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ABSTRACT

Existing deep multitask learning (MTL) approaches align layers shared between
tasks in a parallel ordering. Such an organization significantly constricts the types
of shared structure that can be learned. The necessity of parallel ordering for
deep MTL is first tested by comparing it with permuted ordering of shared layers.
The results indicate that a flexible ordering can enable more effective sharing,
thus motivating the development of a soft ordering approach, which learns how
shared layers are applied in different ways for different tasks. Deep MTL with
soft ordering outperforms parallel ordering methods across a series of domains.
These results suggest that the power of deep MTL comes from learning highly
general building blocks that can be assembled to meet the demands of each task.

1 INTRODUCTION

In multitask learning (MTL) (Caruana, 1998), auxiliary data sets are harnessed to improve overall
performance by exploiting regularities present across tasks. As deep learning has yielded state-of-
the-art systems across a range of domains, there has been increased focus on developing deep MTL
techniques. Such techniques have been applied across settings such as vision (Bilen and Vedaldi,
2016; 2017; Jou and Chang, 2016; Lu et al., 2017; Misra et al., 2016; Ranjan et al., 2016; Yang and
Hospedales, 2017; Zhang et al., 2014), natural language (Collobert and Weston, 2008; Dong et al.,
2015; Hashimoto et al., 2016; Liu et al., 2015a; Luong et al., 2016), speech (Huang et al., 2013;
2015; Seltzer and Droppo, 2013; Wu et al., 2015), and reinforcement learning (Devin et al., 2016;
Fernando et al., 2017; Jaderberg et al., 2017; Rusu et al., 2016). Although they improve performance
over single-task learning in these settings, these approaches have generally been constrained to joint
training of relatively few and/or closely-related tasks.

On the other hand, from a perspective of Kolmogorov complexity, “transfer should always be use-
ful”; any pair of distributions underlying a pair of tasks must have something in common (Mahmud,
2009; Mahmud and Ray, 2008). In principle, even tasks that are “superficially unrelated” such as
those in vision and NLP can benefit from sharing (even without an adaptor task, such as image cap-
tioning). In other words, for a sufficiently expressive class of models, the inductive bias of requiring
a model to fit multiple tasks simultaneously should encourage learning to converge to more realistic
representations. The expressivity and success of deep models suggest they are ideal candidates for
improvement via MTL. So, why have existing approaches to deep MTL been so restricted in scope?

MTL is based on the assumption that learned transformations can be shared across tasks. This
paper identifies an additional implicit assumption underlying existing approaches to deep MTL: this
sharing takes place through parallel ordering of layers. That is, sharing between tasks occurs only
at aligned levels (layers) in the feature hierarchy implied by the model architecture. This constraint
limits the kind of sharing that can occur between tasks. It requires subsequences of task feature
hierarchies to match, which may be difficult to establish as tasks become plentiful and diverse.

This paper investigates whether parallel ordering of layers is necessary for deep MTL. As an al-
ternative, it introduces methods that make deep MTL more flexible. First, existing approaches are
reviewed in the context of their reliance on parallel ordering. Then, as a foil to parallel ordering,
permuted ordering is introduced, in which shared layers are applied in different orders for differ-
ent tasks. The increased ability of permuted ordering to support integration of information across
tasks is analyzed, and the results are used to develop a soft ordering approach to deep MTL. In this
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Figure 1: Classes of existing deep multitask learning architectures. (a) Classical approaches
add a task-specific decoder to the output of the core single-task model for each task; (b) Column-
based approaches include a network column for each task, and define a mechanism for sharing
between columns; (c) Supervision at custom depths adds output decoders at depths based on a task
hierarchy; (d) Universal representations adapts each layer with a small number of task-specific
scaling parameters. Underlying each of these approaches is the assumption of parallel ordering of
shared layers (Section 2.2): each one requires aligned sequences of feature extractors across tasks.

approach, a joint model learns how to apply shared layers in different ways at different depths for
different tasks as it simultaneously learns the parameters of the layers themselves. In a suite of ex-
periments, soft ordering is shown to improve performance over single-task learning as well as over
fixed order deep MTL methods.

Importantly, soft ordering is not simply a technical improvement, but a new way of thinking about
deep MTL. Learning a different soft ordering of layers for each task amounts to discovering a set
of generalizable modules that are assembled in different ways for different tasks. This perspective
points to future approaches that train a collection of layers on a set of training tasks, which can then
be assembled in novel ways for future unseen tasks. Some of the most striking structural regularities
observed in the natural, technological and sociological worlds are those that are repeatedly observed
across settings and scales; they are ubiquitous and universal. By forcing shared transformations to
occur at matching depths in hierarchical feature extraction, deep MTL falls short of capturing this
sort of functional regularity. Soft ordering is thus a step towards enabling deep MTL to realize the
diverse array of structural regularities found across complex tasks drawn from the real world.

2 PARALLEL ORDERING OF LAYERS IN DEEP MTL

This section presents a high-level classification of existing deep MTL approaches (Sec. 2.1) that is
sufficient to expose the reliance of these approaches on the parallel ordering assumption (Sec. 2.2).

2.1 A CLASSIFICATION OF EXISTING APPROACHES TO DEEP MULTITASK LEARNING

Designing a deep MTL system requires answering the key question: How should learned parameters
be shared across tasks? The landscape of existing deep MTL approaches can be organized based on
how they answer this question at the joint network architecture level (Figure 1).

