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ABSTRACT

We propose a method, called Label Embedding Network, which can learn label
representation (label embedding) during the training process of deep networks.
With the proposed method, the label embedding is adaptively and automatically
learned through back propagation. The original one-hot represented loss func-
tion is converted into a new loss function with soft distributions, such that the
originally unrelated labels have continuous interactions with each other during the
training process. As a result, the trained model can achieve substantially higher ac-
curacy and with faster convergence speed. Experimental results based on compet-
itive tasks demonstrate the effectiveness of the proposed method, and the learned
label embedding is reasonable and interpretable. The proposed method achieves
comparable or even better results than the state-of-the-art systems.

1 INTRODUCTION

Most of the existing methods of neural networks use one-hot vector representations for labels. The
one-hot vector has two main restrictions. The first restriction is the “discrete distribution”, where
each label is distributed at a completely different dimension from the others. The second restriction
is the “extreme value” based representation, where the value at each dimension is either 1 or 0, and
there is no “soft value” allowed. Those deficiencies may cause the following two potential problems.

First, it is not easy to measure the correlation among the labels due to the “discrete distribution”. Not
being able to measure the label correlation is potentially harmful to the learned models, e.g., causing
the data sparseness problem. Given an image recognition task, the image of the shark is often similar
to the image of the dolphin. Naturally, we expect the two labels to be “similar”. Suppose that we have
a lot of training examples for shark, and very few training examples for dolphin. If the label shark
and the label dolphin have similar representations, the prediction for the label dolphin will suffer
less from the data sparsity problem.

Second, the 0/1 value encoding is easy to cause the overfitting problem. Suppose A and B are labels
of two similar types of fishes. One-hot label representation prefers the ultimate separation of those
two labels. For example, if currently the system output probability for A is 0.8 and the probability
for B is 0.2, it is good enough to make a correct prediction of A. However, with the one-hot label
representation, it suggests that further modification to the parameters is still required, until the prob-
ability of A becomes 1 and the probability of B becomes 0. Because the fish A and the fish B are
very similar in appearance, it is probably more reasonable to have the probability 0.8 for A and 0.2
for B, rather than completely 1 for A and 0 for B, which could lead to the overfitting problem.

We aim to address those problems. We propose a method that can automatically learn label rep-
resentation for deep neural networks. As the training proceeds, the label embedding is iteratively
learned and optimized based on the proposed label embedding network through back propagation.
The original one-hot represented loss function is softly converted to a new loss function with soft
distributions, such that those originally unrelated labels have continuous interactions with each other
during the training process. As a result, the trained model can achieve substantially higher accuracy,
faster convergence speed, and more stable performance. The related prior studies include the tradi-
tional label representation methods (Hardoon et al., 2004; Hsu et al., 2009; Bengio et al., 2010), the
“soft label” methods (Nguyen et al., 2014), and the model distillation methods (Hinton et al., 2014).
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Our method is substantially different from those existing work, and the detailed comparisons are
summarized in Appendix E. The contributions of this work are as follows:

• Learning label embedding and compressed embedding: We propose the Label Embed-
ding Network that can learn label representation for soft training of deep networks. Fur-
thermore, some large-scale tasks have a massive number of labels, and a naive version of
label embedding network will suffer from intractable memory cost problem. We propose a
solution to automatically learn compressed label embedding, such that the memory cost is
substantially reduced.

• Interpretable and reusable: The learned label embeddings are reasonable and inter-
pretable, such that we can find meaningful similarities among the labels. The proposed
method can learn interpretable label embeddings on both image processing tasks and nat-
ural language processing tasks. In addition, the learned label embeddings can be directly
adapted for training a new model with improved accuracy and convergence speed.

• General-purpose solution and competitive results: The proposed method can be widely
applied to various models, including CNN, ResNet, and Seq-to-Seq models. We conducted
experiments on computer vision tasks including CIFAR-100, CIFAR-10, and MNIST,
and on natural language processing tasks including LCSTS text summarization task and
IWSLT2015 machine translation task. Results suggest that the proposed method achieves
significantly better accuracy than the existing methods (CNN, ResNet, and Seq-to-Seq). We
achieve results comparable or even better than the state-of-the-art systems on those tasks.

