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Classical reverse-mode automatic differentiation (AD) imposes only a small constant-factor
overhead in operation count over the original computation, but has storage requirements that
grow, in the worst case, in proportion to the time consumed by the original computation.
This storage blowup can be ameliorated by checkpointing, a process that reorders application
of classical reverse-mode AD over an execution interval to tradeoff space vs. time. Applica-
tion of checkpointing in a divide-and-conquer fashion to strategically chosen nested execution
intervals can break classical reverse-mode AD into stages which can reduce the worst-case
growth in storage from linear to sublinear. Doing this has been fully automated only for com-
putations of particularly simple form, with checkpoints spanning execution intervals resulting
from a limited set of program constructs. Here we show how the technique can be automated
for arbitrary computations. The essential innovation is to apply the technique at the level of
the language implementation itself, thus allowing checkpoints to span any execution interval.
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1. Introduction

Reverse-mode automatic differentiation (AD) traverses the run-time dataflow graph of a
calculation in reverse order, in a so-called reverse sweep, so as to calculate a Jacobian-
transpose-vector product of the Jacobian of the given original (or primal) calculation
[37]. Although the number of arithmetic operations involved in this process is only a
constant factor greater than that of the primal calculation, some values involved in the
primal dataflow graph must be saved for use in the reverse sweep, thus imposing con-
siderable storage overhead. This is accomplished by replacing the primal computation
with a forward sweep that performs the primal computation while saving the requisite
values on a data structure known as the tape. A technique called checkpointing [42]
reorders portions of the forward and reverse sweeps to reduce the maximal length of the
requisite tape. Doing so, however, requires (re)computation of portions of the primal and
saving the requisite program state to support such as snapshots. Overall space savings
result when the space saved by reducing the maximal length of the requisite tape ex-
ceeds the space cost of storing the snapshots. Such space saving incurs a time cost in
(re)computation of portions of the primal. Different checkpointing strategies lead to a
space-time tradeoff.
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We introduce some terminology that will be useful in describing checkpointing. An
execution point is a point in time during the execution of a program. A program point is
a location in the program code. Since program fragments might be invoked zero or more
times during the execution of a program, each execution point corresponds to exactly
one program point but each program point may correspond to zero or more execution
points. An execution interval is a time interval spanning two execution points. A program
interval is a fragment of code spanning two program points. Program intervals are usually
constrained so that they nest, i.e., they do not cross one boundary of a syntactic program
construct without crossing the other. Each program interval may correspond to zero
or more execution intervals, those execution intervals whose endpoints result from the
same invocation of the program interval. Each execution interval corresponds to at most
one program interval. An execution interval might not correspond to a program interval
because the endpoints might not result from the same invocation of any program interval.

Figs. 1 and 2 illustrate the process of performing reverse-mode AD with and without
checkpointing. Control flows from top to bottom, and along the direction of the arrow
within each row. The symbols u, v, and p0, . . . , p6 denote execution points in the primal,
u being the start of the computation whose derivative is desired, v being the end of
that computation, and each pi being an intermediate execution point in that computa-
tion. Reverse mode involves various sweeps, whose execution intervals are represented as
horizontal green, red, and blue lines. Green lines denote (re)computation of the primal
without taping. Red lines denote computation of the primal with taping, i.e., the forward
sweep of reverse mode. Blue lines denote computation of the Jacobian-transpose-vector
product, i.e., the reverse sweep of reverse mode. The vertical black lines denote collec-
tions of execution points across the various sweeps that correspond to execution points
in the primal, each particular execution point being the intersection of a horizontal line
and a vertical line. In portions of Figs. 1 and 2 other than Fig. 1(a) we refer to execution
points for other sweeps besides the primal in a given collection with the symbols u, v,
and p0, . . . , p6 when the intent is clear. The vertical violet, gold, pink, and brown lines
denote execution intervals for the lifetimes of various saved values. Violet lines denote
the lifetime of a value saved on the tape during the forward sweep and used during the
reverse sweep. The value is saved at the execution point at the top of the violet line and
used once at the execution point at the bottom of that line. Gold and pink lines denote
the lifetime of a snapshot.1 The snapshot is saved at the execution point at the top
of each gold or pink line and used at various other execution points during its lifetime.
Green lines emanating from a gold or pink line indicate restarting a portion of the primal
computation from a saved snapshot.

