
Under review as a conference paper at ICLR 2018

DEEP GENERATIVE DUAL MEMORY NETWORK FOR
CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite advances in deep learning, artificial neural networks do not learn the same
way as humans do. Today, neural networks can learn multiple tasks when trained
on them jointly, but cannot maintain performance on learnt tasks when tasks are
presented one at a time – this phenomenon called catastrophic forgetting is a
fundamental challenge to overcome before neural networks can learn continually
from incoming data. In this work, we derive inspiration from human memory
to develop an architecture capable of learning continuously from sequentially
incoming tasks, while averting catastrophic forgetting. Specifically, our model
consists of a dual memory architecture to emulate the complementary learning
systems (hippocampus and the neocortex) in the human brain and maintains a
consolidated long-term memory via generative replay of past experiences. We
(i) substantiate our claim that replay should be generative, (ii) show the benefits
of generative replay and dual memory via experiments, and (iii) demonstrate
improved performance retention even for small models with low capacity. Our
architecture displays many important characteristics of the human memory and
provides insights on the connection between sleep and learning in humans.

1 INTRODUCTION

Many machine learning models, when trained sequentially on tasks, forget how to perform the
previously learnt tasks. This phenomenon called catastrophic forgetting is prominent in neural
networks (McCloskey & Cohen, 1989). Without a way to avert catastrophic forgetting, a learning
system needs to store all training data and relearn on it along with new incoming data, when retraining.
Hence, it is an important challenge to overcome in order to enable systems to learn continuously.

McCloskey & Cohen (1989) first suggested that the underlying cause of forgetting was the distributed
shared representation of tasks via network weights. Subsequent works attempted to remedy the
issue by reducing representational overlap between input representations via activation sharpening
algorithms (Kortge, 1990), orthogonal recoding of inputs (Lewandowsky, 1991) or orthogonal
activations at all hidden layers (McRae & Hetherington, 1993; French, 1994). More recent works
have explored activations like dropout (Goodfellow et al., 2015) and local winner-takes-all (Srivastava
et al., 2013) to create sparse, less correlated feature representations. But such sparse encodings can
be task specific at times and in general act as heuristics to mildly pacify the underlying problem.

Further, natural cognitive systems are also connectionist in nature and yet they forget gradually but
not ‘catastrophically’. For instance, humans demonstrate gradual systematic forgetting. Frequently
and recently encountered tasks tend to survive much longer in the human memory, while those rarely
encountered are slowly forgotten. Some of the earlier tasks may be seen again, but it is not necessary
for them to be retained in memory (French, 1999). Hence only sparsifying representations does not
solve the problem. Instead, neuroscientific evidence suggests that humans have evolved mechanisms
to separately learn new incoming tasks and consolidate the learning with previous knowledge to avert
catastrophic forgetting (McClelland et al., 1995; O’Neill et al., 2010; French, 1999).

Complementary learning systems: McClelland et al. (1995) suggested that this separation has been
achieved in the human brain via evolution of two separate areas of the brain, the hippocampus and the
neocortex. The neocortex is a long term memory which specializes in consolidating new information
with previous knowledge and gradually learns the joint structure of all tasks and experiences; whereas

1

Under review as a conference paper at ICLR 2018

the hippocampus acts as a temporary memory to rapidly learn new tasks and then slowly transfer the
knowledge to neocortex after acquisition.

Experience replay: Another factor deemed essential for sequential learning is experience replay.
McClelland et al. (1995); O’Neill et al. (2010) have emphasized the importance of replayed data
patterns in the human brain during sleep and waking rest. Robins (1995; 2004) proposed several
replay techniques (a.k.a. pseudopattern rehearsal) to achieve replay, but they involved generating
replay data without storing input representations and our experiments show that they lack the accuracy
required for consolidation.

Weight consolidation or freezing: Recent evidence from neuroscience also suggests that mammalian
brain protects knowledge in the neocortex via task-specific consolidation of neural synapses over
long periods of time (Yang et al., 2014; Benna & Fusi, 2016). Such techniques have recently been
employed in progressive neural networks (Rusu et al., 2016) and Pathnets (Fernando et al., 2017)
both of which freeze neural network weights after learning tasks. Kirkpatrick et al. (2017) have used
the fisher information matrix (FIM) to slow down learning on network weights which correlate with
previously acquired knowledge.

In this paper, we address the catastrophic forgetting problem by drawing inspiration from the above
neuroscientific insights and present a method to overcome catastrophic forgetting. More specifically,
we propose a dual-memory architecture for learning tasks sequentially while averting catastrophic
forgetting. Our model comprises of two generative models: a short-term memory (STM) to emulate
the human hippocampal system and a long term memory (LTM) to emulate the neocortical learning
system. The STM learns new tasks without interfering with previously learnt tasks in the LTM. The
LTM stores all previously learnt tasks and aids the STM in learning tasks similar to previous tasks.
During sleep/down-time, the STM generates and transfers samples of learnt tasks to the LTM. These
are gradually consolidated with the LTM’s knowledge base of previous tasks via generative replay.

Our approach is inspired from the strengths of deep generative models, experience replay and the
complementary learning systems literature. We demonstrate our method’s effectiveness in averting
catastrophic forgetting by sequentially learning multiple tasks. Moreover, our experiments shed light
on some characteristics of human memory as observed in the psychology and neuroscience literature.