2 PROPOSED METHOD

A neural network typically consists of several hidden layers and an output layer. The hidden layers
map the input to the hidden representations. Let’s denote the part of the neural network that produces
the last hidden representation as

h = f(x) (1)
where x is the input of the neural network, h is the hidden representation, and f defines the mapping
from the input to the hidden representation, including but not limited to CNN, ResNet, Seq-to-Seq,
and so on. The output layer maps the hidden representation to the output, from which the predicted
category is directly given by an argmax operation. The output layer typically consists of a linear
transformation that maps the hidden representation h to the output z:

z = o(h) (2)

where o represents the linear transformation. It is followed by a softmax operation that normalizes
the output as z′, so that the sum of the elements in z′ is 1, which is then interpreted as a probability
distribution of the labels:

z′ = softmax(z) (3)
The neural network is typically trained by minimizing the cross entropy loss between the true label
sdistribution y and the output distribution as the following:

Loss(z′,y) = H(y, z′) = −
∑
i

yi log z
′
i i = 1, 2, . . . ,m (4)

wherem is the number of the labels. In the following, we will use y to denote the true label category,
y to denote the one-hot distribution of y, x′ to denote softmax(x), and H(p, q) to denote the cross
entropy between p and q, where p is the distribution that the model needs to approximate, e.g., y in
(4), and q is the distribution generated by the model, e.g., z′ in (4).

2.1 LABEL EMBEDDING NETWORK

The label embedding is supposed to represent the semantics, i.e. similarity between labels, which
makes the length of each label embedding to be the number of the labels m. The embedding is
denoted by

E ∈ Rm×m (5)
wherem is the number of the labels. Each element in a label embedding vector represents the similar-
ity between two labels. For example, in label y’s embedding vector e = Ey , the i-th value represents
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(a) Forward propagation. (b) Back propagation.

Figure 1: Illustration of the proposed method. A circle stands for a vector, and a square stands for a
layer with parameters. The dashed line means a cross entropy operation. The square labeled “neural
network” can be CNN, ResNet, Seq-to-Seq, and so on.

the similarity of label y to label i. To learn the embeddings, a reasonable approach would be to make
the label embedding e = Ey close to the output z in (4) of the neural network, whose predicted
label is y, as the output distribution of the model contains generalization information learned by the
neural network. In turn, the label embedding can be used as a more refined supervisory signal for
the learning of the model.

However, the aforementioned approach affects the learning of the model, in terms of the discrimi-
native power. In essence, the model is supposed to distinguish the inputs, while the label embedding
is supposed to capture the commonness of the labels based on the inputs, and the two goals are in
conflict. To avoid the conflict, we propose to separate the output representation. One output layer,
denoted by o1, is used to differentiate the hidden representation as normal, which is used for predict-
ing, and the other output layer, denoted by o2, focuses more on learning the similarity of the hidden
representation, from which the label embedding is learned:

z1 = o1(h), z2 = o2(h) (6)

The two output layers share the same hidden representation, but have independent parameters. They
both learn from the one-hot distribution of the true label:

Loss(z′1,y) = H(y, z′1) = −
∑
i

yi log(z
′
1)i i = 1, 2, . . . ,m (7)

Loss(z′2,y) = H(y, z′2) = −
∑
i

yi log(z
′
2)i i = 1, 2, . . . ,m (8)

In back propagation, the gradient from z2 is kept from propagating to h, so the learning of the o2
does not affect the hidden representation. By doing this, the discriminative power of o1 is maintained
and even enhanced by the using of label embedding. In the meanwhile, the label embedding obtains
a more stable learning target.

The label embedding is then learned by minimizing the cross entropy loss between the normalized
embedding e′ = softmax(e) and the normalized output z′2 = softmax(z2):

Loss(e′, z′2) = H(z′2, e
′) = −

∑
i

(z′2)i log e
′
i i = 1, 2, . . . ,m (9)
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However, the above approach does not scale properly during the training, as the output z2′ becomes
too close to the one-hot distribution y, and the label embedding fails to capture the similarity be-
tween labels. To solve this, we apply the softmax with temperature τ to soften the distribution of the
normalized z2, which is computed by

(z′′2)i =
exp((z2)i/τ)∑m
j=1 exp((z2)j/τ)

i = 1, 2, . . . ,m (10)

and the loss becomes

Loss(e′, z′′2) = H(z′′2 , e
′) = −

∑
i

(z′′2)i log e
′
i i = 1, 2, . . . ,m (11)

In the following we will use z′′2 to denote the softmax with temperature. By applying a higher tem-
perature, the label embedding gains more details of the output distribution, and the elements in
an embedding vector other than the label-based one, i.e. the elements off the diagonal, are better
learned. However, the annealed distribution also makes the difference between the incorrect labels
closer. To solve the problem, we further propose to regularize the normalized output, so that the
highest value of the distribution does not get too high, and the difference between labels is kept:

Loss(z′2) = ||max(0, (z′2)y − α)||p (12)

If p equals to 1 or 2, the loss is a hinge L1 or L2 regularization. The learned embedding is in turn
used in the training of the network by making the output close to the learned embedding. This is
done by minimizing the cross entropy loss between the normalized output and the normalized label
embedding:

Loss(z′1, e
′) = H(e′, z′1) = −

∑
i

e′i log(z
′
1)i i = 1, 2, . . . ,m (13)

As a fine-grained distribution of the true label is learned by the model, a faster convergence is
achieved, and risk of overfitting is also reduced.