Fig. 1(a) depicts the primal computation, y = f(x), which takes t time steps, with x
being a portion of the program state at execution point u and y being a portion of the
program state at execution point v computed from x. Such is performed without taping
(green). Fig. 1(b) depicts classical reverse mode without checkpointing. An uninterrupted
forward sweep (red) is performed for the entire length of the primal, then an uninter-
rupted reverse sweep (blue) is performed for the entire length. Since the tape values
are consumed in reverse order from which they are saved, the requisite tape length is
O(t). Fig. 1(c) depicts a checkpoint introduced for the execution interval [p0, p3). This
interrupts the forward sweep and delays a portion of that sweep until the reverse sweep.
Execution proceeds by a forward sweep (red) that tapes during the execution interval
[u, p0), a primal sweep (green) without taping during the execution interval [p0, p3), a

1The distinction between gold and pink lines, the meaning of brown lines, and the meaning of the black tick marks
on the left of the gold and pink lines will be explained in Section 3.10.
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Figure 1. Checkpointing in reverse-mode AD. See text for description.

taping forward sweep (red) during the execution interval [p3, v), a reverse sweep (blue)
during the execution interval [v, p3), a taping forward sweep (red) during the execution
interval [p0, p3), a reverse sweep (blue) during the execution interval [p3, p0), and then a
reverse sweep (blue) during the execution interval [p0, u). The forward sweep for the ex-
ecution interval [p0, p3) is delayed until after the reverse sweep for the execution interval
[v, p3). As a result of such reordering, the tapes required for those sweeps are not simul-
taneously live. Thus the requisite tape length is the maximum of the two tape lengths,
not their sum. This savings comes at a cost. To allow such out-of-order execution, a
snapshot (gold) must be saved at p0 and the portion of the primal during the execution
interval [p0, p3) must be computed twice, first without taping (green) then with (red).

A checkpoint can be introduced into a portion of the forward sweep that has been
delayed, as shown in Fig. 1(d). An additional checkpoint can be introduced for the ex-
ecution interval [p1, p2). This will delay a portion of the already delayed forward sweep
even further. As a result, the portions of the tape needed for the three execution inter-
vals [p1, p2), [p2, p3), and [p3, v) are not simultaneously live, thus further reducing the
requisite tape length, but requiring more (re)computation of the primal (green). The
execution intervals for multiple checkpoints must either be disjoint or must nest; the
execution interval of one checkpoint cannot cross one endpoint of the execution interval
of another checkpoint without crossing the other endpoint.

Execution intervals for checkpoints can be specified in a variety of ways.

program interval
Execution intervals of specified program intervals constitute checkpoints.

subroutine call site
Execution intervals of specified subroutine call sites constitute checkpoints.

subroutine body
Execution intervals of specified subroutine bodies constitute checkpoints [42].

Nominally, these have the same power; with any one, one could achieve the effect of the
other two. Specifying a subroutine body could be accomplished by specifying all call sites
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to that subroutine. Specifying some call sites but not others could be accomplished by
having two variants of the subroutine, one whose body is specified and one whose is not,
and calling the appropriate one at each call site. Specifying a program interval could be
accomplished by extracting that interval as a subroutine.
Tapenade [17] allows the user to specify program intervals for checkpoints with

the c$ad checkpoint-start and c$ad checkpoint-end pragmas. Tapenade, by default,
checkpoints all subroutine calls [11]. This default can be overridden for named subrou-
tines with the -nocheckpoint command-line option and for both named subroutines and
specific call sites with the c$ad nocheckpoint pragma.