2 PROBLEM SETTING: SEQUENTIAL MULTITASK LEARNING

Formally, our problem setting can be called Sequential Multitask Learning and is characterized by a
set of tasks T, which are to be learnt by a model parameterized by weights θ (e.g. a neural network).
From here on, we will use the the phrase model and neural network interchangeably. In this work we
mainly consider supervised learning tasks i.e. task t ∈ T has training examples: {xti, yti}i=1:Nt

for
xti ∈ X and yti ∈ Y , but our model easily generalizes to unsupervised learning settings. Note that
tasks are presented sequentially and the total number of tasks |T| is not known a priori.

Finite memory: We further assume that any training algorithm can store some examples from each
task if needed, but the storage (Nmax) is limited and can be smaller than the total number of examples
from all tasks

(∑|T|
t=1Nt

)
. So, algorithms cannot store all training examples and re-learn on them

when new tasks arrive. The same restriction applies to algorithms with generative models i.e. no
more than Nmax examples allowed at any time (generated + stored).

For testing, the model can be asked to predict the label yt ∈ Y for any example xt ∈ X from any
previously seen task t ∈ T. Our goal is to devise an algorithm which learns these tasks sequentially
while avoiding catastrophic forgetting and can achieve a test loss close to that of a model which learnt
all the tasks jointly.

3 DEEP GENERATIVE DUAL MEMORY NETWORK

The idea of replaying experience to a neural network has been used previously for reinforcement
learning (Lin, 1993; Mnih et al., 2015). A study by O’Neill et al. (2010) suggests that experience
replay also occurs in the human brain during sleep and waking rest and aids in consolidation of learnt
experiences. We propose that experience replay must be generative in nature. This is better than
storing all samples in replay memories as is common in reinforcement learning (Mnih et al., 2015),

2

Under review as a conference paper at ICLR 2018

since sampling from a generative model automatically provides the most frequently encountered
samples. It is also feasible with limited total memory, whereas explicitly storing samples from
previous tasks requires determining which and how many samples to store for each task. Determining
this can depend on the total tasks |T|, number of examples per task Nt and frequency of occurrence
of samples, which are often not available a priori.

Previously proposed non-generative approaches to experience replay (Robins, 1995; French, 1997;
Robins, 2004) propose to preserve neural networks’ learnt mappings by arbitrarily sampling random
inputs and their corresponding outputs from the neural networks and using them along with new
task samples while training. These approaches have only been tested in small binary input spaces
in previous works, and our experiments in section 4 show that sampling random inputs in high-
dimensional spaces (e.g. images) does not preserve the mapping learnt by neural networks.

3.1 GENERATIVE EXPERIENCE REPLAY

Figure 1: Deep Generative Replay to train a Deep Generative Memory

Deep Generative Memory (DGM): We first introduce a sub-model called the Deep Generative
Memory (see figure 1) which has three elements: (i) a generative model (the generator G), (ii) a
feedforward network (the learner L), and (iii) a dictionary (Ddgm) with task IDs of learnt tasks
and the number of times they were encountered. We call this a memory because of its weights and
learning capacity, not due to any recurrent connections. We assume availability of unique task IDs
for replay and to identify repetition. In practice, a task identification system (e.g., a HMM-based
inference model) like in previous works (Kirkpatrick et al., 2017) suffices for this purpose. We choose
variational autoencoder (VAE) (Kingma & Welling, 2014) for the generator, since our generative
model requires reconstruction capabilities (see section 3.2).

Deep Generative Replay (DGR): We update a DGM with samples from (multiple) new tasks using
our algorithm Deep Generative Replay (see figure 1 above and algorithm 1 in appendix A). Given new
incoming samples (X,Y), DGR first computes the fraction of total samples that should come from
incoming samples (ηtasks) and the fraction to come from previous task samples (ηgen) proportionate
to the number of tasks (counting repetitions). It allots a minimum fraction κ of the memory capacity
Nmax per new task. This ensures that as the DGM saturates with tasks over time, new tasks are still
learnt at the cost of gradually losing performance on the least recent previous tasks. This saturation
is synonymous to how learning slows down in humans as they age but they still continue to learn
new tasks while forgetting old things gradually (French, 1999). Next, DGR computes the number
of samples to be generated from previous tasks and subsamples the incoming samples (if needed)
to obey maximum memory capacity (Nmax). It then generates samples of previously learnt tasks
(Xgen, Ygen) using the generator and learner, reconstructs the data {X,Xgen} using the generator
(hence we use a VAE) and then trains the DGM on resulting samples (Xrecon, {Y, Ygen}). Doing
this final reconstruction provides robustness to noise and occlusion (section 5).

3.2 DUAL MEMORY NETWORKS

A good continual learning system needs to quickly acquire new tasks and also retain performance on
previously learnt tasks. These conflicting requirements are hard to satisfy simultaneously. Hence,
inspired by nature’s solution to this problem, we propose a dual memory network to combat forgetting.

3

Under review as a conference paper at ICLR 2018

Figure 2: Deep Generative Dual Memory Network (DGDMN)

Our architecture (DGDMN) shown in figure 2 comprises of a large deep generative memory (DGM)
called the long-term memory (LTM) which stores information of all previously learnt tasks like the
neocortex, and a short-term memory (STM) which behaves similar to the hippocampus and learns
new incoming tasks quickly without interference from previous tasks. The STM is a collection of
small, dedicated, task-specific deep generative memories (called short-term task memory – STTM),
which can each learn one unique task. If an incoming task comes is already in an STTM, the same
STTM is used to retrain on it, otherwise a fresh STTM is allocated to the task. Additionally, if the
task has been previously consolidated then the LTM reconstructs the incoming samples for that task
using the generator (hence we use a VAE), predicts labels for the reconstructions using its learner and
sends these newly generated samples to the STTM allocated to this task. This provides extra samples
on tasks which have been learnt previously and helps to learn them better, while also preserving the
previous performance on that task to some extent.