Classical approaches. Neural network MTL was first introduced in the case of shallow networks
(Caruana, 1998), before deep networks were prevalent. The key idea was to add output neurons to
predict auxiliary labels for related tasks, which would act as regularizers for the hidden represen-
tation. Many deep learning extensions remain close in nature to this approach, learning a shared
representation at a high-level layer, followed by task-specific (i.e., unshared) decoders that extract
labels for each task (Devin et al., 2016; Dong et al., 2015; Huang et al., 2013; 2015; Jaderberg et al.,
2017; Liu et al., 2015a; Ranjan et al., 2016; Wu et al., 2015; Zhang et al., 2014) (Figure 1a). This
approach can be extended to task-specific input encoders (Devin et al., 2016; Luong et al., 2016),
and the underlying single-task model may be adapted to ease task integration (Ranjan et al., 2016;
Wu et al., 2015), but the core network is still shared in its entirety.

Column-based approaches. Column-based approaches (Jou and Chang, 2016; Misra et al., 2016;
Rusu et al., 2016; Yang and Hospedales, 2017), assign each task its own layer of task-specific pa-
rameters at each shared depth (Figure 1b). They then define a mechanism for sharing parameters
between tasks at each shared depth, e.g., by having a shared tensor factor across tasks (Yang and
Hospedales, 2017), or allowing some form of communication between columns (Jou and Chang,
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2016; Misra et al., 2016; Rusu et al., 2016). Observations of negative effects of sharing in column-
based methods (Rusu et al., 2016) can be attributed to mismatches between the features required at
the same depth between tasks that are too dissimilar.

Supervision at custom depths. There may be an intuitive hierarchy describing how a set of tasks
are related. Several approaches integrate supervised feedback from each task at levels consistent
with such a hierarchy (Hashimoto et al., 2016; Toshniwal et al., 2017; Zhang and Weiss, 2016)
(Figure 1c). This method can be sensitive to the design of the hierarchy (Toshniwal et al., 2017), and
to which tasks are included therein (Hashimoto et al., 2016). One approach learns a task-relationship
hierarchy during training (Lu et al., 2017), though learned parameters are still only shared across
matching depths. Supervision at custom depths has also been extended to include explicit recurrence
that reintegrates information from earlier predictions (Bilen and Vedaldi, 2016; Zamir et al., 2016).
Although these recurrent methods still rely on pre-defined hierarchical relationships between tasks,
they provide evidence of the potential of learning transformations that have a different function for
different tasks at different depths, i.e., in this case, at different depths unrolled in time.

Universal representations. One approach shares all core model parameters except batch normal-
ization scaling factors (Bilen and Vedaldi, 2017) (Figure 1d). When the number of classes is equal
across tasks, even output layers can be shared, and the small number of task-specific parameters
enables strong performance to be maintained. This method was applied to a diverse array of vision
tasks, demonstrating the power of a small number of scaling parameters in adapting layer function-
ality for different tasks. This observation helps to motivate the method developed in Section 3.

2.2 THE PARALLEL ORDERING ASSUMPTION

A common interpretation of deep learning is that layers extract progressively higher level features
at later depths (Lecun et al., 2015). A natural assumption is then that the learned transformations
that extract these features are also tied to the depth at which they are learned. The core assumption
motivating MTL is that regularities across tasks will result in learned transformations that can be
leveraged to improve generalization. However, the methods reviewed in Section 2.1 add the further
assumption that subsequences of the feature hierarchy align across tasks and sharing between tasks
occurs only at aligned depths (Figure 1); we call this the parallel ordering assumption.

Consider T tasks t1, . . . , tT to be learned jointly, with each ti associated with a model yi = Fi(xi).
Suppose sharing across tasks occurs at D consecutive depths. Let Ei (Di) be ti’s task-specific
encoder (decoder) to (from) the core sharable portion of the network from its inputs (to its outputs).
Let W i

k be the layer of learned weights (e.g., affine or convolutional) for task i at shared depth k,
with φk an optional nonlinearity. The parallel ordering assumption implies

yi = (Di ◦ φD ◦W i
D ◦ φD−1 ◦W i

D−1 ◦ . . . ◦ φ1 ◦W i
1 ◦ Ei)(xi), with W i

k ≈W
j
k ∀ (i, j, k). (1)

The approximate equality “≈” means that at each shared depth the applied weight tensors for each
task are similar and compatible for sharing. For example, learned parameters may be shared across
all W i

k for a given k, but not between W i
k and W j

l for any k 6= l. For closely-related tasks, this
assumption may be a reasonable constraint. However, as more tasks are added to a joint model, it
may be more difficult for each layer to represent features of its given depth for all tasks. Furthermore,
for very distant tasks, it may be unreasonable to expect that task feature hierarchies match up at all,
even if the tasks are related intuitively. The conjecture explored in this paper is that parallel ordering
limits the potential of deep MTL by the strong constraint it enforces on the use of each layer.

3 DEEP MULTITASK LEARNING WITH SOFT ORDERING OF LAYERS

Now that parallel ordering has been identified as a constricting feature of deep MTL approaches, its
necessity can be tested, and the resulting observations can be used to develop more flexible methods.