Recursive application of checkpointing in a divide-and-conquer fashion, i.e., “treev-
erse,” can divide the forward and reverse sweep into stages run sequentially [13, 15]. The
key idea is that only one stage is live at a time, thus requiring a shorter tape. However,
the state of the primal computation at various intermediate execution points needs to
be saved as snapshots, in order to (re)run the requisite portion of the primal to allow
the forward and reverse sweeps for each stage to run in turn. This process is illustrated
in Fig. 2. Consider a root execution interval [u, v) of the derivative calculation. Without
checkpointing, the forward and reverse sweeps span the entire root execution interval, as
shown in Fig. 2(a). One can divide the root execution interval [u, v) into two subinter-
vals [u, p) and [p, v) at the split point p and checkpoint the first subinterval [u, v). This
divides the forward (red) and reverse (blue) sweeps into two stages. These two stages
are not simultaneously live. If the two subintervals are the same length, this halves the
storage needed for the tape at the expense of running the primal computation for [u, p)
twice, first without taping (green), then with taping (red). This requires a single snapshot
(gold) at u. This process can be viewed as constructing a binary checkpoint tree

[u, v)

[u, p) [p, v)

whose nodes are labeled with execution intervals, the intervals of the children of a node
are adjacent, the interval of node is the disjoint union of the intervals of its children, and
left children are checkpointed.

One can construct a left-branching binary checkpoint tree over the same root execution
interval [u, v) with the split points p0, p1, and p2.

[u, v)

[u, p2)

[u, p1)

[u, p0) [p0, p1)

[p1, p2)

[p2, v)

This can also be viewed as constructing an n-ary checkpoint tree

[u, v)

[u, p0) [p0, p1) [p1, p2) [p2, v)

where all children but the rightmost are checkpointed. This leads to nested checkpoints for
the execution intervals [u, p0), [u, p1), and [u, p2) as shown in Fig. 2(c). Since the starting
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u vp0

(a)
pu v

u p0 p1 p2 v

(b) (c)

u p0 p1 p2 v

(d)
u p0 p1 p2 v

u p0 p1 p2 p3 p4 p5 p6 v

(e) (f)

Figure 2. Divide-and-conquer checkpointing in reverse-mode AD. See text for description.

execution point u is the same for these intervals, a single snapshot (gold) with longer
lifetime suffices. These checkpoints divide the forward (red) and reverse (blue) sweeps
into four stages. This allows the storage needed for the tape to be reduced arbitrarily
(i.e., the red and blue segments can be made arbitrarily short), by rerunning successively
shorter prefixes of the primal computation (green), without taping, running only short
segments (red) with taping. This requires O(t) increase in time for (re)computation of
the primal (green).
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Alternatively, one can construct a right-branching binary checkpoint tree over the same
root execution interval [u, v) with the same split points p0, p1, and p2.

[u, v)

[u, p0) [p0, v)

[p0, p1) [p1, v)

[p1, p2) [p2, v)

This also divides the forward (red) and reverse (blue) sweeps into four stages. With this,
the requisite tape length (the maximal length of the red and blue segments) can be
reduced arbitrarily while running the primal (green) just once, by saving more snapshots
(gold and pink), as shown in Fig. 2(d), This requires O(t) increase in space for storage
of the live snapshots (gold and pink).

Thus we see that divide-and-conquer checkpointing can make the requisite tape arbi-
trarily small with either left- or right-branching binary checkpoint trees. This involves a
space-time tradeoff. The left-branching binary checkpoint trees require a single snapshot
but O(t) increase in time for (re)computation of the primal (green). The right-branching
binary checkpoint trees require O(t) increase in space for storage of the live snapshots
(gold and pink) but (re)run the primal only once.

One can also construct a complete binary checkpoint tree over the same root execution
interval [u, v) with the same split points p0, p1, and p2.

[u, v)

[u, p1)

[u, p0) [p0, p1)

[p1, v)

[p1, p2) [p2, v)

This constitutes application of the approach from Fig. 2(b) in a divide-and-conquer
fashion as shown in Fig. 2(e). This also divides the forward (red) and reverse (blue)
sweeps into four stages. One can continue this divide-and-conquer process further, with
more split points, more snapshots, and more but shorter stages, as shown in Fig. 2(f).
This leads to O(log t) increase in space for storage of the live snapshots (gold and pink)
and O(log t) increase in time for (re)computation of the primal (green). Variations of this
technique can tradeoff between different improvements in space and/or time complexity,
leading to overhead in a variety of sublinear asymptotic complexity classes in one or
both. In order to apply this technique, we must be able to construct a checkpoint tree
of the desired shape with appropriate split points. This in turn requires the ability to
interrupt the primal computation at appropriate execution points, save the interrupted
execution state as a capsule, and restart the computation from the capsules, sometimes
repeatedly.2

Any given divide-and-conquer decomposition of the same root execution interval with
the same split points can be viewed as either a binary checkpoint tree or an n-ary
checkpoint tree. Thus Fig. 2(e) can be viewed as either of the following.