In summary, the final objective of the proposed method is as follows:

Loss(x,y;θ) = H(y, z′1) +H(e′, z′1) +H(y, z′2) + ||max(0, (z′2)y − α)||p +H(z′′2 , e
′) (14)

Figure 1 shows the overall architecture of the proposed method. Various kinds of neural networks
are compatible to generate the hidden representation. In our experiments, we used CNN, ResNet,
and Seq-to-Seq. However, the choice may not be limited to those architectures. Moreover, although
the output architecture is significantly re-designed, the computational cost does not increase much,
as the added operations are relatively cheap in computation.

2.2 COMPRESSED LABEL EMBEDDING NETWORK

When there is a massive number of labels (e.g., over 20,000 labels for neural machine translation),
the embedding E takes too much memory. Suppose we have a neural machine translation task with
50,000 labels, then the label embedding is a 50,000 × 50,000 matrix. The embedding matrix alone
will take up approximately 9,536MB, which is not suitable for GPU. To alleviate this issue, we
propose to re-parameterize the embedding matrix to a product of two smaller matrices, A and B:

A ∈ Rm×h, B ∈ Rh×m (15)

where m is the number of the labels, and h is the size of the “compressed” label embedding. The
label embedding for label y is computed as the following:

e = ReLU(AyB) (16)

where Ay means taking out the y-th row from the matrix A. The resulting vector e is an m-
dimensional vector, and can be used as label embedding to substitute the corresponding part in
the final loss of a normal label embedding network. The matrix A can be seen as the “compressed”
label embeddings, where each row represents a compressed label embedding, and the matrix B can
be seen as the projection that reconstructs the label embeddings from the “compressed” forms. This
technique can reduce the space needed to store the label embeddings by a factor of m

2h . Considering
the previous example, if h = 100, the space needed is reduced by 250x, from 9,536MB to about
38.15MB.

4



Under review as a conference paper at ICLR 2018

Table 1: Statistics of the tasks.

DataSet Training Dev Test Labels Model
CIFAR-100 50,000 – 10,000 100 ResNet-18
CIFAR-10 50,000 – 10,000 10 ResNet-8
MNIST 55,000 5,000 10,000 10 CNN
LCSTS 2,400,591 10,666 1,106 4,000 Seq-to-Seq
IWSLT2015 133,317 1,268 1,553 22,439 Seq-to-Seq

3 EXPERIMENTS

We conduct experiments using different models (CNN, ResNet, and Seq-to-Seq) on diverse tasks
(computer vision tasks and natural language processing tasks) to show that the proposed method is
general-purpose and works for different types of deep learning models.

CIFAR-100: The CIFAR-100 (Krizhevsky & Hinton, 2009) dataset consists of 60,000 32×32 color
images in 100 classes containing 600 images each. The dataset is split into 50,000 training images
and 10,000 test images. Each image comes with a “fine" label (the class to which it belongs) and a
“coarse" label (the superclass to which it belongs).

CIFAR-10: The CIFAR-10 dataset (Krizhevsky & Hinton, 2009) has the same data size as CIFAR-
100, that is, 60,000 32×32 color images, split into 50,000 training images and 10,000 test images,
except that it has 10 classes with 6,000 images per class.

MNIST: The MNIST handwritten digit dataset (LeCun et al., 1998) consists of 60,000 28×28 pixel
gray-scale training images and additional 10,000 test examples. Each image contains a single nu-
merical digit (0-9). We select the first 5,000 images of the training images as the development set
and the rest as the training set.

Social Media Text Summarization Dataset (LCSTS): LCSTS Hu et al. (2015) consists of more
than 2,400,000 social media text-summary pairs. It is split into 2,400,591 pairs for training, 10,666
pairs for development data, and 1,106 pairs for testing. Following (Hu et al., 2015), the evaluation
metric is ROUGE-1, ROUGE-2 and ROUGE-L (Lin & Hovy, 2003).