3.1 A FOIL FOR THE PARALLEL ORDERING ASSUMPTION: PERMUTING SHARED LAYERS

Consider the most common deep MTL setting: hard-sharing of layers, where each layer in {Wk}Dk=1
is shared in its entirety across all tasks. The baseline deep MTL model for each task ti is given by

yi = (Di ◦ φD ◦WD ◦ φD−1 ◦WD−1 ◦ . . . ◦ φ1 ◦W1 ◦ Ei)(xi). (2)
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Figure 2: Fitting two random tasks. (a) The dotted lines show that permuted ordering fits n samples
as well as parallel fits n/2 for linear networks; (b) For ReLU networks, permuted ordering enjoys a
similar advantage. Thus, permuted ordering of shared layers eases integration of information across
disparate tasks.

This setup satisfies the parallel ordering assumption. Consider now an alternative scheme, equivalent
to the above, except with learned layers applied in different orders for different task. That is,

yi = (Di ◦ φD ◦Wρi(D) ◦ φD−1 ◦Wρi(D−1) ◦ . . . ◦ φ1 ◦Wρi(1) ◦ Ei)(xi), (3)

where ρi is a task-specific permutation of size D, and ρi is fixed before training. If there are sets
of tasks for which joint training of the model defined by Eq. 3 achieves similar or improved perfor-
mance over Eq. 2, then parallel ordering is not a necessary requirement for deep MTL. Of course, in
this formulation, it is required that the Wk can be applied in any order. See Section 6 for examples
of possible generalizations.

Note that this multitask permuted ordering differs from an approach of training layers in multiple or-
ders for a single task. The single-task case results in a model with increased commutativity between
layers, a behavior that has also been observed in residual networks (Veit et al., 2016), whereas here
the result is a set of layers that are assembled in different ways for different tasks.

3.2 THE INCREASED EXPRESSIVITY OF PERMUTED ORDERING

Fitting tasks of random patterns. Permuted ordering is evaluated by comparing it to parallel
ordering on a set of tasks. Randomly generated tasks (similar to (Kirkpatrick et al., 2017)) are the
most disparate possible tasks, in that they share minimal information, and thus help build intuition
for how permuting layers could help integrate information in broad settings. The following exper-
iments investigate how accurately a model can jointly fit two tasks of n samples. The data set for
task ti is {(xij , yij)}nj=1, with each xij drawn uniformly from [0, 1]m, and each yij drawn uniformly
from {0, 1}. There are two shared learned affine layersWk : Rm → Rm. The models with permuted
ordering (Eq. 3) are given by

y1 = (O ◦ φ ◦W2 ◦ φ ◦W1)(x1) and y2 = (O ◦ φ ◦W1 ◦ φ ◦W2)(x2), (4)

where O is a final shared classification layer. The reference parallel ordering models are defined
identically, but with Wk in the same order for both tasks. Note that fitting the parallel model with
n samples is equivalent to a single-task model with 2n. In the first experiment, m = 128 and
φ = I . Although adding depth does not add expressivity in the single-task linear case, it is useful for
examining the effects of permuted ordering, and deep linear networks are known to share properties
with nonlinear networks (Saxe et al., 2013). In the second experiment, m = 16 and φ = ReLU.

The results are shown in Figure 2. Remarkably, in the linear case, permuted ordering of shared
layers does not lose accuracy compared to the single-task case. A similar gap in performance is
seen in the nonlinear case, indicating that this behavior extends to more powerful models. Thus, the
learned permuted layers are able to successfully adapt to their different orderings in different tasks.

Looking at conditions that make this result possible can shed further light on this behavior. For
instance, consider T tasks t1, . . . , tT , with input and output size bothm, and optimal linear solutions
F1, . . . , FT , respectively. Let F1, . . . , FT be m × m matrices, and suppose there exist matrices
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Figure 3: Soft ordering of shared layers. Sample soft ordering network with three shared layers.
Soft ordering (Eq. 7) generalizes Eqs. 2 and 3, by learning a tensor S of task-specific scaling pa-
rameters. S is learned jointly with the Fj , to allow flexible sharing across tasks and depths. The Fj
in this figure each include a shared weight layer and any nonlinearity. This architecture enables the
learning of layers that are used in different ways at different depths for different tasks.

G1, . . . , GT such that Fi = GiG(i+1 mod T ) . . . G(i−1 mod T ) ∀ i. Then, because the matrix trace is
invariant under cyclic permutations, the constraint arises that

tr(F1) = tr(F2) = . . . = tr(FT ). (5)

In the case of random matrices induced by the random tasks above, the traces of the Fi are all equal
in expectation and concentrate well as their dimensionality increases. So, the restrictive effect of
Eq. 5 on the expressivity of permuted ordering here is negligible.