2The correspondence between capsules and snapshots will be discussed in Section 3.10.
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[u, v)

[u, p1)

[u, p0) [p0, p1)

[p1, v)

[p1, p2) [p2, v)

[u, v)

[u, p0) [p0, p1) [p1, v)

[p1, p2) [p2, v)

Similarly, Fig. 2(f) can be viewed as either of the following.

[u, v)

[u, p3)

[u, p1)

[u, p0) [p0, p1)

[p1, p3)

[p1, p2) [p2, p3)

[p3, v)

[p3, p5)

[p3, p4) [p4, p5)

[p5, v)

[p5, p6) [p6, v)

[u, v)

[u, p0) [p0, p1) [p1, p3)

[p1, p2) [p2, p3)

[p3, v)

[p3, p4) [p4, p5) [p5, v)

[p5, p6) [p6, v)

Thus we distinguish between two algorithms to perform divide-and-conquer checkpoint-
ing.

binary
An algorithm that constructs a binary checkpoint tree.

treeverse
The algorithm from [13, Figs. 2 and 3] that constructs an n-ary checkpoint tree.

There is, however, a simple correspondence between associated binary and n-ary check-
point trees. The n-ary checkpoint tree is derived from the binary checkpoint tree by
coalescing each maximal sequence of left branches into a single node. Thus we will see,
in Section 5, that these two algorithms exhibit the same properties.

Note that (divide-and-conquer) checkpointing does not incur any space or time over-
head in the forward or reverse sweeps themselves (i.e., the number of violet lines and the
total length of red and blue lines). Any space overhead results from the snapshots (gold
and pink) and any time overhead results from (re)computation of the primal (green).

Several design choices arise in the application of divide-and-conquer checkpointing in
addition to the choice of binary vs. n-ary checkpoint trees.

● What root execution interval(s) should be subject to divide-and-conquer checkpoint-
ing?

● Which execution points are candidate split points? The divide-and-conquer process of
constructing the checkpoint tree will select actual split points from these candidates.

● What is the shape or depth of the checkpoint tree, i.e., what is the termination criterion
for the divide-and-conquer process?

Since the leaf nodes of the checkpoint tree correspond to stages, the termination crite-
rion and the number of evaluation steps in the stage at each leaf node (the length of a
pair of red and blue lines) are mutually constrained. The number of live snapshots at
a leaf (how many gold and pink lines are crossed by a horizontal line drawn leftward
from that stage, the pair of red and blue lines, to the root) depends on the depth of
the leaf and its position in the checkpoint tree. Different checkpoint trees, with different
shapes resulting from different termination criteria and split points, can lead to a differ-
ent maximal number of live snapshots, resulting in different storage requirements. The
amount of (re)computation of the primal (the total length of the green lines) can also
depend on the shape of the checkpoint tree, thus different checkpoint trees, with different
shapes resulting from different termination criteria and split points, can lead to differ-
ent compute-time requirements. Thus different strategies for specifying the termination
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criterion and the split points can influence the space-time tradeoff.
We make a distinction between several different approaches to selecting root execution

intervals subject to divide-and-conquer checkpointing.

loop
Execution intervals resulting from invocations of specified DO loops are subject
to divide-and-conquer checkpointing.

entire derivative calculation
The execution interval for an entire specified derivative calculation is subject to
divide-and-conquer checkpointing.

We further make a distinction between several different approaches to selecting candidate
split points.

iteration boundary
Iteration boundaries of the DO loop specified as the root execution interval are
taken as candidate split points.

arbitrary
Any execution point inside the root execution interval can be taken as a candidate
split point.