IWSLT 2015 English-Vietnam Dataset (IWSLT2015): The dataset is from the International Work-
shop on Spoken Language Translation 2015. The dataset consists of about 136,000 English-Vietnam
parallel sentences, constructed from the TED captions. It is split into training set, development set
and test set, with 133,317, 1,268 and 1,553 sentence pairs respectively. The evaluation metric is
BLEU score (Papineni et al., 2002).

3.1 EXPERIMENTAL SETTINGS

For CIFAR-100 and CIFAR-10, we test our method based on ResNet with 18 layers and 8 layers,
respectively, following the settings in He et al. (2016). For MNIST, the CNN model consists of two
convolutional layers, one fully-connected layer, and another fully-connected layer as the output layer.
The filter size is 5 × 5 in the convolutional layers. The first convolutional layer contains 32 filters,
and the second contains 64 filters. Each convolutional layer is followed by a max-pooling layer.
Following common practice, we use ReLU (Hahnloser et al., 2000) as the activation function of the
hidden layers.

For LCSTS and IWSLT2015, we test our approach based on the sequence-to-sequence model. Both
the encoder and decoder are based on the LSTM unit, with one layer for LCSTS and two layer for
IWSLT2015. Each character or word is represented by a random initialized embedding. For LCSTS,
the embedding size is 400, and the hidden state size of the LSTM unit is 500. For IWSLT2015, the
embedding size is 512, and the hidden state size of the LSTM unit is 512. We use beam search for
IWSLT2015, and the beam size is 10. Due to the very large label sets, we use the compressed label
embedding network (see Section 2.2) for both tasks.

Although there are several hyper-parameters introduced in the proposed method, we use a very
simple setting for all tasks, because the proposed method is robust in our experiments, and simply
works well without fine-tuning. We use temperature τ = 2 for all the tasks. For simplicity, we use
the L1 form of the hinge loss of o2, and α is set to 0.9 for all the tasks. We use the Adam optimizer
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Table 2: Results of Label Embedding on computer vision.

CIFAR-100 Test Error (%) Error Reduction Time/Epoch (s)
ResNet-18 27.35 (±0.40) -3.38 (↓ 12.4%) 86.3
ResNet-LabelEmb-18 23.97 (±0.33) 87.8

CIFAR-10 Test Error (%) Error Reduction Time/Epoch (s)
ResNet-8 8.66 (±0.43) -1.69 (↓ 19.5%) 35.1
ResNet-LabelEmb-8 6.97 (±0.22) 42.5

MNIST Test Error (%) Error Reduction Time/Epoch (s)
CNN 0.85 (±0.11) -0.30 (↓ 35.3%) 4.60
CNN-LabelEmb 0.55 (±0.03) 5.46

(a) CIFAR-100 on ResNet-18. (b) CIFAR-10 on ResNet-8. (c) MNIST on CNN.

Figure 2: Error rate curve for CIFAR-100, CIFAR-10, and MNSIT. 20 times experiments (the light
color curves) are conducted for credible results both on the baseline and our proposed model. The
average results are shown as deep color curves.

(Kingma & Ba, 2014) for all the tasks, using the default hyper-parameters. For CIFAR-100, we divide
the learning rate by 5 at epoch 40 and epoch 80. As shown in the previous work (He et al., 2016),
dividing the learning rate at certain iterations proves to be beneficial for SGD. We find that the
technique also applies to Adam. We do not apply this technique for CIFAR-10 and MNIST, because
the results are similar with or without the technique. The experiments are conducted using INTEL
Xeon 3.0GHz CPU and NVIDIA GTX 1080 GPU. We run each configuration 20 times with different
random seeds for the CV tasks. For the tasks without development sets, we report the results at the
final epoch. For the ones with development sets, we report the test results at the epoch that achieves
the best score on development set.

3.2 RESULTS ON COMPUTER VISION

First, we show results on CIFAR-100 and CIFAR-10, which are summarized in Table 2. As we
can see, the proposed method achieves much better results. On CIFAR-100, the proposed method
achieves 12.4% error reduction ratio from the baseline (ResNet-18). On CIFAR-10, the proposed
method achieves 19.5% error reduction ratio from the baseline (ResNet-8). The training time per
epoch is similar to the baselines. The results of MNIST are summarized in Table 2. As we can see,
the proposed method achieves the error rate reduction of over 32%.

The detailed error rate curves are shown in Figure 2. The 20 repeated runs are shown in lighter
color, and the averaged values are shown in deeper color. As we can see from Figure 2, the proposed
method achieves better convergence speed than the ResNet and CNN baselines. This is because the
label embedding achieves soft training of the model, where the conflict of the features of similar
labels are alleviated by the learned label embeddings. The learned label embeddings enables the
model to share common features when classifying the similar labels, because the supervisory signal
contains the information about similarity, thus making the learning easier. Besides, the model is
not required to distinguish the labels completely, which avoids unnecessary subtle update of the
parameters.

