (1) holds
with Lq = supx∈S{| sup‖d‖p=1D

+h(x;d)|} where D+h(x;d) := limt→0+
h(x+td)−h(x)

t is the
one-sided directional direvative, then Theorem 3.2, Corollary 3.2.1 and Corollary 3.2.2 still hold.

4 THE CLEVER ROBUSTNESS METRIC VIA EXTREME VALUE THEORY

In this section, we provide an algorithm to compute the robustness metric CLEVER with the aid of
extreme value theory, where CLEVER can be viewed as an efficient estimator of the lower bound βL
and is the first attack-agnostic score that applies to any neural network classifiers. Recall in Section 3
2 proof deferred to Appendix B 3 proof deferred to Appendix C
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we show that the lower bound of network robustness is associated with g(x0) and its cross Lipschitz
constant Lj

q,x0
, where g(x0) = fc(x0)− fj(x0) is readily available at the output of a classifier and

Lj
q,x0

is defined as maxx∈Bp(x0,R) ‖∇g(x)‖q . Although ∇g(x) can be calculated easily via back
propagation, computing Lj

q,x0
is more involved because it requires to obtain the maximum value of

‖∇g(x)‖q in a ball. Exhaustive search on low dimensional x inBp(x0, R) seems already infeasible,
not to mention the image classifiers with large feature dimensions of our interest. For instance, the
feature dimension d = 784, 3072, 150528 for MNIST, CIFAR and ImageNet respectively.

One approach to compute Lj
q,x0

is through sampling a set of points x(i) in a ball Bp(x0, R) around
x0 and taking the maximum value of ‖∇g(x(i))‖q . However, a significant amount of samples might
be needed to obtain a good estimate of max ‖∇g(x)‖q and it is unknown how good the estimate
is compared to the true maximum. Fortunately, Extreme Value Theory ensures that the maximum
value of random variables can only follow one of the three extreme value distributions, which is
useful to estimate max ‖∇g(x)‖q with only a tractable number of samples.

It is worth noting that although Wood & Zhang (1996) also applied extreme value theory to estimate
the Lipschitz constant. However, there are two main differences between their work and this paper.
First of all, the sampling methodology is entirely different. Wood & Zhang (1996) calculates the
slopes between pairs of sample points whereas we directly take samples on the norm of gradient as in
Lemma 3.1. Secondly, the functions considered in Wood & Zhang (1996) are only one-dimensional
as opposed to the high-dimensional classification functions considered in this paper. For compari-
son, we show in our experiment that the approach in Wood & Zhang (1996), denoted as SLOPE in
Table 3 and Figure 4, perform poorly for high-dimensional classifiers such as deep neural networks.

4.1 ESTIMATE Lj
q,x0

VIA EXTREME VALUE THEORY

When sampling a point x uniformly in Bp(x0, R), ‖∇g(x)‖q can be viewed as a random vari-
able characterized by a cumulative distribution function (CDF). For the purpose of illustration,
we derived the CDF for a 2-layer neural network in Theorem D.1.4 For any neural networks,
suppose we have n samples {‖∇g(x(i))‖q}, and denote them as a sequence of independent and
identically distributed (iid) random variables Y1, Y2, · · · , Yn, each with CDF FY (y). The CDF of
max{Y1, · · · , Yn}, denoted as Fn

Y (y), is called the limit distribution of FY (y). Fisher-Tippett-
Gnedenko theorem says that Fn

Y (y), if exists, can only be one of the three family of extreme value
distributions – the Gumbel class, the Fréchet class and the reverse Weibull class.
Theorem 4.1 (Fisher-Tippett-Gnedenko Theorem). If there exists a sequence of pairs of real num-
bers (an, bn) such that an > 0 and limn→∞ Fn

Y (any + bn) = G(y), where G is a non-degenerate
distribution function, then G belongs to either the Gumbel class (Type I), the Fréchet class (Type II)
or the Reverse Weibull class (Type III) with their CDFs as follows:

Gumbel class (Type I): G(y) = exp
{
− exp

[
− y − aW

bW

]}
, y ∈ R,

Fréchet class (Type II): G(y) =
{ 0, if y < aW ,

exp{−
(
y−aW

bW

)−cW }, if y ≥ aW ,

Reverse Weibull class (Type III): G(y) =
{

exp{−
(
aW−y
bW

)cW }, if y < aW ,
1, if y ≥ aW ,

where aW ∈ R, bW > 0 and cW > 0 are the location, scale and shape parameters, respectively.
Theorem 4.1 implies that the maximum values of the samples follow one of the three families of
distributions. If g(x) has a bounded Lipschitz constant, ‖∇g(x(i))‖q is also bounded, thus its limit
distribution must have a finite right end-point. We are particularly interested in the reverse Weibull
class, as its CDF has a finite right end-point (denoted as aW ). The right end-point reveals the upper
limit of the distribution, known as the extreme value. The extreme value is exactly the unknown local
cross Lipschitz constant Lj

q,x0
we would like to estimate in this paper. To estimate Lj

q,x0
, we first

generate Ns samples of x(i) over a fixed ball Bp(x0, R) uniformly and independently in each batch
with a total of Nb batches. We then compute ‖∇g(x(i))‖q and store the maximum values of each
batch in set S. Next, with samples in S, we perform a maximum likelihood estimation of reverse
Weibull distribution parameters, and the location estimate âW is used as an estimate of Lj

q,x0
.

4 The theorem and proof are deferred to Appendix D.
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4.2 COMPUTE CLEVER: A ROBUSTNESS SCORE OF NEURAL NETWORK CLASSIFIERS

Given an instance x0, its classifier f(x0) and a target class j, a targeted CLEVER score of the
classifier’s robustness can be computed via g(x0) and Lj

q,x0
. Similarly, untargeted CLEVER scores

can be computed. With the proposed procedure of estimating Lj
q,x0

described in Section 4.1, we
summarize the flow of computing CLEVER score for both targeted attacks and un-targeted attacks
in Algorithm 1 and 2, respectively.

Algorithm 1: CLEVER-t, compute CLEVER score for targeted attack
Input: a K-class classifier f(x), data example x0 with predicted class c, target class j, batch size

Nb, number of samples per batch Ns, perturbation norm p, maximum perturbation R
Result: CLEVER Score µ ∈ R+ for target class j

1 S ← {∅}, g(x)← fc(x)− fj(x), q ← p
p−1 .

2 for i← 1 to Nb do
3 for k ← 1 to Ns do
4 randomly select a point x(i,k) ∈ Bp(x0, R)

5 compute bik ← ‖∇g(x(i,k))‖q via back propagation
6 end
7 S ← S ∪ {maxk{bik}}
8 end
9 âW ←MLE of location parameter of reverse Weibull distribution on S

10 µ← min( g(x0)
â , R)

Algorithm 2: CLEVER-u, compute CLEVER score for un-targeted attack
Input: Same as Algorithm 1, but without a target class j
Result: CLEVER score ν ∈ R+ for un-targeted attack

1 for j ← 1 to K, j 6= c do
2 µj ← CLEVER-t(f,x0, c, j,Nb, Ns, p, R)
3 end
4 ν ← minj{µj}

5 EXPERIMENTAL RESULTS

5.1 NETWORKS AND PARAMETER SETUP

We conduct experiments on CIFAR-10 (CIFAR for short), MNIST, and ImageNet data sets. For
the former two smaller datasets CIFAR and MNIST, we evaluate CLEVER scores on four relatively
small networks: a single hidden layer MLP with softplus activation (with the same number of hidden
units as in (Hein & Andriushchenko, 2017)), a 7-layer AlexNet-like CNN (with the same structure
as in (Carlini & Wagner, 2017b)), and the 7-layer CNN with defensive distillation (Papernot et al.,
2016) (DD) and bounded ReLU (Zantedeschi et al., 2017) (BReLU) defense techniques employed.

For ImageNet data set, we use three popular deep network architectures: a 50-layer Residual Net-
work (He et al., 2016) (ResNet-50), Inception-v3 (Szegedy et al., 2016) and MobileNet (Howard
et al., 2017). They were chosen for the following reasons: (i) they all yield (close to) state-of-the-
art performance among equal-sized networks; and (ii) their architectures are significantly different
with unique building blocks, i.e., residual block in ResNet, inception module in Inception net, and
depthwise separable convolution in MobileNet. Therefore, their diversity in network architectures is
appropriate to test our robustness metric. For MobileNet, we set the width multiplier to 1.0, achiev-
ing a 70.6% accuracy on ImageNet. We used public pretrained weights for all ImageNet models5.