We further make a distinction between several different approaches to specifying the
termination criterion and deciding which candidate split points to select as actual split
points.

bisection
Split points are selected so as to divide the computation dominated by a node in
half as one progresses successively from right to left among children [13, equation
(12)]. One can employ a variety of termination criteria, including that from [13,
p. 46]. If the termination criterion is such that the total number of leaves is
a power of two, one obtains a complete binary checkpoint tree. A termination
criterion that bounds the number of evaluation steps in a leaf limits the size of
the tape and achieves logarithmic overhead in both asymptotic space and time
complexity compared with the primal.

binomial
Split points are selected using the criterion from [13, equation (16)] The termina-
tion criterion from [13, p. 46] is usually adopted to achieve the desired properties
discussed in [13]. Different termination criteria can be selected to control space-
time tradeoffs.
fixed space overhead

One can bound the size of the tape and the number of snapshots to ob-
tain sublinear but superlogarithmic overhead in asymptotic time complexity
compared with the primal.

fixed time overhead
One can bound the size of the tape and the (re)computation of the pri-
mal to obtain sublinear but superlogarithmic overhead in asymptotic space
complexity compared with the primal.

logarithmic space and time overhead
One can bound the size of the tape and obtain logarithmic overhead in
both asymptotic space and time complexity compared with the primal. The
constant factor is less than that of bisection checkpointing.

We elaborate on the strategies for selecting actual split points from candidate split points
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and the associated termination criteria in Section 5.
Divide-and-conquer checkpointing has only been provided to date in AD systems in

special cases. For example, Tapenade allows the user to select invocations of a specified
DO loop as the root execution interval for divide-and-conquer checkpointing with the
c$ad binomial-ckp pragma, taking iteration boundaries of that loop as candidate split
points. Tapenade employs binomial selection of split points and a fixed space over-
head termination criterion. Note, however, that Tapenade only guarantees this fixed
space overhead property for DO loop bodies that take constant time. Similarly adol-
c [14] contains a nested taping mechanism for time-integration processes [21] that also
performs divide-and-conquer checkpointing. This only applies to code formulated as a
time-integration process.

Here, we present a framework for applying divide-and-conquer checkpointing to arbi-
trary code with no special annotation or refactoring required. An entire specified deriva-
tive calculation is taken as the root execution interval, rather than invocations of a
specified DO loop. Arbitrary execution points are taken as candidate split points, rather
than iteration boundaries. As discussed below in Section 5, both binary and n-ary (treev-
erse) checkpoint trees are supported. Furthermore, as discussed below in Section 5, both
bisection and binomial checkpointing are supported. Additionally, all of the above termi-
nation criteria are supported: fixed space overhead, fixed time overhead, and logarithmic
space and time overhead. Any combination of the above checkpoint-tree generation algo-
rithms, split-point selection methods, and termination criteria are supported. In order to
apply this framework, we must be able to interrupt the primal computation at appropri-
ate execution points, save the interrupted execution state as a capsule, and restart the
computation from the capsules, sometimes repeatedly. This is accomplished by building
divide-and-conquer checkpointing on top of a general-purpose mechanism for interrupt-
ing and resuming computation. This mechanism is orthogonal to AD. We present several
implementations of our framework which we call checkpointVLAD. In Section 6, we
compare the space and time usage of our framework with that of Tapenade on two
examples.

Note that one cannot generally achieve the space and time guarantees of divide-and-
conquer checkpointing with program-interval, subroutine-call-site, or subroutine-body
checkpointing unless the call tree has the same shape as the requisite checkpoint tree.
Furthermore, one cannot generally achieve the space and time guarantees of divide-and-
conquer checkpointing for DO loops by specifying the loop body as a program-interval
checkpoint because such would lead to a right-branching checkpoint tree and behavior
analogous to Fig. 2(d). Moreover, if one allows split points at arbitrary execution points,
the resulting checkpoint execution intervals may not correspond to program intervals.

Some form of divide-and-conquer checkpointing is necessary. One may wish to take the
gradient of a long-running computation, even if it has low asymptotic time complexity.
The length of the tape required by reverse mode without divide-and-conquer checkpoint-
ing increases with increasing run time. Modern computers can execute several billion
floating point operations per second, even without GPUs and multiple cores, which only
exacerbate the problem. If each such operation required storage of a single eight-byte
double precision number, modern terabyte RAM sizes would fill up after a few seconds
of computation. Thus without some form of divide-and-conquer checkpointing, it would
not be possible to efficiently take the gradient of a computation that takes more than a
few seconds.