Adding a small number of task-specific scaling parameters. Of course, real world tasks are
generally much more structured than random ones, so such reliable expressivity of permuted or-
dering might not always be expected. However, adding a small number of task-specific scaling
parameters can help adapt learned layers to particular tasks. This observation has been previously
exploited in the parallel ordering setting, for learning task-specific batch normalization scaling pa-
rameters (Bilen and Vedaldi, 2017) and controlling communication between columns (Misra et al.,
2016). Similarly, in the permuted ordering setting, the constraint induced by Eq. 5 can be reduced by
adding task-specific scalars {si}Ti=2 such that Fi = siGiG(i+1 mod T ) . . . G(i−1 mod T ), and s1 = 1.
The constraint given by Eq. 5 then reduces to

tr(Fi/si) = tr(Fi+1/si+1) ∀ 1 ≤ i < T =⇒ si+1 = si(tr(Fi+1)/tr(Fi)), (6)

which are defined when tr(Fi) 6= 0 ∀ i < T . Importantly, the number of task-specific parameters
does not depend on m, which is useful for scalability as well as encouraging maximal sharing
between tasks. The idea of using a small number of task-specific scaling parameters is incorporated
in the soft ordering approach introduced in the next section.

3.3 SOFT ORDERING OF SHARED LAYERS

Permuted ordering tests the parallel ordering assumption, but still fixes an a priori layer ordering
for each task before training. Here, a more flexible soft ordering approach is introduced, which
allows jointly trained models to learn how layers are applied while simultaneously learning the
layers themselves. Consider again a core network of depth D with layers W1, . . . ,WD learned and
shared across tasks. The soft ordering model for task ti is defined as follows:

yki =

D∑
j=1

s(i,j,k)(φk[Wj(y
k−1
i )]), with

D∑
j=1

s(i,j,k) = 1 ∀ (i, k), (7)

where y0i = Ei(xi), yi = Di(yDi ), and each s(i,j,k) is drawn from S: a tensor of learned scales
for each task ti for each layer Wj at each depth k. Figure 3 shows an example of a resulting depth
three model. Motivated by Section 3.2 and previous work (Misra et al., 2016), S adds only D2

scaling parameters per task, which is notably not a function of the size of any Wj . The constraint
that all s(i,j,k) sum to 1 for any (i, k) is implemented via softmax, and emphasizes the idea that
a soft ordering is what is being learned; in particular, this formulation subsumes any fixed layer
ordering ρi by s(i,ρi(k),k) = 1 ∀ (i, k). S can be learned jointly with the other learnable parameters
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in the Wk, Ei, and Di via backpropagation. In training, all s(i,j,k) are initialized with equal values,
to reduce initial bias of layer function across tasks. It is also helpful to apply dropout after each
shared layer. Aside from its usual benefits (Srivastava et al., 2014), dropout has been shown to be
useful in increasing the generalization capacity of shared representations (Devin et al., 2016). Since
the trained layers in Eq. 7 are used for different tasks and in different locations, dropout makes
them more robust to supporting different functionalities. These ideas are tested empirically on the
MNIST, UCI, Omniglot, and CelebA data sets in the next section.

4 EMPIRICAL EVALUATION OF SOFT LAYER ORDERING

These experiments evaluate soft ordering against fixed ordering MTL and single-task learning. The
first experiment applies them to intuitively related MNIST tasks, the second to “superficially un-
related” UCI tasks, the third to the real-world problem of Omniglot character recognition, and the
fourth to large-scale facial attribute recognition. In each experiment, single task, parallel ordering
(Eq. 2), permuted ordering (Eq. 3), and soft ordering (Eq. 7) train an equivalent set of core layers.
In permuted ordering, the order of layers were randomly generated for each task each trial. See
Appendix A for additional details, including additional details specific to each experiment.

4.1 DISENTANGLING RELATED TASKS: MNIST DIGIT1-VS.-DIGIT2 BINARY CLASSIFICATION

This experiment evaluates the ability of multitask methods to exploit tasks that are intuitively related,
but have disparate input representations. Binary classification problems derived from the MNIST
hand-written digit dataset are a common test bed for evaluating deep learning methods that require
multiple tasks (Fernando et al., 2017; Kirkpatrick et al., 2017; Yang and Hospedales, 2017). Here,
the goal of each task is to distinguish between two distinct randomly selected digits. To create initial
dissimilarity across tasks that multitask models must disentangle, each Ei is a random frozen fully-
connected ReLU layer with output size 64. There are four core layers, each a fully-connected ReLU
layer with 64 units. Each Di is an unshared dense layer with a single sigmoid classification output.
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Figure 4: MNIST results. (a) Relative performance of permuted and soft ordering compared to
parallel ordering improves as the number of tasks increases, showing how flexibility of order can
help in scaling to more tasks. Note that cost savings of multitask over single task models in terms
of number of trainable parameters scales linearly with the number of tasks. For a representative
two-task soft order experiment (b) the layer-wise distance between scalings of the tasks increases by
iteration, and (c) the scalings move towards a hard ordering. (d) The final learned relative scale of
each shared layer at each depth for each task is indicated by shading, with the strongest path drawn,
showing that a distinct soft order is learned for each task (• marks the shared model boundary).

Results are shown in Figure 4. The relative performance of permuted ordering and soft ordering
compared to parallel ordering increases with the number of tasks trained jointly (Figure 4a), showing
how flexibility of order can help in scaling to more tasks. This result is consistent with the hypothesis
that parallel ordering has increased negative effects as the number of tasks increases. Figure 4b-
d show what soft ordering actually learns: The scalings for tasks diverge as layers specialize to
different functions for different tasks.
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Figure 5: UCI data sets and results. (a) The ten UCI tasks used in joint training; the varying types
of problems and dataset characteristics show the diversity of this set of tasks. (b) Mean test error
over all ten tasks by iteration. Permuted and parallel order show no improvement after the first 1000
iterations, while soft order decisively outperforms the other methods.

