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ABSTRACT

Recent advances in vision language models (VLMs), such as GPT-4o, have revolu-
tionized visual reasoning by enabling zero-shot task completion through natural
language instructions. In this paper, we study VLMs’ ability to detect input am-
biguities, i.e., aleatoric uncertainty. Our key finding is that VLMs can effectively
identify ambiguous inputs by simply including an instruction to output ”Unknown”
when uncertain. Through experiments on corrupted ImageNet and “OOD” detec-
tion tasks, we demonstrate that VLMs successfully reject uncertain inputs while
maintaining high accuracy on confident predictions. This capability for implicitly
quantifying uncertainty emerges without additional training or in-context learning,
distinguishing VLMs from traditional vision models that often produce overconfi-
dent predictions on ambiguous inputs.

1 INTRODUCTION

The ability to quantify input uncertainty is crucial for the reliability of machine learning systems.
An ideal system should be capable of signaling uncertainty in two key scenarios (Hüllermeier &
Waegeman, 2021): a) when the inherent ambiguity of the input makes it impossible to provide a
meaningful answer (aleatoric uncertainty), and b) when the input exceeds the model’s capabilities
(epistemic uncertainty).

Traditional vision models often struggle with uncertainty quantification (Nixon et al., 2019; Guo
et al., 2017; Minderer et al., 2021; Gal & Ghahramani, 2016; Ovadia et al., 2019), largely due to
their training regime: These models are typically small-scale and trained on specific, highly curated
datasets for single tasks. Consequently, when encountering test samples with features absent from
their training data, they tend to produce incorrect predictions with high confidence, potentially
compromising downstream decision-making processes.

Vision language models (Liu et al., 2023; Gao et al., 2023; Liu et al., 2024, VLMs), represent
a paradigm shift in visual reasoning. Unlike their traditional counterparts, VLMs undergo self-
supervised pre-training on multi-billion-sample datasets. This extensive pre-training enables them to
perform diverse tasks in a zero-shot manner, requiring only an image and a natural language task
description at inference time. However, despite their increasing adoption in real-world applications,
their capability to model uncertainty remains poorly understood.

As such, in this paper, we study whether the latest vision language models (VLMs), e.g. GPT-4o, can
effectively capture aleatoric uncertainty. Our key finding is that both commercial and open-source
VLMs can identify aleatoric uncertainty by simply including one additional line of prompt that allows
the model to respond with Unknown when facing ambiguous inputs, which confirms that VLMs are
capable of quantifying aleatoric uncertainty implicitly using natural language (in contrast to explicit
quantification through outputting a numerical value). This ability emerges without requiring any
additional fine-tuning process or few-shot examples. This differs VLMs from classic vision models,
which require alternative training routines or objectives to avoid producing overconfident but incorrect
predictions when faced with uncertain inputs.

2 EVALUATION TASK AND METHODS
Evaluation task To evaluate the ability of VLMs to model aleatoric uncertainty, we selected
a subset of the validation set of ImageNet (Deng et al., 2009) that overlaps with CIFAR-
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Figure 1: VLMs can detect noisy inputs and reject to answer them. Evaluated on the same 1,000
samples subset of Gaussian noise-corrupted ImageNet under various corruption intensities (x-axis)
and instructional prompt (columns), allowing rejection option allows models to maintain high accuracy
across increasing corruption levels (top row, solid v.s. dashed lines). The improvement stems from
selectively rejecting more ambiguous samples as noise increases (bottom row), demonstrating VLMs’
ability to recognize uncertainty. Notably, Llama3.2 and Qwen2 show the strongest improvement with
Caption & Answer prompting but minimal gains with Direct prompting (second column, brown and
purple lines), suggesting these models require explicit textual descriptions to assess uncertainty.

10 (Krizhevsky et al., 2009) categories and prompt the model to classify the image into one of
the {airplane, . . . ,truck} (i.e. CIFAR-10 classes). Then, instead of directly feeding the VLMs
with standard clean images, we tweak the inputs with the following two types of ambiguous inputs

• Gaussian Noise-Corrupted ImageNet We evaluate VLMs using ImageNet-C’s (Hendrycks &
Dietterich, 2019) Gaussian noise corruption at various intensity levels. When images become
visually indistinguishable due to high noise levels, we expect models to signal uncertainty rather
than attempt classification.

• “Out-of-Distribution” (“OOD”) categories We test the models using images from categories
outside the CIFAR-10 classification set. In these cases, where none of the available classification
options are applicable, we expect models to decline to provide an answer rather than force-fitting
an inappropriate category.