In addition, we can see that by using label embedding the proposed method has much more stable
training curves than the baselines. The fluctuation of the proposed method is much smaller than
the baselines. As the one-hot distribution forces the label to be completely different from others,
the original objective seeks unique indicators for the labels, which are hard to find and prone to

6



Under review as a conference paper at ICLR 2018

b
a
b
y

b
o
tt

le
a
p
p
le

b
o
y

b
o
w

l
o
ra

n
g
e

g
ir

l
ca

n
sw

e
e
t_

p
e
p
p
e
r

m
a
n

cu
p

p
e
a
r

w
o
m

a
n

p
la

te
m

u
sh

ro
o
m

CIFAR-100

baby
bottle
apple

boy
bowl

orange
girl
can

sweet_pepper
man
cup

pear
woman

plate
mushroom

a
ir

p
la

n
e

a
u
to

m
o
b
ile

b
ir

d
ca

t
d
e
e
r

d
o
g

fr
o
g

h
o
rs

e
sh

ip
tr

u
ck

CIFAR-10

airplane
automobile

bird
cat

deer
dog
frog

horse
ship

truck

0 1 2 3 4 5 6 7 8 9

MNIST

0

1

2

3

4

5

6

7

8

9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3: Heatmaps generated by the label embeddings.

Table 3: Results of Label Embedding for LCSTS (W: Word model; C: Character model). The evalu-
ation metric is ROUGE score (higher is better).

LCSTS ROUGE-1 ROUGE-2 ROUGE-L
Seq2seq (W) (Hu et al., 2015) 17.7 8.5 15.8
Seq2seq (C) (Hu et al., 2015) 21.5 8.9 18.6
Seq2seq-Attention (W) (Hu et al., 2015) 26.8 16.1 24.1
Seq2seq-Attention (C) (Hu et al., 2015) 29.9 17.4 27.2
Seq2seq-Attention (C) (our implementation) 30.1 17.9 27.2
Seq2seq-Attention-LabelEmb (C) (our proposal) 31.7 (+1.6) 19.1 (+1.2) 29.1 (+1.9)

overfitting, thus often leading the training astray. The proposed method avoids that by softening the
target distribution, so that the features used are not required to be unique, and more common but
essential features can be selected, which stabilizes the learning compared to the original objective.

The proposed method achieves comparable or even better results than the state-of-the-art systems.
More detailed comparisons to the high performance systems are in Appendix D.

3.2.1 LEARNED LABEL EMBEDDINGS

It would be interesting to check the learned label embeddings from those datasets. Figure 3 shows
the learned label embeddings from the CIFAR-100, CIFAR-10, and MNIST tasks, respectively.

For the CIFAR-100 task, as we can see, the learned label embeddings are very interesting. Since we
don’t have enough space to show the heatmap of all of the 100 labels, we randomly selected three
groups of labels, with 15 labels in total. For example, the most similar label for the label “bottle” is
“can”. For the label “bowl”, the two most similar labels are “cup” and “plate”. For the label “man”,
the most similar label is “woman”, and the second most similar one is “boy”.

For the CIFAR-10 task, as we can see, the learned label embeddings are also meaningful. For ex-
ample, the most similar label for the label “automobile” is “truck”. For the label “cat”, the most
similar label is “dog”. For the label “deer”, the most similar label is “horse”. For the MINST task,
there are also interesting patterns on the learned label embeddings. Those heatmaps of the learned
labels demonstrate that our label embedding learning is reasonable and can indeed reveal rational
similarities among diversified labels. The learned embedding can also be used to directly trained a
new model on the same task, with improved accuracy and faster convergence, which we will show
in Appendix C.

3.3 RESULTS ON NATURAL LANGUAGE PROCESSING

First, we show experimental results on the LCSTS text summarization task. The results are sum-
marized in Table 3. The performance is measured by ROUGE-1, ROUGE-2, and ROUGE-L. As
we can see, the proposed method performs much better compared to the baselines, with ROUGE-1
score of 31.7, ROUGE-2 score of 19.1, and ROUGE-L score of 29.1, improving by 1.6, 1.2, and
1.9, respectively. In addition, the results of the baseline implemented by ourselves are competitive
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Table 4: Results of Label Embedding for IWSLT2015. The evaluation metric is BLEU score (higher
is better).