In all our experiments, we set the sampling parameters Nb = 500, Ns = 1024 and R = 5. For
targeted attacks, we use 500 test-set images for CIFAR and MNIST and use 100 test-set images for
ImageNet; for each image, we evaluate its targeted CLEVER score for three targets: a random target
class, a least likely class (the class with lowest probability when predicting the original example),

5 Pretrained models can be downloaded at https://github.com/tensorflow/models/tree/master/research/slim
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and the top-2 class (the class with largest probability except for the true class, which is usually the
easiest target to attack). We also conduct untargeted attacks on MNIST and CIFAR for 100 test-set
images, and evaluate their untargeted CLEVER scores. Our experiment code is publicly available6.

5.2 FITTING GRADIENT NORM SAMPLES WITH REVERSE WEIBULL DISTRIBUTIONS

We fit the cross Lipschitz constant samples in S (see Algorithm 1) with reverse Weibull class dis-
tribution to obtain the maximum likelihood estimate of the location parameter âW , scale parameter
b̂W and shape parameter ĉW , as introduced in Theorem 4.1. To validate that reverse Weibull distri-
bution is a good fit to the empirical distribution of the cross Lipschitz constant samples, we conduct
Kolmogorov-Smirnov goodness-of-fit test (a.k.a. K-S test) to calculate the K-S test statistics D and
corresponding p-values. The null hypothesis is that samples S follow a reverse Weibull distribution.

Figure 2 plots the probability distribution function of the cross Lipschitz constant samples and the
fitted Reverse Weibull distribution for images from various data sets and network architectures.
The estimated MLE parameters, p-values, and the K-S test statistics D are also shown. We also
calculate the percentage of examples whose estimation have p-values greater than 0.05, as illustrated
in Figure 3. If the p-value is greater than 0.05, the null hypothesis cannot be rejected, meaning that
the underlying data samples fit a reverse Weibull distribution well. Figure 3 shows that all numbers
are close to 100%, validating the use of reverse Weibull distribution as an underlying distribution
of gradient norm samples empirically. Therefore, the fitted location parameter of reverse Weibull
distribution (i.e., the extreme value), âW , can be used as a good estimation of local cross Lipschitz
constant to calculate the CLEVER score. The exact numbers are shown in Table 5 in Appendix E.

(a) CIFAR-MLP (b) MNIST-CNN (c) ImageNet-MobileNet

Figure 2: The cross Lipschitz constant samples for three images from CIFAR, MNIST and ImageNet
datasets, and their fitted Reverse Weibull distributions with the corresponding MLE estimates of
location, scale and shape parameters (aW , bW , cW ) shown on the top of each plot. The D-statistics
of K-S test and p-values are denoted as ks and pval. With small ks and high p-value, the hypothesized
reverse Weibull distribution fits the empirical distribution of cross Lipschitz constant samples well.
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MNIST-MLP
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(a) Least likely target
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(b) Random target
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(c) Top 2 target

Figure 3: The percentage of examples whose null hypothesis (the samples S follow a reverse Weibull
distribution) cannot be rejected by K-S test with a significance level of 0.05 for p = 2 and p = ∞.
All numbers for each model are close to 100%, indicating S fits reverse Weibull distributions well.

6 Source code is available at https://github.com/huanzhang12/CLEVER
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5.3 COMPARING CLEVER SCORE WITH ATTACK-SPECIFIC NETWORK ROBUSTNESS

We apply the state-of-the-art white-box attack methods, iterative fast gradient sign method (I-
FGSM) (Goodfellow et al., 2015; Kurakin et al., 2016b) and Carlini and Wagner’s attack (CW)
(Carlini & Wagner, 2017b), to find adversarial examples for 11 networks, including 4 networks
trained on CIFAR, 4 networks trained on MNIST, and 3 networks trained on ImageNet. For
CW attack, we run 1000 iterations for ImageNet and CIFAR, and 2000 iterations for MNIST,
as MNIST has shown to be more difficult to attack (Chen et al., 2017b). Attack learning rate
is individually tuned for each model: 0.001 for Inception-v3 and ResNet-50, 0.0005 for Mo-
bileNet and 0.01 for all other networks. For I-FGSM, we run 50 iterations and choose the optimal
ε ∈ {0.01, 0.025, 0.05, 0.1, 0.3, 0.5, 0.8, 1.0} to achieve the smallest `∞ distortion for each individ-
ual image. For defensively distilled (DD) networks, 50 iterations of I-FGSM are not sufficient; we
use 250 iterations for CIFAR-DD and 500 iterations for MNIST-DD to achieve a 100% success rate.
For the problem to be non-trivial, images that are classified incorrectly are skipped. We report 100%
attack success rates for all the networks, and thus the average distortion of adversarial examples can
indicate the attack-specific robustness of each network. For comparison, we compute the CLEVER
scores for the same set of images and attack targets. To the best of our knowledge, CLEVER is the
first attack-independent robustness score that is capable of handling the large networks studied in
this paper, so we directly compare it with the attack-induced distortion metrics in our study.