Once all (nSTM) STTMs are exhausted, the architecture sleeps (like humans) to consolidate all tasks
into the LTM and free up the STTMs for new tasks. While asleep, the STM generates and sends
samples of learnt tasks to the LTM, where these are consolidated via deep generative replay (see
figure 2). While testing on task t (even intermittently between tasks), if any STTM currently contains
task t, it is used to predict the labels, else the prediction is deferred to the LTM. This allows predicting
on all tasks seen uptil now (including the most recent ones) without sleeping.

4 EXPERIMENTS

We perform experiments to demonstrate forgetting on sequential image classification tasks. We briefly
describe our datasets here (details in appendix B): (a) Permnist is a catastrophic forgetting (Goodfel-
low et al., 2015; Kirkpatrick et al., 2017) benchmark and each task contains a fixed permutation of
pixels on MNIST images (LeCun et al., 1998), (b) Digits dataset involves classifying a single MNIST
digit per task, (c) TDigits is a transformed variant of MNIST similar to Digits but with 40 tasks for
long task sequences, (d) Shapes contains several geometric shape classification tasks, and (e) Hindi
contains a sequence of 8 tasks with hindi language consonant recognition.

Along with our model (DGDMN), we test several baselines for catastrophic forgetting, which are
briefly described here (implementation and hyperparameter details in appendix B): (a) Feedforward
neural networks (NN): We use these to characterize the forgetting in the absence of any preven-
tion mechanism and as a datum for other approaches, (b) Neural nets with dropout (DropNN):
Goodfellow et al. (2015) suggested using dropout as a means to prevent representational overlaps
and pacify catastrophic forgetting, (c) Pseudopattern Rehearsal (PPR): A non-generative approach
to experience replay (Robins, 2004), (d) Elastic Weight Consolidation (EWC): Kirkpatrick et al.
(2017) proposed using the Fisher Information Matrix for task-specific consolidation of weights in
a neural network, and (e) Deep Generative Replay (DGR): Using a single DGM to separate the
effects of generative replay and dual memory architecture.

In our preliminary experiments, we observed that large networks with excessive parameters can more
easily adapt to sequentially incoming tasks, thereby masking the severity of catastrophic forgetting. So
we have chosen network architectures which have to share all their parameters appropriately amongst

4

Under review as a conference paper at ICLR 2018

the various tasks in a dataset to achieve reasonable joint accuracy on the dataset. This allows us to
evaluate an algorithm carefully while ignoring the benefits provided by excessive parameterization.

4.1 ACCURACY AND FORGETTING CURVES

(a) NN (b) DropNN (c) PPR

(d) EWC (e) DGR (f) DGDMN

Figure 3: Accuracy curves for Permnist (x: tasks seen, y: classification accuracy on task).

We trained DGDMN and all above baselines sequentially on the image classification tasks of Permnist,
Digits, Shapes and Hindi datasets (separately). We show results on the Shapes and Hindi dataset in
appendix A. The classification accuracy on a held out test set for each task, after training on the tth
task has been shown in figures 3 and 4. We used the same network architecture for each of NN, PPR,
EWC, learner in DGR, and learner in the LTM of DGDMN (for a single dataset). DropNN had two
intermediate dropout layers after each hidden layer (see appendix B for details).

We observe from figures 3a and 3b, that NN and DropNN forget catastrophically when they learn new
tasks. This shows that sparse representation based methods rely on the neural network being of high
enough capacity to learn sparse representations (Goodfellow et al., 2015) and may not perform well
if the network does not have redundant weights available. EWC forgets less than NN and DropNN,
but it rapidly slows down learning on many weights and its learning effectively stagnates after Task 3
(e.g. see Tasks 5 and 6 in figure 3d). The learning slowdown on weights hinders EWC from reusing
those weights later on to jointly discover common structures amongst previously learnt and newly
incoming tasks. Note that the networks do have the capacity to learn all tasks and our algorithms
DGR and DGDMN outperform all baselines by learning all tasks sequentially with this same learner
network (figures 3e, 3f).

We observed heavy forgetting on Digits (figure 4) for most baselines, which is expected because all
samples in the tth task have a single label (t) and so the tth task can be learnt on its own by setting
the tth bias of the softmax layer to be high and the other biases low. Such sequential tasks cause
catastrophic forgetting. We observed that NN, DropNN, PPR and EWC learnt only the task being
trained on and forgot all previous knowledge immediately. Sometimes, we also observed saturation
due to the softmax bias being set very high and then being unable to recover from it. PPR showed
severe saturation since its replay prevented it from coming out of the saturation.

DGR and DGDMN still retain performance on all tasks of Digits, and our replay strategy prevents
saturation by appropriately balancing the ratios of new incoming samples and generated samples
from previous tasks. The average forgetting on all tasks ∈ {1, . . . , t}, after training on the tth task
(for both Digits and Permnist) is shown in figure 5. For absolute reference, the accuracy of NN by
training it jointly on all tasks uptil the tth task has also been shown for each t. Again DGR and
DGDMN outperform baselines in terms of retained average accuracy. In figure 5b, NN, DropNN,
PPR and EWC follow nearly overlapping curves (acc ≈ 1

t) since they are only able to learn one task
at a time. Further, though PPR involves experience replay, it does not compare against DGR and

5

Under review as a conference paper at ICLR 2018

(a) NN (b) DropNN (c) PPR

(d) EWC (e) DGR (f) DGDMN

Figure 4: Accuracy curves for Digits (x: tasks seen, y: classification accuracy on task).