IWSLT2015 BLEU
Stanford NMT (Luong & Manning, 2015) 23.3
NMT (greedy) (Luong et al., 2017) 25.5
NMT (beam=10) (Luong et al., 2017) 26.1
Seq2seq-Attention (beam=10) 25.7
Seq2seq-Attention-LabelEmb (beam=10) 26.8 (+1.1)

Table 5: Examples of the similarity results on IWSLT2015, based on the learned label embeddings.

Label (Word) Top 5 Most Similar Labels
chó (dog) cún (dogs), mèo (cat), con (baby), chú (uncle), heo (pig)
trai (boy) gái (girl) , bé (little), người (people), con (children), cậu (you)
chạy (run) hoạt (activity) , vận (campaign) , đi (go) , điều (thing) , làm (do)
hát (sing) nhạc (music) , diễn (acting), nói (say) , học (learn) , viết (write)
đẹp (beautiful) vẻ (draw) , xinh (pretty) , tuyệt (great) , hơn (than) , xắn (lovely)
tốt (good) giỏi (great) , hay (or) , tuyệt (Great) , rất (very) , có (have)
đùa (joke) trò (game) , cười (laugh) , chuyện (matter), chơi (play) , nói (say)
đỏ (red) màu (color) , red (red) , xanh (blue) , đen (black) , vàng (yellow)
biển (sea) đáy (bottom), nước (water), đại (ocean), khơi(sea) , dưới (bottom)
mưa (rain) bão (storm) , trời (sky) , gió (wind) , cơn (storm) , nước (water)

with previous work (Hu et al., 2015). In fact, in terms of all of the three metrics, our implementation
consistently beats the previous work, and the proposed method could further improve the results.

Then, we show experimental results on the IWSLT2015 machine translation task. The results are
summarized in Table 4. We measure the quality of the translation by BLEU, following common
practice. The proposed method achieves better BLEU score than the baseline, with an improvement
of 1.1 points. To our knowledge, 26.8 is the highest BLEU achieved on the task, surpassing the
previous best result 26.1 (Luong et al., 2017). From the experimental results, it is clear that the
compressed label embedding can improve the results of the Seq-to-Seq model as well, and works for
the tasks, where there is a massive number of labels.

3.3.1 LEARNED LABEL EMBEDDINGS

The label embedding learned in compressed fashion also carries semantic similarities. We report the
sampled similarities results in Table 5. As shown in Table 5, the learned label embeddings capture
the semantics of the label reasonably well. For example, the word “đỏ” (red) is most similar to the
colors, i.e. “màu” (color), “red” (red), “xanh” (blue), “đen” (black), and “vàng” (yellow). The word
“mưa (rain)” is most similar to “bão” (storm), “trời” (sky), “gió” (wind), “cơn” (storm), “nước”
(water), which are all semantically related to the natural phenomenon “rain”. The results of the label
embeddings learned in a compressed fashion demonstrate that the re-parameterization technique is
effective in saving the space without degrading the quality of the learned label embeddings. They
also prove that the proposed label embedding also works for NLP tasks.

4 CONCLUSION

We propose a method that can learn label representation during the training process of deep neural
networks. Furthermore, we propose a solution to automatically learn compressed label embedding,
such that the memory cost is substantially reduced. The proposed method can be widely applied
to different models. We conducted experiments on CV tasks including CIFAR-100, CIFAR-10, and
MNIST, and also on natural language processing tasks including LCSTS and IWSLT2015. Results
suggest that the proposed method achieves significant better accuracies than the existing methods
(CNN, ResNet, and Seq-to-Seq). Moreover, the learned label embeddings are reasonable and inter-
pretable, which provides meaningful semantics of the labels. We achieve comparable or even better
results with the state-of-the-art systems on those tasks.
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A ADDITIONAL CONSIDERATIONS OF THE PROPOSED METHOD

To achieve good performance, there are some additional considerations for the proposed method.

First, when learning the label embedding, if the current output from the model is wrong, which often
happens when the training just begins, the true label’s embedding should not learn from the output
from the model. This is because the information is incorrect to the learning of the label embedding,
and should be neglected. This consideration can be particularly useful to improve the performance
under the circumstances where the model’s prediction is often wrong during the start of the training,
e.g. the CIFAR-100 task and the neural machine translation task.

Second, we suggest using the diagonal matrix as the initialization of the label embedding matrix.
By using the diagonal matrix, we provide a prior to the label embedding that one label’s embedding
should be the most similar to the label itself, which could be useful at the start of the training and
beneficial for the learning.