We evaluate the effectiveness of our CLEVER score by comparing the upper bound βU (found by
attacks) and CLEVER score, where CLEVER serves as an estimated lower bound, βL. Table 3
compares the average `2 and `∞ distortions of adversarial examples found by targeted CW and
I-FGSM attacks and the corresponding average targeted CLEVER scores for `2 and `∞ norms,
and Figure 4 visualizes the results for `∞ norm. Similarly, Table 2 compares untargeted CW and
I-FGSM attacks with untargeted CLEVER scores. As expected, CLEVER is smaller than the dis-
tortions of adversarial images in most cases. More importantly, since CLEVER is independent of
attack algorithms, the reported CLEVER scores can roughly indicate the distortion of the best pos-
sible attack in terms of a specific `p distortion. The average `2 distortion found by CW attack is
close to the `2 CLEVER score, indicating CW is a strong `2 attack. In addition, when a defense
mechanism (Defensive Distillation or Bounded ReLU) is used, the corresponding CLEVER scores
are consistently increased (except for CIFAR-BReLU), indicating that the network is indeed made
more resilient to adversarial perturbations. For CIFAR-BReLU, both CLEVER scores and `p norm
of adversarial examples found by CW attack decrease, implying that bound ReLU is an ineffective
defense for CIFAR. CLEVER scores can be seen as a security checkpoint for unseen attacks. For
example, if there is a substantial gap in distortion between the CLEVER score and the considered
attack algorithms, it may suggest the existence of a more effective attack that can close the gap.

Since CLEVER score is derived from an estimation of the robustness lower bound, we further verify
the viability of CLEVER per each example, i.e., whether it is usually smaller than the upper bound
found by attacks. Table 4 shows the percentage of inaccurate estimations where the CLEVER score
is larger than the distortion of adversarial examples found by CW and I-FGSM attacks in three
ImageNet networks. We found that CLEVER score provides an accurate estimation for most of the
examples. For MobileNet and Resnet-50, our CLEVER score is a strict lower bound of these two
attacks for more than 96% of tested examples. For Inception-v3, the condition of strict lower bound

Table 2: Comparison between the average untargeted CLEVER score and distortion found by CW
and I-FGSM untargeted attacks. DD and BReLU represent Defensive Distillation and Bounded
ReLU defending methods applied to the baseline CNN network.

CW I-FGSM CLEVER
`2 `∞ `2 `∞ `2 `∞

MNIST-MLP 1.113 0.215 3.564 0.178 0.819 0.041
MNIST-CNN 1.500 0.455 4.439 0.288 0.721 0.057
MNIST-DD 1.548 0.409 5.617 0.283 0.865 0.063
MNIST-BReLU 1.337 0.433 3.851 0.285 0.833 0.065
CIFAR-MLP 0.253 0.018 0.885 0.016 0.219 0.005
CIFAR-CNN 0.195 0.023 0.721 0.018 0.072 0.002
CIFAR-DD 0.285 0.032 1.136 0.024 0.130 0.004
CIFAR-BReLU 0.159 0.019 0.519 0.013 0.045 0.001
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Table 3: Comparison of the average targeted CLEVER scores with average `∞ and `2 distortions
found by CW, I-FSGM attacks, and the average scores calculated by using the algorithm in Wood &
Zhang (1996) (denoted as SLOPE) to estimate Lipschitz constant. DD and BReLU denote Defensive
Distillation and Bounded ReLU defending methods applied to the CNN network. We did not include
SLOPE in ImageNet networks because it has been shown to be ineffective even for smaller networks.