4.2 SUPERIFICALLY UNRELATED TASKS: JOINT TRAINING OF TEN POPULAR UCI DATASETS

The next experiment evaluates the ability of soft ordering to integrate information across a diverse set
of “superficially unrelated” tasks (Mahmud and Ray, 2008), i.e., tasks with no immediate intuition
for how they may be related. Ten tasks are taken from some of most popular UCI classification data
sets (Lichman, 2013). Descriptions of these tasks are given in Figure 5a. Inputs and outputs have no
a priori shared meaning across tasks. Each Ei is a learned fully-connected ReLU layer with output
size 32. There are four core layers, each a fully-connected ReLU layer with 32 units. Each Di is
an unshared dense softmax layer for the given number of classes. The results in Figure 5(b) show
that, while parallel and permuted show no improvement in error after the first 1000 iterations, soft
ordering significantly outperforms the other methods. With this flexible layer ordering, the model is
eventually able to exploit significant regularities underlying these seemingly disparate domains.

4.3 EXTENSION TO CONVOLUTIONS: MULTI-ALPHABET CHARACTER RECOGNITION

The Omniglot dataset (Lake et al., 2015) consists of fifty alphabets, each of which induces a different
character recognition task. Deep MTL approaches have recently shown promise on this dataset
(Yang and Hospedales, 2017). It is a useful benchmark for MTL because the large number of tasks
allows analysis of performance as a function of the number of tasks trained jointly, and there is clear
intuition for how knowledge of some alphabets will increase the ability to learn others. Omniglot
is also a good setting for evaluating the ability of soft ordering to learn how to compose layers in
different ways for different tasks: it was developed as a problem with inherent composibility, e.g.,
similar kinds of strokes are applied in different ways to draw characters from different alphabets
(Lake et al., 2015). Consequently, it has been used as a test bed for deep generative models (Rezende
et al., 2016). To evaluate performance for a given number of tasks T , a single random ordering of
tasks was created, from which the first T tasks are considered. Train/test splits are created in the
same way as previous work (Yang and Hospedales, 2017), using 10% or 20% of data for testing.

This experiment is a scale-up of the previous experiments in that it evaluates soft ordering of con-
volutional layers. The models are made as close as possible in architecture to previous work (Yang
and Hospedales, 2017), while allowing soft ordering to be applied. There are four core layers, each
convolutional followed by max pooling. Ei(xi) = xi ∀ i, and each Di is a fully-connected softmax
layer with output size equal to the number of classes. The results show that soft ordering is able
to consistently outperform other deep MTL approaches (Figure 6). The improvements are robust
to the number of tasks (Figure 6a) and the amount of training data (Figure 6c), suggesting that soft
ordering, not task complexity or model complexity, is responsible for the improvement.

Permuted ordering performs significantly worse than parallel ordering in this domain. This is not
surprising, as deep vision systems are known to induce a common feature hierarchy, especially
within the first couple of layers (Lee et al., 2008; Lecun et al., 2015). Parallel ordering has this
hierarchy built in; for permuted ordering it is more difficult to exploit. However, the existence of this
feature hierarchy does not preclude the possibility that the functions (i.e., layers) used to produce the
hierarchy may be useful in other contexts. Soft ordering allows the discovery of such uses. Figure 6b
shows how each layer is used more or less at different depths. The soft ordering model learns a “soft
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(c)

Deep MTL method 10% Test Split 20% Test Split

STL 34.36 (± 0.53) 35.92 (± 0.74)
UD-MTL 29.98 (± 1.33) 29.53 (± 0.99)
DMTRL-LAF 31.08 (± 0.65) 33.37 (± 0.97)
DMTRL-Tucker 29.67 (± 1.25) 31.11 (± 1.16)
DMTRL-TT 28.78 (± 0.61) 30.61 (± 0.65)

Single task (ours) 38.49 (± 0.87) 38.10 (± 0.88)
Parallel order 27.17 (± 0.57) 28.24 (± 0.67)
Permuted order 32.64 (± 0.64) 33.18 (± 0.74)
Soft order 23.19 (± 0.34) 24.11 (± 0.48)

Figure 6: Omniglot results. (a) Error by number of tasks trained jointly. Soft ordering significantly
outperforms single task and both fixed ordering approaches for each number of tasks; (b) Distribu-
tion of learned layer usage by depth across all 50 tasks for a soft order run. The usage of each layer
is correlated (or inversely correlated) with depth. This coincides with the understanding that there
is some innate hierarchy in convolutional networks, which soft ordering is able to discover. For
instance, the usage of Layer 3 decreases as the depth increases, suggesting that its primary purpose
is low-level feature extraction, though it is still sees substantial use in deeper contexts; (c) Errors
with all 50 tasks for different training set sizes. The first five methods are previous deep MTL results
(Yang and Hospedales, 2017), which use multitask tensor factorization methods in a shared parallel
ordering. Soft ordering significantly outperforms the other approaches, showing the approach scales
to real-world tasks requiring specialized components such as convolutional layers.

hierarchy” of layers, in which each layer has a distribution of increased or decreased usage at each
depth. In this case, the usage of each layer is correlated (or inversely correlated) with depth. For
instance, the usage of Layer 3 decreases as the depth increases, suggesting that its primary purpose
is low-level feature extraction, though it is still sees substantial use in deeper contexts. Section 5
describes an experiment that further investigates the behavior of a single layer in different contexts.