(a) Permnist (b) Digits

Figure 5: Forgetting curves (x: tasks seen, y: avg classification accuracy on tasks seen).

DGDMN (figures 3c, 4c). Although, it does preserve its learnt mapping around the points randomly
sampled from its domain, these random samples are not close to real images and fail to preserve
performance. These observations substantiate our claim that any replay mechanism must model the
input domain accurately and hence needs to be generative in nature. We observed similar results for
the Shapes and Hindi dataset (appendix A).

We point out that datasets like Digits, which contain tasks with highly correlated input (and/or
output) samples should be important benchmarks for continual learning for two main reasons: (i)
High correlation amongst task samples promotes overfitting to the new incoming task and therefore
causes catastrophic forgetting. Being able to retain performance on such task sequences is a strong
indicator of the efficacy of a continual learning algorithm. (ii) Humans also learn by seeing many
correlated samples together in a short span of time, rather than witnessing nearly IID samples (like in
Permnist). For examples, kids learn a single alphabet per day in kindergarten by seeing and writing
that alphabet many times that day. Since NN, DropNN and PPR do not fare well on such tasks, we
show experiments on EWC, DGR and DGDMN from here on.

4.2 REPEATED TASKS AND REVISION

It is well known in psychology literature that human learning improves via revision (Kahana &
Howard, 2005; Cepeda et al., 2006). We show performance of EWC and DGDMN on Permnist, when
some tasks are repeated (figure 6). DGR performs very similar to DGDMN, hence we omit it. EWC
stagnates and once learning has slowed down on the weights important for Task 1, the weights cannot
be changed again, not even for improving Task 1. Further, it did not learn Task 6 the first time and

6

Under review as a conference paper at ICLR 2018

(a) (b)

Figure 6: Accuracy curves when tasks are revised: (a) EWC, (b) DGDMN.

revision does not help either. However, DGDMN learns all tasks uptil Task 6, then benefits by revising
Task 1 again (accuracy goes up), and somewhat for Task 6 (it did not forget Task 6 substantially). We
reiterate that DGDMN, by its design, benefits significantly from revision because STTMs learning
a repeated task gain extra samples from the LTM (or generated samples from themselves, if they
had learnt the task before). While many previous works do not investigate revision, it is crucial for
learning continuously and should improve performance on tasks. The ability to learn from correlated
task samples and revision makes our memory architecture functionally similar to that of humans.

4.3 CONNECTIONS TO COMPLEMENTARY LEARNING SYSTEMS AND SLEEP

To explore the role of the dual memory architecture and differentiate between DGDMN and DGR,
we trained these algorithms on the long sequence of 40 tasks from TDigits dataset. We limited
Nmax to 120, 000 samples for this task to explore the case where the LTM in DGDMN (DGM in
DGR) cannot regenerate as many samples as in the full dataset and has to forget some tasks. At least
κ = 0.05 fraction of memory was ensured per new task and consolidation in DGDMN happened
after nSTM = 5 tasks.

(a) (b)

Figure 7: Accuracy curves for TDigits on: (a) tasks seen so far, (b) last 10 tasks seen.

The average forgetting curves vs. tasks encountered are plotted in figure 7a. DGDMN and DGR
start around an average accuracy of 1.0, but start dropping after 10 tasks since the LTM (DGM for
DGR) begins to saturate. While DGDMN drops slowly and retains > 40% accuracy on all tasks,
DGR drops below 20% accuracy. This is because DGR consolidates its DGM too often and the
DGM’s self-generated slightly erroneous samples compound errors quite fast. DGDMN uses small
STTMs to learn single tasks with low error and transfers them simultaneously to the LTM. As a
consequence, DGDMN consolidates its LTM with more accurate samples and less often, hence its
error accumulates much slower. We discuss the effect of the small error in STTM representations in
section 5.

7

Under review as a conference paper at ICLR 2018

Even though DGDMN displays inevitable forgetting in figure 7a (due to memory constraint), the
forgetting is gradual and not catastrophic as seen for NN, DropNN, PPR etc. on Digits dataset. We
also measure average accuracy on the most recent few tasks seen (say 10). Figure 7b shows that
DGDMN oscillates around 90% average accuracy, whereas DGR’s frequent consolidation propagates
errors too fast and its accuracy drops even on this metric.

Another advantage of dual memories is revealed by the training time for the algorithms. Figure 9a
shows an order of magnitude of difference between DGDMN and DGR in training time. This is
because STTMs are smaller and faster to train than the LTM. LTM preserves all the tasks seen so far
and hence requires a large number of samples to consolidate, which is costly and should not be done
after every task. Learning new tasks quickly in the STM and holding them till sleep provides a speed
advantage and allows learning quickly with only periodic consolidation.

The dual memory architecture is a critical design choice for scalability and has also emerged naturally
in humans, in the form of the complementary learning systems and the need to sleep periodically.
Even though sleeping is a dangerous behavior for any organism since it can be harmed or attacked by
a predator while asleep, sleep has still survived through eons of evolution and never been lost (Joiner,
2016). Today, most organisms with even a slightly developed nervous system (centralized or diffuse)
display either sleep or light-resting behavior (Nath et al., 2017). The experiment demonstrates the
importance of sleep, since without the dual memory architecture intertwined with periodic sleep,
learning would be very short lived and highly time consuming (as in DGR).