(a) avergage `∞ distortion of CW and I-FGSM targeted attacks, and CLEVER and SLOPE estimation. Some
very large SLOPE estimates (in parentheses) exceeding the maximum possible `∞ distortion are reported as 1.

Least Likely Target Random Target Top-2 Target
CW I-FGSM CLEVER SLOPE CW I-FGSM CLEVER SLOPE CW I-FGSM CLEVER SLOPE

MNIST-MLP 0.475 0.223 0.071 0.808 0.337 0.173 0.072 0.813 0.218 0.119 0.069 0.786
MNIST-CNN 0.601 0.313 0.090 0.996 0.550 0.264 0.088 0.982 0.451 0.211 0.070 0.826
MNIST-DD 0.578 0.283 0.103 1 (1.090) 0.531 0.238 0.091 0.953 0.412 0.165 0.091 0.984
MNIST-BReLU 0.601 0.276 0.257 1 (5.327) 0.544 0.238 0.187 3.907 0.442 0.196 0.117 1 (2.470)
CIFAR-MLP 0.086 0.039 0.014 0.294 0.051 0.024 0.014 0.284 0.019 0.013 0.014 0.286
CIFAR-CNN 0.053 0.033 0.005 0.153 0.042 0.023 0.005 0.148 0.022 0.013 0.004 0.129
CIFAR-DD 0.091 0.053 0.011 0.278 0.066 0.032 0.010 0.255 0.033 0.014 0.007 0.184
CIFAR-BReLU 0.045 0.030 0.004 0.250 0.034 0.022 0.003 0.173 0.018 0.012 0.002 0.095
Inception-v3 0.023 0.011 0.002 - 0.021 0.012 0.002 - 0.010 0.011 0.001 -
Resnet-50 0.031 0.015 0.002 - 0.025 0.012 0.002 - 0.010 0.010 0.001 -
MobileNet 0.025 0.010 0.003 - 0.018 0.010 0.002 - 0.006 0.010 0.001 -

(b) average `2 distortion of CW and I-FGSM targeted attacks, and CLEVER and SLOPE estimation. Some very
large SLOPE estimates (in parentheses) exceeding the sampling radius R = 5 are reported as 5.

Least Likely Target Random Target Top-2 Target
CW I-FGSM CLEVER SLOPE CW I-FGSM CLEVER SLOPE CW I-FGSM CLEVER SLOPE

MNIST-MLP 2.575 4.273 1.409 5 (8.028) 1.833 3.369 1.432 5 (8.102) 1.128 2.374 1.383 5 (7.853)
MNIST-CNN 2.377 4.417 1.257 5 (9.947) 2.005 3.902 1.227 5 (9.619) 1.504 3.242 0.987 5 (7.921)
MNIST-DD 2.644 4.957 1.532 5 (10.628) 2.240 4.253 1.340 5 (9.493) 1.542 3.010 1.330 5 (9.646)
MNIST-BReLU 2.349 5.170 3.312 5 (52.058) 1.923 4.544 2.565 5 (37.531) 1.404 3.778 1.583 5 (23.548)
CIFAR-MLP 1.123 1.896 0.620 5 (5.013) 0.673 1.214 0.597 4.806 0.262 0.689 0.599 4.949
CIFAR-CNN 0.836 1.067 0.156 2.630 0.372 0.837 0.146 2.497 0.188 0.552 0.123 2.195
CIFAR-DD 2.065 1.540 0.347 4.735 0.624 1.097 0.307 4.279 0.296 0.582 0.220 3.083
CIFAR-BReLU 0.407 0.928 0.140 4.125 0.303 0.732 0.103 2.944 0.152 0.494 0.052 1.564
Inception-v3 0.628 2.244 0.524 - 0.595 2.261 0.466 - 0.287 2.073 0.234 -
Resnet-50 0.767 2.410 0.357 - 0.647 2.098 0.299 - 0.212 1.682 0.134 -
MobileNet 0.837 2.195 0.617 - 0.603 2.066 0.439 - 0.190 1.771 0.144 -

(a) MNIST: Least likely target (b) MNIST: Random target (c) MNIST: Top 2 target

(d) CIFAR: Least likely target (e) CIFAR: Random target (f) CIFAR: Top 2 target

Figure 4: Comparison of `∞ distortion obtained by CW and I-FGSM attacks, CLEVER score and the
slope based Lipschitz constant estimation (SLOPE) by Wood & Zhang (1996). SLOPE significantly
exceeds the distortions found by attacks, thus it is an inappropriate estimation of lower bound βL.

is worse (still more than 75%), but we found that in these cases the attack distortion only differs from
our CLEVER score by a fairly small amount. In Figure 5 we show the empirical CDF of the gap
between CLEVER score and the `2 norm of adversarial distortion generated by CW attack for the
same set of images in Table 4. In Figure 6, we plot the `2 distortion and CLEVER scores for each
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Table 4: Percentage of images in ImageNet where the CLEVER score for that image is greater than
the adversarial distortion found by different attacks.