4.4 LARGE-SCALE APPLICATION: FACIAL ATTRIBUTE RECOGNITION

Although facial attributes are all high-level concepts, they do not intuitively exist at the same level
of a shared hierarchy (even one that is learned; Lu et al., 2017). Rather, these concepts are related
in multiple subtle and overlapping ways in semantic space. This experiment investigates how a soft
ordering approach, as a component in a larger system, can exploit these relationships.

The CelebA dataset consists of≈200K 178×218 color images, each with binary labels for 40 facial
attributes (Liu et al., 2015b). In this experiment, each label defines a task, and parallel and soft
order models are based on a ResNet-50 vision model (He et al., 2016), which has also been used
in recent state-of-the-art approaches to CelebA (Günther et al., 2017; He et al., 2017). Let Ei be a
ResNet-50 model truncated to the final average pooling layer, followed by a linear layer projecting
the embedding to size 256. Ei is shared across all tasks. There are four core layers, each a dense
ReLU layer with 256 units. Each Di is an unshared dense sigmoid layer. Parallel ordering and soft
ordering models were compared. To further test the robustness of learning, models were trained
with and without the inclusion of an additional facial landmark detection regression task. Soft order
models were also tested with and without the inclusion of a fixed identity layer at each depth. The
identity layer can increase consistency of representation across contexts, which can ease learning
of each layer, while also allowing soft ordering to tune how much total non-identity transformation
to use for each individual task. This is especially relevant for the case of attributes, since different
tasks can have different levels of complexity and abstraction.

The results are given in Figure 7c. Existing work that used a ResNet-50 vision model showed that
using a parallel order multitask model improved test error over single-task learning from 10.37 to
9.58 (He et al., 2017). With our faster training strategy and the added core layers, our parallel order-
ing model achieves a test error of 10.21. The soft ordering model yielded a substantial improvement
beyond this to 8.79, demonstrating that soft ordering can add value to a larger deep learning system.
Including landmark detection yielded a marginal improvement to 8.75, while for parallel ordering it
degraded performance slightly, indicating that soft ordering is more robust to joint training of diverse
kinds of tasks. Including the identity layer improved performance to 8.64, though with both the land-
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(c)

Deep MTL method Test Error %

Single Task (He et al., 2017) 10.37
MTL Baseline (He et al., 2017) 9.58

Parallel Order 10.21
Parallel Order + Landmarks 10.29
Soft Order 8.79
Soft Order + Landmarks 8.75
Soft Order + Identity 8.64
Soft Order + Landmarks + Identity 8.68

Figure 7: CelebA results. Layer usage by depth (a) without and (b) with inclusion of the identity
layer. In both cases, layers with lower usage at lower depths have higher usage at higher depths, and
vice versa. The identity layer almost always sees increased usage; its application can increase con-
sistency of representation across contexts. (c) Soft order models achieve a significant improvement
over parallel ordering, and receive a boost from including the identity layer. The first two rows are
previous work with ResNet-50 that show their baseline improvement from single task to multitask.

mark detection and the identity layer this improvement was slightly diminished. One explanation for
this degredation is that the added flexibility provided by the identity layer offsets the regularization
provided by landmark detection. Note that previous work has shown that adaptive weighting of task
loss (He et al., 2017; Rudd et al., 2016), data augmentation and ensembling (Günther et al., 2017),
and a larger underlying vision model (Lu et al., 2017) each can also yield significant improvements.
Aside from soft ordering, none of these improvements alter the multitask topology, so their bene-
fits are expected to be complementary to that of soft ordering demonstrated in this experiment. By
coupling them with soft ordering, greater improvements should be possible.

Figures 7a-b characterize the usage of each layer learned by soft order models. Like in the case of
Omniglot, layers that are used less at lower depths are used more at higher depths, and vice versa,
giving further evidence that the models learn a “soft hierarchy” of layer usage. When the identity
layer is included, its usage is almost always increased through training, as it allows the model to use
smaller specialized proportions of nonlinear structure for each individual task.

5 VISUALIZING THE BEHAVIOR OF SOFT ORDERING LAYERS

The success of soft layer ordering suggests that layers learn functional primitives with similar effects
in different contexts. To explore this idea qualitatively, the following experiment uses generative
visual tasks. The goal of each task is to learn a function (x, y)→ v, where (x, y) is a pixel coordinate
and v is a brightness value, all normalized to [0, 1]. Each task is defined by a single image of a “4”
drawn from the MNIST dataset; all of its pixels are used as training data. Ten tasks are trained using
soft ordering with four shared dense ReLU layers of 100 units each. Ei is a linear encoder that is
shared across tasks, andDi is a global average pooling decoder. Thus, task models are distinguished
completely by their learned soft ordering scaling parameters st. To visualize the behavior of layer
l at depth d for task t, the predicted image for task t is generated across varying magnitudes of
s(t,l,d). The results for the first two tasks and the first layer are shown in Table 1. Similar function is
observed in each of the six contexts, suggesting that the layers indeed learn functional primitives.

d, t Layer inactive−→ Layer active d, t Layer inactive−→ Layer active

1, 1 1, 2

2, 1 2, 2

3, 1 3, 2

Table 1: Example behavior of a soft order layer. For each task t, and at each depth d, the effect
of increasing the activation of of this particular layer is to expand the left side of the “4” in a manner
appropriate to the functional context (e.g., the magnitude of the effect decreases with depth). Results
for other layers are similar, suggesting that the layers implement functional primitives.
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6 DISCUSSION AND FUTURE WORK

In the interest of clarity, the soft ordering approach in this paper was developed as a relatively small
step away from the parallel ordering assumption. To develop more practical and specialized meth-
ods, inspiration can be taken from recurrent architectures, the approach can be extended to layers of
more general structure, and applied to training and understanding general functional building blocks.