5 ANALYSIS AND DISCUSSION

In this section we show that DGDMN shares some more remarkable characteristics with the human
memory and present a discussion of some more related ideas. Due to space constraints, visualizations
of the learnt latent structures when training jointly vs. sequentially have been deferred to appendix A.
The hyperparameters of DGDMN (κ and nSTM) have intuitive interpretations and we have provided
simple heuristics to choose them without any complex searches (in appendix B).

Resilience to noise and occlusion: We use a VAE to be able to reconstruct representations of
samples. Reconstructed images are less noisy and can recover from partial occlusion, which gives
our model human-like abilities to recognize objects in noisy, distorted or occluded images. We test
our LTM model and a NN model by jointly training on uncorrupted Digits data and testing on noisy
and occluded images. We see that the LTM is more robust to noisy and occluded images and exhibits
smoother degradation in classification accuracy because of its denoising reconstructive properties (see
figure 8).

(a) (b) (c)

Figure 8: (a) LTM reconstruction from noisy and occluded digits, (b) Classification accuracy with
increasing gaussian noise, and (c) Classification accuracy with increasing occlusion factor.

The choice of underlying generative model: Our consolidation ability and retention performance
relies heavily on the generation and reconstruction ability of the underlying generative model. We
chose a VAE for its reconstructive capabilities but our architecture is agnostic to the choice of the
underlying generative model as long as the generator can generate reliable samples and reconstruct
incoming samples accurately. Hence, variants of Generative Adversarial Networks (GAN) Goodfellow

8

Under review as a conference paper at ICLR 2018

(a) (b)

Figure 9: (a) Training time for DGDMN and DGR, (b) Accuracy curves: DGDMN (no STM).

et al. (2014) like BiGANs (Donahue et al., 2017), ALI (Dumoulin et al., 2017) and AVB (Mescheder
et al., 2017) can also be used for the generative model depending on the modeled domain.

Why use short-term memory?: Our LTM always learns from STTMs and never from real data,
and the STTMs’ errors slowly propagate into the LTM and contribute to forgetting. An alternative
could be to directly store data from new incoming tasks, consolidate it into the LTM after periodic
intervals, and then discard the data. We show the accuracy curves on Digits dataset for this approach
in figure 9b. This results in higher retention compared to DGDMN in figure 4 because LTM now
learns from real data. However, this approach is not truly online since recently learnt tasks cannot be
used immediately until after a sleep phase. Since the STM’s error can be made smaller by using high
capacity generators and classifiers, we suggest using a STM for true online continual learning.

Connections to knowledge distillation: Previous works on (joint) multitask learning have also
proposed approaches to learn individual tasks with small networks and then “distilling” them jointly
into a larger neural network (Rusu et al., 2015). Such distillation can sometimes improve performance
on individual tasks if they share structure and at other times mitigate inter-task interference due
to refinement of learnt functions while distilling (Parisotto et al., 2016). Though we do not use
temperature-controlled soft-labels while consolidating tasks into the LTM (unlike distillation), we
surmise that due to refinement and compression during consolidation phase, DGDMN is also able to
learn joint task structure effectively while mitigating interference between tasks.

Approaches based on synaptic consolidation: Though our architecture draws inspiration from
complementary learning systems and experience replay in the human brain, there is also considerable
neuroscientific evidence for synaptic consolidation in the human brain (like in EWC). It might be
interesting to explore how synaptic consolidation can be incorporated in our dual memory architecture
without causing stagnation and we leave this to future work. We also plan to extend our architecture
to learning optimal policies over time via reinforcement learning without explicit replay memories.

6 CONCLUSION

In this work, we have developed a model capable of learning continuously on sequentially incoming
tasks, while averting catastrophic forgetting. Our model employs a dual memory architecture to
emulate the complementary learning systems (hippocampus and the neocortex) in the human brain
and maintains a consolidated long-term memory via generative replay of past experiences. We have
shown that generative replay performs the best for long-term performance retention even for neural
networks with small capacity, while demonstrating the benefits of using generative replay and a dual
memory architecture via our experiments. Our model hyperparameters have simple interpretations
and can be set without much tuning. Moreover, our architecture displays remarkable parallels with
the human memory system and provides useful insights about the connection between sleep and
learning in humans.

9

Under review as a conference paper at ICLR 2018

REFERENCES

Marcus K Benna and Stefano Fusi. Computational principles of synaptic memory consolidation.
Nature neuroscience, 2016.

Nicholas J Cepeda, Harold Pashler, Edward Vul, John T Wixted, and Doug Rohrer. Distributed
practice in verbal recall tasks: A review and quantitative synthesis. Psychological bulletin, 132(3):
354, 2006.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. In International
Conference on Learning Representations (ICLR), 2017.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro,
and Aaron Courville. Adversarially learned inference. In International Conference on Learning
Representations (ICLR), 2017.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural
networks. arXiv preprint arXiv:1701.08734, 2017.

Robert M French. Dynamically constraining connectionist networks to produce distributed, orthogo-
nal representations to reduce catastrophic interference. network, 1111:00001, 1994.

Robert M French. Pseudo-recurrent connectionist networks: An approach to the’sensitivity-
stability’dilemma. Connection Science, 9(4):353–380, 1997.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128–135, 1999.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Neural Information Process-
ing Systems (NIPS), pp. 2672–2680, 2014.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2015.