Least Likely Target Random Target Top-2 Target
CW I-FGSM CW I-FGSM CW I-FGSM

L2 L∞ L2 L∞ L2 L∞ L2 L∞ L2 L∞ L2 L∞
MobileNet 4% 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 0%
Resnet-50 4% 0% 0% 0% 2% 0% 0% 0% 1% 0% 0% 0%
Inception-v3 25% 0% 0% 0% 23% 0% 0% 0% 15% 0% 0% 0%

(a) MobileNet
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(c) Inception-v3

−0.5 0.0 0.5 1.0
gap

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 5: The empirical CDF of the gap between CLEVER score and the `2 norm of adversarial
distortion generated by CW attack with random targets for 100 images on 3 ImageNet networks.

(a) MobileNet (b) ResNet-50 (c) Inception-v3

Figure 6: Comparison of the CLEVER scores (circle) and the `2 norm of adversarial distortion
generated by CW attack (triangle) with random targets for 100 images. The x-axis is image ID and
the y-axis is the `2 distortion metric.

(a) Least likely target (b) Random target (c) Top-2 target

Figure 7: Comparison of the CLEVER score calculated by Nb = {50, 100, 250, 500} and the `2
norm of adversarial distortion found by CW attack (CW) on 3 ImageNet models and 3 target types.

individual image. A positive gap indicates that CLEVER (estimated lower bound) is indeed less
than the upper bound found by CW attack. Most images have a small positive gap, which signifies
the near-optimality of CW attack in terms of `2 distortion, as CLEVER suffices for an estimated
capacity of the best possible attack.

5.4 TIME V.S. ESTIMATION ACCURACY

In Figure 7, we vary the number of samples (Nb = 50, 100, 250, 500) and compute the `2 CLEVER
scores for three large ImageNet models, Inception-v3, ResNet-50 and MobileNet. We observe that
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50 or 100 samples are usually sufficient to obtain a reasonably accurate robustness estimation despite
using a smaller number of samples. On a single GTX 1080 Ti GPU, the cost of 1 sample (with
Ns = 1024) is measured as 2.9 s for MobileNet, 5.0 s for ResNet-50 and 8.9 s for Inception-v3, thus
the computational cost of CLEVER is feasible for state-of-the-art large-scale deep neural networks.
Additional figures for MNIST and CIFAR datasets are given in Appendix E.

6 CONCLUSION

In this paper, we propose the CLEVER score, a novel and generic metric to evaluate the robustness
of a target neural network classifier to adversarial examples. Compared to the existing robustness
evaluation approaches, our metric has the following advantages: (i) attack-agnostic; (ii) applicable
to any neural network classifier; (iii) comes with strong theoretical guarantees; and (iv) is computa-
tionally feasible for large neural networks. Our extensive experiments show that the CLEVER score
well matches the practical robustness indication of a wide range of natural and defended networks.
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APPENDIX

A PROOF OF THEOREM 3.2

Proof. According to Lemma 3.1, the assumption that g(x) := fc(x)−fj(x) is Lipschitz continuous
with Lipschitz constant Lj

q gives

|g(x)− g(y)| ≤ Lj
q‖x− y‖p. (4)

Let x = x0 + δ and y = x0 in (4), we get
|g(x0 + δ)− g(x0)| ≤ Lj

q‖δ‖p,
which can be rearranged into the following form

g(x0)− Lj
q‖δ‖p ≤ g(x0 + δ) ≤ g(x0) + Lj

q‖δ‖p. (5)

When g(x0 + δ) = 0, an adversarial example is found. As indicated by (5), g(x0 + δ) is lower
bounded by g(x0)−Lj

q‖δ‖p. If ‖δ‖p is small enough such that g(x0)−Lj
q‖δ‖p ≥ 0, no adversarial

examples can be found:

g(x0)− Lj
q‖δ‖p ≥ 0⇒ ‖δ‖p ≤

g(x0)

Lj
q

⇒ ‖δ‖p ≤
fc(x0)− fj(x0)

Lj
q

,

Finally, to achieve argmax1≤i≤K fi(x0 + δ) = c, we take the minimum of the bound on ‖δ‖p in
(A) over j 6= c. I.e. if

‖δ‖p ≤ min
j 6=c

fc(x0)− fj(x0)

Lj
q

,

the classifier decision can never be changed and the attack will never succeed.