Connections to recurrent architectures. Eq. 7 is defined recursively with respect to the learned
layers shared across tasks. Thus, the soft-ordering architecture can be viewed as a new type of recur-
rent architecture designed specifically for MTL. From this perspective, Figure 3 shows an unrolling
of a soft layer module: different scaling parameters are applied at different depths when unrolled
for different tasks. Since the type of recurrence induced by soft ordering does not require task input
or output to be sequential, methods that use recurrence in such a setting are of particular interest
(Liang and Hu, 2015; Liao and Poggio, 2016; Pinheiro and Collobert, 2014; Socher et al., 2011; Za-
mir et al., 2016). Recurrent methods can also be used to reduce the size of S below O(TD2), e.g.,
via recurrent hypernetworks (Ha et al., 2016). Finally, Section 4 demonstrated soft ordering where
shared learned layers were fully-connected or convolutional; it is also straightforward to extend soft
ordering to shared layers with internal recurrence, such as LSTMs (Hochreiter and Schmidhuber,
1997). In this setting, soft ordering can be viewed as inducing a higher-level recurrence.

Generalizing the structure of shared layers. For clarity, in this paper all core layers in a given
setup had the same shape. Of course, it would be useful to have a generalization of soft ordering that
could subsume any modern deep architecture with many layers of varying structure. As given by
Eq. 7, soft ordering requires the same shape inputs to the element-wise sum at each depth. Reshapes
and/or resampling can be added as adapters between tensors of different shape; alternatively, a
function other than a sum could be used. For example, instead of learning a weighting across layers
at each depth, a probability of applying each module could be learned in a manner similar to adaptive
dropout (Ba and Frey, 2013; Li et al., 2016) or a sparsely-gated mixture of experts (Shazeer et al.,
2017). Furthermore, the idea of a soft ordering of layers can be extended to soft ordering over
modules with more general structure, which may more succinctly capture recurring modularity.

Training generalizable building blocks. Because they are used in different ways at different loca-
tions for different tasks, the shared trained layers in permuted and soft ordering have learned more
general functionality than layers trained in a fixed location or for a single task. A natural hypothesis
is that they are then more likely to generalize to future unseen tasks, perhaps even without further
training. This ability would be especially useful in the small data regime, where the number of
trainable parameters should be limited. For example, given a collection of these layers trained on a
previous set of tasks, a model for a new task could learn how to apply these building blocks, e.g., by
learning a soft order, while keeping their internal parameters fixed. Learning an efficient set of such
generalizable layers would then be akin to learning a set of functional primitives. Such functional
modularity and repetition is evident in the natural, technological and sociological worlds, so such
a set of functional primitives may align well with complex real-world models. This perspective is
related to recent work in reusing modules in the parallel ordering setting (Fernando et al., 2017).
The different ways in which different tasks learn to use the same set of modules can also help shed
light on how tasks are related, especially those that seem superficially disparate (e.g., by extending
the analysis performed for Figure 4d), thus assisting in the discovery of real-world regularities.

7 CONCLUSION

This paper has identified parallel ordering of shared layers as a common assumption underlying
existing deep MTL approaches. This assumption restricts the kinds of shared structure that can be
learned between tasks. Experiments demonstrate how direct approaches to removing this assumption
can ease the integration of information across plentiful and diverse tasks. Soft ordering is introduced
as a method for learning how to apply layers in different ways at different depths for different tasks,
while simultaneously learning the layers themselves. Soft ordering is shown to outperform parallel
ordering methods as well as single-task learning across a suite of domains. These results show that
deep MTL can be improved while generating a compact set of multipurpose functional primitives,
thus aligning more closely with our understanding of complex real-world processes.
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A EXPERIMENTAL DETAILS

All experiments were run with the Keras deep learning framework Chollet et al. (2015), using the
Tensorflow backend (Abadi et al., 2015). All experiments used the Adam optimizer with default
parameters (Kingma and Ba, 2014) unless otherwise specified.

In each iteration of multitask training, a random batch for each task is processed, and the results are
combined across tasks into a single update. Compared to alternating batches between tasks (Luong
et al., 2016), processing all tasks simultaneously simplified the training procedure, and led to faster
and lower final convergence. When encoders are shared, the inputs of the samples in each batch are
the same across tasks. Cross-entropy loss was used for all classification tasks. The overall validation
loss is the sum over all per task validation losses.

In each experiment, single task, parallel ordering (Eq. 2), permuted ordering (Eq. 3), and soft or-
dering (Eq. 7) trained an equivalent set of core layers. In permuted ordering, the order of layers
was randomly generated for each task each trial. Several trials were run for each setup to produce
confidence bounds.