B EXPERIMENTS OF MLP ON MNIST

Table 6: Results of Label Embedding for MNIST using MLP.

MNIST Dev Error (%) Test Error (%) Test Error Reduction Time/Epoch (s)
MLP 1.81 1.93 (±0.27) -0.50 (↓ 25.9%) 1.65
MLP-LabelEmb 1.29 1.43 (±0.06) 2.84
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Figure 4: Error rate curve for MLP model on MNSIT. 20 times experiments (the light color curves)
are conducted for credible results both on the baseline and our proposed model. The average results
are shown as deep color curves.

We also conducted experiments on MNIST, using the MLP model. The MLP model consists of two
500-dimensional hidden layers and one output layer. The other settings are the same as the CNN
model.

The experimental results are summarized in Table 6. As we can see, the proposed label embedding
method achieves better performance than the baseline, with an error rate reduction over 24%. All the
results are the averaged error rates over 20 repeated experiments, and the standard deviation results
are also shown.

Figure 4 shows the detailed error rate curve of the MLP model. The 20 repeated runs are shown in
light color, and the averaged values are shown in deeper color. As shown, the proposed method also
works for MLP, and the results are consistently better than the baselines. As the same with the CNN
model, the proposed method converges faster than the baseline.

11



Under review as a conference paper at ICLR 2018

Figure 5: Illustration of the forward propagation of Pre-Trained Label Embedding Network.
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Figure 6: Error rate curve for CIFAR-100, CIFAR-10 and MNIST. Pre-trained label embeddings are
used.

C LEARNED LABEL EMBEDDING IS USEFUL

In the following section, we will show that the learned label embedding is not only reasonable, but
also useful for applications. For example, the learned label embedding can be directly used as fine-
grained true label distribution to train a new model on the same dataset. For this purpose, the new
model’s objective function contains two parts, i.e., the original one-hot label based cross entropy
objective, together with a label embedding based cross entropy objective. We call this model Pre-
Trained Label Embedding Network. The Label Embedding Network means that the network uses
label embedding to improve the training of the network, and the difference of the pre-trained label
embedding network from the one presented in Section 2.1 is that in the pre-trained label embedding
network, the label embedding is pre-trained and fixed, thus eliminating the need for learning the em-
bedding, while in the label embedding network, the label embedding is learned during the training.
In implementation, there are two main differences. First, the label embedding E is fixed and requires
no learning. Second, the sub-network o2, which learns the label embedding, is removed — because
there is no need to learn the label embedding again. Thus, the pre-trained label embedding network
has the loss function as follows:

Loss(x,y;θ) = H(y, z′1) +H(e′, z′1) (17)

The pre-trained label embedding network is illustrated in Figure 5.

Figure 6 shows the results of the pre-trained label embedding network, whose label embedding is
learned by a normal label embedding network. As we can see, pre-trained label embedding network
can achieve much better result than the baseline, with faster convergence. It shows that the learned
label embedding is effective in improving the performance of the same model and the label embed-
ding indeed contains generalization information, which provides a more refined supervised signal
to the model. In this way, the learned label embeddings can be saved and be reused to improve the
training of different models on the task, and there is no need to learn the label embedding again.
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D COMPARING WITH HIGH PERFORMANCE SYSTEMS ON THE COMPUTER
VISION TASKS

For the CIFAR-100 task, the error rate is typically from 38% to 25% (Goodfellow et al., 2013; Lin
et al., 2014; Springenberg et al., 2015; Srivastava et al., 2015; He et al., 2016; Romero et al., 2015;
Clevert et al., 2016; Graham, 2015; Mishkin & Matas, 2016). Goodfellow et al. (2013) achieves
38.50% error rate with Maxout Network. Springenberg et al. (2015) achieves 33.71% error rate
by replacing max-pooling by a convolutional layer (All-CNN-C). Srivastava et al. (2015) achieves
32.24% error rate with Highway Network. He et al. (2016) achieves 25.16% rate with a 110 layer
ResNet. Our 18-layer ResNet system achieves the averaged error rate of 23.97% over 20 repeated
runs. If considering a good run, our method achieves 23.25% error rate with only 18 layers.