Google. The quick, draw! dataset. URL: https://github.com/googlecreativelab/quickdraw-dataset,
2017.

Geoffrey Hinton. Neural networks for machine learning - lecture 6a - overview of mini-batch gradient
descent, 2012.

William J Joiner. Unraveling the evolutionary determinants of sleep. Current Biology, 26(20):
R1073–R1087, 2016.

Kaggle. Devanagari character set. URL: https://www.kaggle.com/rishianand/devanagari-character-set,
2017.

Michael J Kahana and Marc W Howard. Spacing and lag effects in free recall of pure lists. Psycho-
nomic Bulletin & Review, 12(1):159–164, 2005.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference on
Learning Representations (ICLR), 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, pp.
201611835, 2017.

Chris A Kortge. Episodic memory in connectionist networks. In Proceedings of the 12th Annual
Conference of the Cognitive Science Society, volume 764, pp. 771. Erlbaum, 1990.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

10

Under review as a conference paper at ICLR 2018

Stephan Lewandowsky. Gradual unlearning and catastrophic interference: A comparison of distributed
architectures. Relating theory and data: Essays on human memory in honor of Bennet B. Murdock,
pp. 445–476, 1991.

Long-Ji Lin. Reinforcement learning for robots using neural networks. PhD thesis, Fujitsu Laborato-
ries Ltd, 1993.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579–2605, 2008.

James L McClelland, Bruce L McNaughton, and Randall C O’reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological review, 102(3):419, 1995.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of learning and motivation, 24:109–165, 1989.

Ken McRae and Phil A Hetherington. Catastrophic interference is eliminated in pretrained networks.
In Proceedings of the 15h Annual Conference of the Cognitive Science Society, pp. 723–728, 1993.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Adversarial variational bayes: Unifying
variational autoencoders and generative adversarial networks. arXiv preprint arXiv:1701.04722,
2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Decebal Constantin Mocanu, Maria Torres Vega, Eric Eaton, Peter Stone, and Antonio Liotta. Online
contrastive divergence with generative replay: Experience replay without storing data. CoRR,
abs/1610.05555, 2016.

Ravi D Nath, Claire N Bedbrook, Michael J Abrams, Ty Basinger, Justin S Bois, David A Prober,
Paul W Sternberg, Viviana Gradinaru, and Lea Goentoro. The jellyfish cassiopea exhibits a
sleep-like state. Current Biology, 27(19):2984–2990, 2017.

Joseph O’Neill, Barty Pleydell-Bouverie, David Dupret, and Jozsef Csicsvari. Play it again: reactiva-
tion of waking experience and memory. Trends in neurosciences, 33(5):220–229, 2010.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. In International Conference on Learning Representations (ICLR),
2016.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):
123–146, 1995.

Anthony Robins. Sequential learning in neural networks: A review and a discussion of pseudore-
hearsal based methods. Intelligent Data Analysis, 8(3):301–322, 2004.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Neural Information Processing Systems (NIPS), 2017.

Rupesh K Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino Gomez, and Jürgen Schmid-
huber. Compete to compute. In Neural Information Processing Systems (NIPS), pp. 2310–2318,
2013.

Guang Yang, Cora Sau Wan Lai, Joseph Cichon, Lei Ma, Wei Li, and Wen-Biao Gan. Sleep promotes
branch-specific formation of dendritic spines after learning. Science, 344(6188):1173–1178, 2014.

11

Under review as a conference paper at ICLR 2018

7 APPENDIX A

7.1 DEEP GENERATIVE REPLAY

Algorithm 1: Deep Generative Replay
1: Input: Current parameters of DGM, new samples: (X,Y), dictionary for new samples: Dtasks

(there can be multiple tasks), minimum fraction: κ, memory capacity: Nmax
2: Output: New parameters of DGM
// Compute sampling fractions

3: ηtasks :=
∑
Dtasks∑

Ddgm+
∑
Dtasks

and ηgen := 1− ηtasks
4: if ηtasks < κ|Dtasks| then
5: ηtasks := κ|Dtasks| and ηgen := 1− ηtasks
6: end if
// Compute number of samples

7: if |X| > ηtasks ×Nmax then
8: ntasks := ηtasks ×Nmax and ngen := Nmax − ntasks
9: Subsample (X,Y) to meet size ntasks

10: else
11: ntasks := |X| and ngen :=

ηgen
ηtasks

× |X|
12: end if

// Generate and reconstruct samples
13: Generate ngen samples: Xgen from generator G and labels from learner L: Ygen = L(Xgen)
14: Xrecon = Reconstruct {X,Xgen} using the generator G

// Train the DGM
15: Train the generator G on Xrecon

16: Train the learner L on (Xrecon, {Y, Ygen})

Deep Generative Replay (algorithm 1), as described in section 3.1, consolidates new tasks for a DGM
with previously learnt tasks. It first computes sampling fractions for new tasks (ηtasks) and previously
learnt tasks (ηgen) and ensures a minimum fraction (κ) per new task (lines 3–6). Then it computes
the number of samples to generate from previous tasks and whether to subsample the incoming task
samples to satisfy the memory capacity Nmax (lines 7–12). Finally, it generates the required number
of samples from previous tasks, reconstructs all data and trains the DGM on resulting data (lines
13–16). For a dictionary D,

∑
D is the total number of tasks in D counting repetitions, while |D| is

the total number of tasks without repetitions. |X| is the number of samples in set X .