Note that these two tasks are traditionally used to evaluate the out-of-distribution (OOD) robustness
of models trained on clean classification datasets. Specifically, they assess OOD generalization (Liu
et al., 2021) and detection (Hendrycks et al., 2018), which relate to epistemic uncertainty. However,
we argue for a different interpretation in the context of VLMs. Given that VLMs are exposed to a
wide range of noisy images and diverse concepts during their pre-training phase, these inputs are
unlikely to be truly out-of-distribution for them. Therefore, we consider these tasks as evaluations of
aleatoric uncertainty rather than epistemic uncertainty.
Uncertainty quantification through rejection option Given an input, classic vision models
provide a numerical predictive distribution vector over each candidate option, and one can utilize
certain statistics from the vector, such as maximum value, entropy, or variance, to estimate the amount
of uncertainty, however, this is not the case for VLMs, which typically provide an answer in the
format of free-form language. As such, to allow the VLM to express its uncertainty, we ask the VLMs
to output Unknown when it is unsure about the input, i.e. either because the input is too noisy to read
or when it is unclear whether the input belongs to the provided CIFAR-10 categories. Notice that we
choose not to prompt the VLM to output a numerical confidence score for measuring uncertainty, in
that it has been shown to be challenging for LLM to output a well-calibrated numerical score (Xiong
et al., 2023). To be more specific, to allow the VLM to say Unknown, we include the following
prompts in the inputs for the two tasks considered:
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Model Simple Direct Caption & Answer
Precision ↑ Recall ↑ Precision ↑ Recall ↑ Precision ↑ Recall ↑

GPT-4o-mini 0.964 0.974 0.974 0.975 0.988 0.974
Llama 3.2 0.991 0.718 0.994 0.692 0.994 0.897
Qwen 2 0.964 0.757 0.994 0.730 0.992 0.917
Qwen 2.5 0.977 0.965 0.991 0.968 0.992 0.972

Table 1: VLMs can detect “OOD” inputs and reject to answer them. When classifying inputs
into CIFAR-10 categories, but presented with images outside the 10 classes (“OOD” inputs), VLMs
successfully reject them, shown by the near-perfect recall rate while maintaining high precision,
indicating that the models are not over-refusing. GPT-4o-mini and Qwen 2.5 maintain strong recall
rates regardless of prompting method, while Llama 3.2 and Qwen 2 show significantly improved
recall only with Caption & Answer prompting. This pattern mirrors the findings in Fig. 1, suggesting
these models require explicit textual descriptions to effectively assess visual uncertainty.

...if you find an image very ambiguous and cannot confidently classify it
, return "unknown" as the label...
...if the image does not clearly belong to any of the 10 classes provided
, classify it as "unknown"...

3 EXPERIMENTS

Choice of models and decoding methods Four VLMs are considered for our experiments Llama
3.2 (Dubey et al., 2024, 11B), Qwen 2 (Yang et al., 2024, 7B), Qwen 2.5 (Team, 2024, 7B), and
GPT-4o-mini (Achiam et al., 2023). For all models, we included only one image in a query at a time
and we used greedy decoding for generating answers.

Instructional prompt In addition to instructional prompt that allows the model to say Unknown,
we additionally include prompts that tell the model to generate the answer in a certain way. To be
more specific, we considered three regimes,:

• Simple Simple and standard way: we prompt the model to provide step-by-step reasoning (Wei
et al., 2022) and then provide a classification answer.

• Direct We prompt the model to only output the classification answer, which prohibits the model
from generating explicit intermediate verbal reasoning steps including image caption.

• Caption & answer We explicitly prompt the model to always first caption the image, then answer
the question using both the caption and the image.

Evaluation metrics For ImageNet-C classification, we checked the improvement of accuracy when
the rejection option is enabled, ideally, when the rejection option is enabled, we expect samples
kept unrejected to have high accuracy, implying that the model only attempts to classify images it is
certain about. For detecting “OOD” categories, we used standard binary classification metrics, where
we consider the true “OOD” samples out of CIFAR-10 categories as positive samples and samples
inside as negative samples. Then we compute precision, which measures the portion of true “OOD”
samples in all reported “OOD” samples, and recall, which measures the portion of “OOD” samples
correctly detected by the model.

Results On ImageNet-C (Fig. 1), models show high accuracy across corruption levels by effectively
rejecting ambiguous inputs. Similarly, for “OOD” detection (Table. 1), VLMs achieve near-perfect
precision and recall, successfully identifying unclassifiable inputs without over-rejecting valid ones.
Notably, Llama3.2 and Qwen2 show a distinct pattern across both tasks: they perform poorly with
Direct prompting but improve significantly when first generating image captions (Caption & Answer),
suggesting these models require an explicit textual intermediate step to assess visual uncertainty.

4 FUTURE WORK

In the current experiments, we only considered performing uncertainty quantification implicitly by
prompting the VLMs to output Unknown. Future work could look into whether one can adopt LLM
uncertainty quantification techniques that provide a numerical score, such as [IDK] token (Cohen
et al., 2024) or semantic entropy (Kuhn et al., 2023; Kossen et al., 2024), on VLMs.
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