B PROOF OF COROLLARY 3.2.1

Proof. By Lemma 3.1 and let g = fc − fj , we get Lj
q,x0

= maxy∈Bp(x0,R) ‖∇g(y)‖q =
maxy∈Bp(x0,R) ‖∇fj(y) −∇fc(y)‖q , which then gives the bound in Theorem 2.1 of (Hein & An-
driushchenko, 2017).

C PROOF OF LEMMA 3.3

Proof. For any x,y, let d = y−x
‖y−x‖p be the unit vector pointing from x to y and r = ‖y − x‖p.

Define uni-variate function u(z) = h(x + zd), then u(0) = h(x) and u(r) = h(y) and observe
that D+h(x + zd;d) and D+h(x + zd;−d) are the right-hand and left-hand derivatives of u(z),
we have

u′(z) =

{
D+h(x+ zd;d) ≤ Lq if D+h(x+ zd;d) = D+h(x+ zd;−d)

undefined if D+h(x+ zd;d) 6= D+h(x+ zd;−d)

For ReLU network, there can be at most finite number of points in z ∈ (0, r) such that g′(z) does
not exist. This can be shown because each discontinuous z is caused by some ReLU activation, and
there are only finite combinations. Let 0 = z0 < z1 < · · · < zk−1 < zk = 1 be those points. Then,
using the fundamental theorem of calculus on each interval separately, there exists z̄i ∈ (zi, zi−1)
for each i such that

u(r)− u(0) ≤
k∑

i=1

|u(zi)− u(zi−1)|

≤
k∑

i=1

|u′(z̄i)(zi − zi−1)| (Mean value theorem)

≤
k∑

i=1

Lq|zi − zi−1|p

= Lq‖x− y‖p. (zi are in line (x, y))
Theorem 3.2 and its corollaries remain valid after replacing Lemma 3.1 with Lemma 3.3.
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D THEOREM D.1 AND ITS PROOF

Theorem D.1 (FY (y) of one-hidden-layer neural network). Consider a neural network f : Rd →
RK with input x0 ∈ Rd, a hidden layer with U hidden neurons, and rectified linear unit (ReLU)
activation function. If we sample uniformly in a ball Bp(x0, R), then the cumulative distribution
function of ‖∇g(x)‖q , denoted as FY (y), is piece-wise linear with at most M =

∑d
i=0

(
U
i

)
pieces,

where g(x) = fc(x)− fj(x) for some given c and j, and 1
p + 1

q = 1, 1 ≤ p, q ≤ ∞.

Proof. The jth output of a one-hidden-layer neural network can be written as

fj(x) =

U∑
r=1

Vjr · σ
(

d∑
i=1

Wri · xi + br

)
=

U∑
r=1

Vjr · σ (wrx+ br) ,

where σ(z) = max(z, 0) is ReLU activation function, W and V are the weight matrices of the
first and second layer respectively, and wr is the rth row of W . Thus, we can compute g(x) and
‖∇g(x)‖q below:

g(x) = fc(x)− fj(x) =

U∑
r=1

Vcr · σ (wrx+ br)−
U∑

r=1

Vjr · σ (wrx+ br)

=

U∑
r=1

(Vcr − Vjr) · σ (wrx+ br)

and

‖∇g(x)‖q =

∥∥∥∥∥
U∑

r=1

I(wrx+ br)(Vcr − Vjr)w>r

∥∥∥∥∥
q

,

where I(z) is an univariate indicator function:

I(z) =
{ 1, if z > 0,

0, if z ≤ 0.