A.1 MNIST EXPERIMENTS

Input pixel values were normalized to be between 0 and 1. The training and test sets for each task
were the MNIST train and test sets restricted to the two selected digits. A dropout rate of 0.5 was
applied at the output of each core layer. Each setup was trained for 20K iterations, with each batch
consisting of 64 samples for each task.

When randomly selecting the pairs of digits that define a set of tasks, digits were selected without
replacement within a task, and with replacement across tasks, so there were 45 possible tasks, and
45k possible sets of tasks of size k.

A.2 UCI EXPERIMENTS

For all tasks, each input feature was scaled to be between 0 and 1. For each task, training and
validation data were created by a random 80-20 split. This split was fixed across trials. A dropout
rate of 0.8 was applied at the output of each core layer.

A.3 OMNIGLOT EXPERIMENTS

To enable soft ordering, the output of all shared layers must have the same shape. For comparability,
the models were made as close as possible in architecture to previous work (Yang and Hospedales,
2017), in which models had four sharable layers, three of which were 2D convolutions followed
by 2 × 2 max-pooling, of which two had 3 × 3 kernels. So, in this experiment, to evaluate soft
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ordering of convolutional layers, there were four core layers, each a 2D convolutional layer with
ReLU activation and kernel size 3 × 3. Each convolutional layer was followed by a 2 × 2 max-
pooling layer. The number of filters for each convolutional layer was set at 53, which makes the
number of total model parameters as close as possible to the reference model. A dropout rate of 0.5
was applied at the output of after each core layer.

The Omniglot dataset consists of 105 × 105 black-and-white images. There are fifty alphabets of
characters and twenty images per character. To be compatible with the shapes of shared layers, the
input was zero-padded along the third dimension so that its shape was 105 × 105 × 53, i.e., with
the first 105× 105 slice containing the image data and the remainder zeros. To evaluate approaches
on k tasks, a random ordering of the fifty tasks was created and fixed across all trials. In each trial,
the first k tasks in this ordering were trained jointly for 5000 iterations, with each training batch
containing k random samples, one from each task. The fixed ordering of tasks was as follows:

[Gujarati, Sylheti, Arcadian, Tibetan, Old Church Slavonic (Cyrillic), Angelic, Malay (Jawi-Arabic),
Sanskrit, Cyrillic, Anglo-Saxon Futhorc, Syriac (Estrangelo), Ge’ez, Japanese (katakana), Keble,
Manipuri, Alphabet of the Magi, Gurmukhi, Korean, Early Aramaic, Atemayar Qelisayer, Tagalog,
Mkhedruli (Georgian), Inuktitut (Canadian Aboriginal Syllabics), Tengwar, Hebrew, N’Ko, Grantha,
Latin, Syriac (Serto), Tifinagh, Balinese, Mongolian, ULOG, Futurama, Malayalam, Oriya, Ojibwe
(Canadian Aboriginal Syllabics), Avesta, Kannada, Bengali, Japanese (hiragana), Armenian, Aurek-
Besh, Glagolitic, Asomtavruli (Georgian), Greek, Braille, Burmese (Myanmar), Blackfoot (Cana-
dian Aboriginal Syllabics), Atlantean].

A.4 CELEBA EXPERIMENTS

The training, validation, and test splits provided by Liu et al. (2015b) were used. There are ≈160K
images for training, ≈20K for validation, and ≈20K for testing. The dataset contains 20 images of
each of approximately ≈10K celebrities. The images for a given celebrity occur in only one of the
three dataset splits, so models must also generalize to new human identities.

The weights for ResNet-50 were initialized with the pre-trained imagenet weights provided in the
Keras framework Chollet et al. (2015). Image preprocessing was done with the default Keras image
preprocessing function, including resizing all images to 224× 224.

The output for the facial landmark detection task is a 10 dimensional vector indicating the (x, y)
locations of five landmarks, normalized between 0 and 1. Mean squared error was used as the
training loss. When landmark detection is included, the target metric is still attribute classification
error. This is because the aligned CelebA images are used, so accurate landmark detection is not
a challenge, but including it as an additional task can still provide additional regularization to a
multitask model.

A dropout rate of 0.5 was applied at the output of after each core layer. The experiments used a
batch size of 32. After validation loss converges via Adam, models are trained with RMSProp with
learning rate 1e−5, which is a similar approach to that used by Günther et al. (2017).

A.5 EXPERIMENTS ON VISUALIZING LAYER BEHAVIOR

To produce the resulting image for a fixed model, the predictions at each pixel locations were gen-
erated, denormalized, and mapped back to the pixel coordinate space. The loss used for this exper-
iment was mean squared error (MSE). Since all pixels for a task image are used for training, there
is no sense of generalization to unseen data within a task. As a result, no dropout was used in this
experiment.

Task models are distinguished completely by their learned soft ordering scaling parameters st, so
the joint model can be viewed as a generative model which generates different 4’s for varying values
of st. To visualize the behavior of layer l at depth d for task t, the output of the model for task t
was visualized while sweeping s(t,l,d) across [0, 1]. To enable this sweeping while keeping the rest
of the model behavior fixed, the softmax for each task at each depth was replaced with a sigmoid
activation. Note that due to the global avgerage pooling decoder, altering the weight of a single layer
has no observable effect at depth four.
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