For CIFAR-10 task, the error rate is typically from 15% to 7% (Wan et al., 2013; Lin et al., 2014;
Springenberg et al., 2015; Romero et al., 2015; Liang & Hu, 2015; Srivastava et al., 2015; He et al.,
2016; Clevert et al., 2016; Goodfellow et al., 2013). Further improvement can be achieved by fine-
tuning the model and the optimization method (Zagoruyko & Komodakis, 2016). To show the ro-
bustness of the proposed method, we do not fine tune the hyper-parameters. We simply use a plain
ResNet-8 with an Adam optimizer with default parameters. Wan et al. (2013) achieves 11.10% error
rate by applying the DropConnect technique. Goodfellow et al. (2013) achieves 9.38% error rate
with Maxout Network. He et al. (2016) achieves 8.75% error rate with a 20 layer ResNet, and further
achieves 6.43% error rate with a 110 layer ResNet. Our 8-layer ResNet model achieves the averaged
error rate 6.97% over 20 repeated runs. If considering a good run, our method achieves 6.32%.

For MNIST task, plain convolutional networks typically achieve error rates ranging widely from
more than 1.1% to around 0.4% (Goodfellow et al., 2013; Simard et al., 2003; Srivastava et al.,
2015). Data augmentation and other more complicated models can further improve the performance
of the models (Wan et al., 2013; Ciresan et al., 2012; Graham, 2015), which we believe also work for
our method. Srivastava et al. (2015) achieves 0.57% error rate by using Highway Network. Mishkin
& Matas (2016) achieves 0.48% error rate by using LSUV initialization for FitNets. Our CNN model
achieves the averaged error rate of 0.55%. If considering a good run, our model achieves 0.42%.

E DETAILED COMPARISONS TO RELATED WORK

The prior studies on label representation in deep learning are limited. Existing label representation
methods are mostly on traditional methods out of deep learning frameworks. Those label represen-
tation methods also adopt the name of label embedding. However, the meaning is different from that
in the sense of deep learning. Those label representation methods intend to obtain a representation
function for labels. The label representation vector can be data independent or learned from exist-
ing information, including training data (Weston et al., 2011), auxiliary annotations (Akata et al.,
2013), class hierarchies (Bengio et al., 2010), or textual descriptions (Ma et al., 2016). For exam-
ple, in Hsu et al. (2009), the label embedding is fixed and is set independently from the data by
random projections, and several regressors are used to learn to predict each of the elements of the
true label’s embedding, which is then reconstructed to the regular one-hot label representation for
classification. Another example is the Canonical Correlation Analysis (CCA), which seeks vector a
and vector b for random variablesX and Y , such that the correlation of the variables a′X and b′Y
is maximized, and then b′Y can be regarded as label embeddings (Hardoon et al., 2004).

There are several major differences between those methods and our proposed method. First, most
of those methods are not easy to adapt to deep learning architectures. As previously introduced,
those methods come with a totally different architecture and their own learning methods, which
are not easy to extend to general-purpose models like neural networks. Instead, in the proposed
method, label embedding is automatically learned from the data by back propagation. Second, the
label representation in those methods is not adapting during the training. In Hsu et al. (2009), the
label embedding is fixed and randomly initialized, thus revealing none of the semantics between the
labels. The CCA method is also not adaptively learned from the training data. In all, their learned
label representation lacks interaction with other model parameters, while label embeddings obtained
from our proposed method both reveal the semantics of the labels and interact actively with the other
parts of the model by back propagation.
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There have also been prior studies on so-called “soft labels”. The soft label methods are typically for
binary classification (Nguyen et al., 2014), where the human annotators not only assign a label for
an example, but also give information on how confident they are regarding the annotation. The side
information can be used in the learning procedure to alleviate the noise from the data and produce
better results. The main difference from our method is that the soft label methods require additional
annotation information (e.g., the confidence information of the annotated labels) of the training
data, while our method does not need additional annotation information, and the “soft” probability
is learned during the training in a simple but effective manner. Moreover, the proposed method is
not restricted to binary classification.

There have also been prior studies on model distillation in deep learning that uses label represen-
tation to better compress a big model into a smaller one. In deep learning, it’s common sense that
due to the non-convex property of the neural network functions, different initialization, different
data order, and different optimization methods would cause varied results of the same model. Model
distillation (Hinton et al., 2014) is a novel method to combine the different instances of the same
model into a single one. In the training of the single model, its target distribution is a combination
of the output distributions of the previously trained models. Our method is substantially different
compared with the model distillation method. The motivations and designed architectures are both
very different. The model distillation method adopts a pipeline system, which needs to first train a
large model or many different instances of models, and then use the label representation of the base-
line models to provide better supervisory signals to re-train a smaller model. This pipeline setting
is very different from our single-pass process setting. Our method also enables the ability to learn
compressed label embedding for an extremely large number of labels. Moreover, for a given label,
the label representation in their method is different from one example to another. That is, they do
not provide a universal label representation for a label, which is very different compared with our
setting.
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