Figure 8: Illustration of Theorem D.1 with d = 2, q = 2 andU = 3. The three hyperplanes
wix+bi = 0 divide the space into seven regions (with different colors). The red dash line
encloses the ball B2(x0, R1) and the blue dash line encloses a larger ball B2(x0, R2). If
we draw samples uniformly within the balls, the probability of ‖∇g(x)‖2 = y is propor-
tional to the intersected volumes of the ball and the regions with ‖∇g(x)‖2 = y.

As illustrated in Figure 8, the hyperplanes wrx+ br = 0, r ∈ {1, . . . , U} divide the d dimensional
spaces Rd into different regions, with the interior of each region satisfying a different set of inequal-
ity constraints, e.g. wr+x+ br+ > 0 andwr−x+ br− < 0. Given x, we can identify which region
it belongs to by checking the sign ofwrx+ br for each r. Notice that the gradient norm is the same
for all the points in the same region, i.e. for any x1, x2 satisfying I(wrx1 +br) = I(wrx2 +br) ∀r,
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we have ‖∇g(x1)‖q = ‖∇g(x2)‖q . Since there can be at most M =
∑d

i=0

(
U
i

)
different regions

for a d-dimensional space with U hyperplanes, ‖∇g(x)‖q can take at most M different values.

Therefore, if we perform uniform sampling in a ball Bp(x0, R) centered at x0 with radius R and
denote ‖∇g(x)‖q as a random variable Y , the probability distribution of Y is discrete and its CDF
is piece-wise constant with at mostM pieces. Without loss of generality, assume there areM0 ≤M
distinct values for Y and denote them as m(1),m(2), . . . ,m(M0) in an increasing order, the CDF of
Y , denoted as FY (y), is the following:

FY (m(i)) = FY (m(i−1)) +
Vd({x | ‖∇g(x)‖q = m(i)}) ∩ Vd(Bp(x0, R)))

Vd(Bp(x0, R))
, i = 1, . . . ,M0,

where FY (m(0)) = 0 with m(0) < m(1), Vd(E) is the volume of E in a d dimensional space.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 PERCENTAGE OF EXAMPLES HAVING P VALUE > 0.05

Table 5 shows the percentage of examples where the null hypothesis cannot be rejected by K-S test,
indicating that the maximum gradient norm samples fit reverse Weibull distribution well.
Table 5: Percentage of estimations where the null hypothesis cannot be rejected by K-S test for a
significance level of 0.05. The bar plots of this table are illustrated in Figure 3.

Least Likely Random Top-2
L2 L∞ L2 L∞ L2 L∞

MNIST-MLP 100.0 100.0 100.0 100.0 100.0 100.0
MNIST-CNN 99.6 99.8 99.2 100.0 99.4 100.0
MNIST-DD 99.8 100.0 99.6 99.8 99.8 99.8
MNIST-BReLU 93.3 95.4 96.8 96.8 97.6 98.2
CIFAR-MLP 100.0 100.0 100.0 100.0 100.0 100.0
CIFAR-CNN 100.0 100.0 100.0 100.0 100.0 100.0
CIFAR-DD 99.7 99.5 100.0 100.0 99.7 99.7
CIFAR-BReLU 99.5 99.2 100.0 100.0 99.7 99.7
Inception-v3 100.0 100.0 100.0 100.0 100.0 100.0
Resnet-50 99.0 100.0 100.0 100.0 100.0 100.0
MobileNet 100.0 100.0 100.0 100.0 98.0 99.0

E.2 CLEVER V.S. NUMBER OF SAMPLES

Figure 9 shows the `2 CLEVER score with different number of samples (Nb = 50, 100, 250, 500)
for MNIST and CIFAR models. For most models except MNIST-BReLU, reducing the number of
samples only change CLEVER scores very slightly. For MNIST-BReLU, increasing the number
of samples improves the estimated lower bound, suggesting that a larger number of samples is
preferred. In practice, we can start with a relatively small Nb = a, and also try 2a, 4a, · · · samples
to see if CLEVER scores change significantly. If CLEVER scores stay roughly the same despite
increasing Nb, we can conclude that using Nb = a is sufficient.
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(a) MNIST, Least likely target (b) MNIST, Random target (c) MNIST, Top-2 target

(d) CIFAR, Least likely target (e) CIFAR, Random target (f) CIFAR, Top2 target

Figure 9: Comparison of the CLEVER score calculated by Nb = {50, 100, 250, 500} and the `2
norm of adversarial distortion found by CW attack (CW) on MNIST and CIFAR models with 3
target types.
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