The general strategy of divide-and-conquer checkpointing, the n-ary treeverse algo-
rithm, the bisection and binomial strategies for selecting split points, and the termination
criteria that provide fixed space overhead, fixed time overhead, and logarithmic space
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and time overhead were all presented in [13]. Furthermore, Tapenade has implemented
divide-and-conquer checkpointing with the n-ary treeverse algorithm, the binomial strat-
egy for selecting split points, and the termination criterion that provides fixed space
overhead, but only for root execution intervals corresponding to invocations of specified
DO loops that meet certain criteria with split points restricted to iteration boundaries of
those loops. To our knowledge, the binary checkpoint-tree algorithm presented here and
the framework for allowing it to achieve all of the same guarantees as the n-ary treeverse
algorithm is new. However, our central novel contribution here is providing a frame-
work for supporting either the binary checkpoint-tree algorithm or the n-ary treeverse
algorithm, either bisection or binomial split point selection, and any of the termination
criteria of fixed space overhead, fixed time overhead, or logarithmic space and time over-
head in a way that supports taking the entire derivative calculation as the root execution
interval and taking arbitrary execution points as candidate split points, by integrating
the framework into the language implementation.

Some earlier work [18, 19, 39] prophetically presaged the work here. This work seems
to have received far less exposure and attention than deserved. Perhaps because the ideas
therein were so advanced and intricate that it was difficult to communicate those ideas
clearly. Moreover, the authors report difficulties in getting their implementations to be
fully functional. Our work here formulates the requisite ideas and mechanisms carefully
and precisely, using methods from the programming-language community, like formula-
tion of divide-and-conquer checkpointing of a function as divide-and-conquer application
of reverse mode to two functions whose composition is the original function, formulation
of the requisite decomposition as a precise and abstract interruption and resumption
interface, formulation of semantics precisely through specification of evaluators, use of
CPS evaluators to specify an implementation of the interruption and resumption inter-
face, and systematic derivation of a compiler from that evaluator via CPS conversion, to
allow complete, correct, comprehensible, and fully general implementation.

2. The Limitations of Divide-and-Conquer Checkpointing with Split Points
at Fixed Syntactic Program Points like Loop Iteration Boundaries

Consider the example in Listing 1. This example, y = f(x), while contrived, is a simple
caricature of a situation that arises commonly in practice, e.g., in adaptive grid methods.
Here, the duration of the inner loop varies wildly as some function l(x, i) of the input
and the outer loop index, perhaps 2⌊lg(n)⌋−⌊lg(1+(1007⌊3x⌋i mod n))⌋, that is small on most
iterations of the outer loop but O(n) on a few iterations. If the split points were limited to
iteration boundaries of the outer loop, as would be common in existing implementations,
the increase in space or time requirements would grow larger than sublinearly. The issue
is that for the desired sublinear growth properties to hold, it must be possible to select
arbitrary execution points as split points. In other words, the granularity of the divide-
and-conquer decomposition must be primitive atomic computations, not loop iterations.
The distribution of run time across the program is not modularly reflected in the static
syntactic structure of the source code, in this case the loop structure. Often, the user is
unaware of or even unconcerned with the micro-level structure of atomic computations
and does not wish to break the modularity of the source code to expose such. Yet the user
may still wish to reap the sublinear space or time overhead benefits of divide-and-conquer
checkpointing. Moreover, the relative duration of different paths through a program
may vary from loop iteration to loop iteration in a fashion that is data dependent,
as shown by the above example, and not even statically determinable. We will now
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Listing 1 Fortran example. This example is rendered in checkpointVLAD in Listing 2. Space and time overhead

of two variants of this example when run under Tapenade are presented in Fig. 22. The pragma used for the variant
with divide-and-conquer checkpointing of the outer DO loop is shown. This pragma is removed for the variant

with no checkpointing.