Shin et al. (2017) have recently proposed a similar idea independently and Mocanu et al. (2016)
have also employed a generative replay in two-layer restricted boltzmann machines, but they do not
describe balancing new and generated samples and cannot recognize repeated tasks (section 4.2).
Their generative replay without a dual memory architecture is costly to train (section 4.3) and a lack
of reconstruction for new samples makes their representations less robust to noise and occlusions
(section 5).

7.2 MORE EXPERIMENTS WITH ACCURACY AND FORGETTING CURVES

In this section, we present more experiments on the Shapes and the Hindi dataset, which contain
sequences of tasks with geometric shapes and hindi consonants recognition respectively. We observed
similar forgetting patterns as on the Digits dataset in section 4. All baselines exhibited catastrophic
forgetting on these sequences of tasks, but DGR and DGDMN were able to learn the task structure
sequentially (figures 10, 11). The same is reflected in the average forgetting curves in figure 12.

7.3 JOINTLY VS. SEQUENTIALLY LEARNT STRUCTURE

To explore whether learning tasks sequentially results in a similar structure as learning them jointly,
we visualized t-SNE (Maaten & Hinton, 2008) embeddings of the latent vectors of the LTM generator
(VAE) in DGDMN after training it: (a) jointly over all tasks (Figure 13a), and (b) sequentially over

12

Under review as a conference paper at ICLR 2018

(a) CNN (b) DropCNN (c) PPR

(d) EWC (e) DGR (f) DGDMN

Figure 10: Accuracy curves for Shapes (x: tasks seen, y: classification accuracy on task).

(a) CNN (b) DropCNN (c) PPR

(d) EWC (e) DGR (f) DGDMN

Figure 11: Accuracy curves for Hindi (x: tasks seen, y: classification accuracy on task).

tasks seen one at a time (Figure 13b) on the Digits dataset. To maintain consistency, we used the
same random seed in t-SNE for both joint and sequential embeddings.

We observe that the LTM’s latent space effectively segregates the 10 digits in both cases (joint and
sequential). Though the absolute locations of the digit clusters differ in the two plots, the relative
locations of digits share some similarity between both plots i.e. the neighboring digit clusters for
each cluster are roughly similar. This may not be sufficient to conclude that the LTM discovers the
same latent representation for the underlying shared structure of tasks in these cases and we leave a
more thorough investigation to future work.

7.4 VISUALIZATIONS FOR THE JOINTLY AND SEQUENTIALLY LEARNT LTM

We also show visualizations of digits from the LTM when trained jointly on Digits tasks (Figure 14a)
and when trained sequentially (Figure 14b). Though the digits generated from the jointly trained
LTM are quite sharp, the same is not true for the sequentially trained LTM. We observe that the

13

Under review as a conference paper at ICLR 2018

(a) Shapes (b) Hindi

Figure 12: Forgetting curves on Shapes and Hindi dataset (x: tasks seen, y: avg classification accuracy
on tasks seen).

(a) (b)

Figure 13: t-SNE embedding for latent vectors of the VAE generator on Digits dataset when: (a)
tasks are learnt jointly, and (b) tasks are learnt sequentially.

sequentially trained LTM produces sharp samples of the recently learnt tasks (digits 6, 7, 8 and 9), but
blurred samples of previously learnt tasks, which is due to partial forgetting on these previous tasks.

(a) (b)

Figure 14: Visualization of digits from LTM when trained: (a) jointly, (b) sequentially

8 APPENDIX B

8.1 DATASET PREPROCESSING

All our datasets have images with intensities normalized in the range [0.0, 1.0] and size (28× 28),
except Hindi which has (32× 32) size images.

14

Under review as a conference paper at ICLR 2018

Permnist: Our version involved six tasks, each containing a fixed permutation on images sampled
from the original MNIST dataset. We sampled 30, 000 images from the training set and all the 10, 000
test set images for each task. The tasks were as follows: (i) Original MNIST, (ii) 8x8 central patch of
each image blackened, (iii) 8x8 central patch of each image whitened, (iv) 8x8 central patch of each
image permuted with a fixed random permutation, (v) 12x12 central patch of each image permuted
with a fixed random permutation, and (vi) mirror images of MNIST. This way each task is as hard as
MNIST and the tasks share some common underlying structure.
Digits: We introduce this smaller dataset which contains 10 tasks with the tth task being classification
of digit t from the MNIST dataset.
TDigits: We introduced a transformed variant of MNIST containing all ten digits, their mirror images,
their upside down images, and their images when reflected about the main diagonal making a total
of 40 tasks. This dataset poses similar difficulty as the Digits dataset and we use it for experiments
involving longer sequence of tasks.
Shapes: This dataset was extracted from the Quick, Draw! dataset recently released by Google (2017),
which contains 50 million drawings across 345 categories of hand-drawn images. We subsampled
4, 500 training images and 500 test images from all geometric shapes in Quick, Draw! (namely circle,
hexagon, octagon, square, triangle and zigzag).
Hindi: Extracted from the Devanagri dataset (Kaggle, 2017) and contains a sequence of 8 tasks, each
involving image classification of a hindi language consonant.

8.2 TRAINING ALGORITHM AND ITS PARAMETERS

All models were trained with RMSProp (Hinton, 2012) using learning rate = 0.001, ρ = 0.9,
ε = 10−8 and no decay. We used a batch size of 128 and all classifiers were provided 20 epochs
of training when trained jointly, and 6 epochs when trained sequentially over tasks. For generative
models (VAEs), we used gradient clipping in RMSProp with clipnorm= 1.0 and clipvalue=
0.5, and they were always trained for 25 epochs regardless of the task or dataset involved.

8.3 NEURAL NETWORK ARCHITECTURES

We chose all our models by first training them jointly on all tasks in a dataset to ensure that our
models had enough capacity to perform reasonably well on all tasks. But we gave preference to
simpler models over very high capacity models.

Classifier Models: Our implementation of NN, DropNN, PPR, EWC, learner for DGR and the
learner for LTM in DGDMN used a neural network with three fully-connected layers with the number
of units tuned differently according to the dataset (24, 24 units for Digits, 48, 48 for Permnist and
36, 36 for TDigits). DropNN also added two dropout layers, one after each hidden layer with droput
rate = 0.2 each. The classifiers (learners) for Shapes and Hindi datasets had two convolutional layers
(12, 20 : 3 × 3 kernels for Shapes and 24, 32 : 3 × 3 kernels for Hindi) each followed by a 2 × 2
max-pooling layer. The last two layers were fully-connected (16, 6 for Shapes and 144, 36 for Hindi).
The hidden layers used ReLU activations, the last layer had a softmax activation, and the model was
trained to minimize the cross-entropy objective function. The learners for STTMs in DGDMN were
kept smaller for speed and efficiency concerns.

Generative models: The generators (VAE) for DGR and LTM of DGDMN employed encoders and
decoders with two fully connected hidden layers each with ReLU activation for Permnist, Digits and
TDigits, and convolutional variants for Shapes and Hindi. The sizes and number of units/kernels in
the layers were tuned independently for each dataset with an approximate coarse grid-search. The
size of the latent variable z was set to 32 for Digits, 64 for Permnist, 96 for TDigits, 32 for Shapes
and 48 for Hindi. The STTM generators for DGDMN were kept smaller for speed and efficiency.

8.4 HYPERPARAMETERS OF DGDMN

DGDMN has two new hyperparameters: (i) κ: minimum fraction of Nmax reserved for incoming
tasks, and (ii) nSTM : number of STTMs (also sleep/consolidation frequency). Both these have
straightforward interpretations and can be set directly without complex hyperparameter searches.

κ ensures continual incorporation of new tasks by guaranteeing them a minimum fraction of LTM
samples during consolidation. Given that LTM should perform well on last K tasks seen in long

15

Under review as a conference paper at ICLR 2018

task sequence of T tasks, we observed that it is safe to assume that about 50% of the LTM would be
crowded by the earlier T −K tasks. The remaining 0.5 fraction should be distributed to the last K
tasks. So choosing κ = 0.5

K works well in practice (or as a good starting point for tuning). We made
this choice in section 4.3 with K = 10 and κ = 0.05, and hence plotted the average accuracy over
the last 10 tasks as a metric.

nSTM controls the consolidation cycle frequency. Increasing nSTM gives more STTMs, less frequent
consolidations and hence a learning speed advantage. But this also means that fewer samples of
previous tasks would participate in consolidation (due to maximum capacity Nmax of LTM), and
hence more forgetting might occur. This parameter does not affect learning much till the LTM
remains unsaturated (i.e. Nmax capacity is unfilled by generated + new samples) and becomes active
after that. For long sequences of tasks, we found it best to keep at least 75% of the total samples from
previously learnt tasks to have appropriate retention. Hence, nSTM can be set as approximately 0.25

κ
in practice (as we did in section 4.3), or as a starting point for tuning.

8.5 ALGORITHM SPECIFIC HYPERPARAMETERS

PPR: We used a maximum memory capacity of about 3− 6 times the number of samples in a task
for the dataset being learnt on (i.e. 18, 000 for Digits, 60, 000 for Permnist, 15, 000 for Shapes and
5, 400 for Hindi). While replaying, apart from the task samples, the remaining memory was filled
with random samples and corresponding labels.

EWC: Most values of the coefficient of the Fisher Information Matrix based regularizer between 1 to
500 worked reasonably well for our datasets. We chose 100 for our experiments.

DGR and DGDMN: Nmax for the DGM in DGR and for the LTM in DGDMN for Digits, Permnist,
Shapes and Hindi was set as the total number of samples in the datasets (summed over all tasks) to
ensure that there was enough capacity to regenerate the datasets well. For TDigits, we deliberately
restricted memory capacity to see the effects of learning tasks over a long time and we kept Nmax as
half the total number of samples. nSTM was kept at 2 for Digits, Permnist and Shapes, 5 for TDigits
and 2 for Hindi. κ was set to be small, so that it does not come into play for Digits, Permnist, Shapes
and Hindi since we already provided memories with full capacity for all samples. For TDigits, we
used κ = 0.05 which would let us incorporate roughly 10 out of the 40 tasks well.

16

	Introduction
	Problem setting: Sequential Multitask Learning
	Deep Generative Dual Memory Network
	Generative experience replay
	Dual memory networks

	Experiments
	Accuracy and Forgetting curves
	Repeated tasks and revision
	Connections to complementary learning systems and sleep

	Analysis and discussion
	Conclusion
	Appendix A
	Deep Generative Replay
	More experiments with accuracy and forgetting curves
	Jointly vs. sequentially learnt structure
	Visualizations for the jointly and sequentially learnt LTM

	Appendix B
	Dataset preprocessing
	Training algorithm and its parameters
	Neural network architectures
	Hyperparameters of DGDMN
	Algorithm specific hyperparameters