function ilog2(n)
ilog2 = dlog(real(n, 8))/ dlog (2.0d0)
end

subroutine f(n, x, y)
y = x

c$ad binomial -ckp n+1 30 1
do i = 1, n

m = 2**( ilog2(n)-
+ ilog2 (1+int(mod(real(x, 8)**3* real(i, 8)*
+ 1007.0d0,
+ real(n, 8)))))

do j = 1, m
y = y*y
y = sqrt(y)

end do
end do
end

program main
read *, n
read *, x
read *, yb
call f(n, x, y)
call f_b(n, x, xb , y, yb)
print *, y
print *, xb
end

proceed to discuss an implementation strategy for divide-and-conquer checkpointing that
does not constrain split points to loop iteration boundaries or other syntactic program
constructs and does not constrain checkpoints to program intervals or other syntactic
program constructs. Instead, it can take any arbitrary execution point as a split point
and introduce checkpoints at any resulting execution interval.

3. Technical Details of our Method

Implementing divide-and-conquer checkpointing requires the capacity to

(1) measure the length of the primal computation,
(2) interrupt the primal computation at a portion of the measured length,
(3) save the state of the interrupted computation as a capsule, and
(4) resume an interrupted computation from a capsule.

For our purposes, the second and third operations are always performed together and can
be fused into a single operation. These can be difficult to implement efficiently as library
routines in an existing language implementation (see Section 7.2). Thus we design a new
language implementation, checkpointVLAD, with efficient support for these low-level
operations.

3.1 Core Language

checkpointVLAD adds builtin AD operators to a functional pre-AD core language.
In the actual implementation, this core language is provided with a Scheme-like surface
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A ⟨(λx.e), ρ⟩ v = E ρ[x↦ v] e (2)

E ρ c = c (3)

E ρ x = ρ x (4)

E ρ (λx.e) = ⟨(λx.e), ρ⟩ (5)

E ρ (e1 e2) = A (E ρ e1) (E ρ e2) (6)

E ρ (if e1 then e2 else e3) = if (E ρ e1) then (E ρ e2) else (E ρ e3) (7)

E ρ (◇e) = ◇(E ρ e) (8)

E ρ (e1 ● e2) = (E ρ e1) ● (E ρ e2) (9)

Figure 3. Direct-style evaluator for the core checkpointVLAD language.

syntax.3 But nothing turns on this; the core language can be exposed with any surface
syntax. For expository purposes, we present the core language here in a simple, more
traditional, math-like notation.
checkpointVLAD employs the same functional core language as our earlier vlad

system [26, 27, 34]. Support for AD in general, and divide-and-conquer checkpointing in
particular, is simplified in a functional programming language (see Section 7.3). Except
for this simplification, which can be eliminated with well-known techniques (e.g., monads
[43] and uniqueness types [1]) for supporting mutation in functional languages, nothing
turns on our choice of core language. We intend our core language as a simple expository
vehicle for the ideas presented here; they could be implemented in other core languages
(see Section 7.2).

Our core language contains the following constructs:

e ∶∶= c ∣ x ∣ λx.e ∣ e1 e2 ∣ if e1 then e2 else e3 ∣ ◇e ∣ e1 ● e2 (1)

Here, e denotes expressions, c denotes constants, x denotes variables, e1 e2 denotes func-
tion application, ◇ denotes builtin unary operators, and ● denotes builtin binary oper-
ators. For expository simplicity, the discussion of the core language here omits many
vagaries such as support for recursion and functions of multiple arguments; the actual
implementation supports these using standard mechanisms that are well known within
the programming-language community (e.g., tupling or Currying).

3.2 Direct-Style Evaluator for the Core Language

We start by formulating a simple evaluator for this core language (Fig. 3) and extend
such to perform AD and ultimately divide-and-conquer checkpointing. This evaluator is
written in what is known in the programming-language community as direct style, where
functions (in this case E , denoting ‘eval’ and A, denoting ‘apply’) take inputs as function-
call arguments and yield outputs as function-call return values [30]. While this evaluator
can be viewed as an interpreter, it is intended more as a description of the evaluation
mechanism; this mechanism could be the underlying hardware as exposed via a compiler.
Indeed, as described below in Section 3.14, we have written three implementations, one
an interpreter, one a hybrid compiler/interpreter, and one a compiler.

With any evaluator, one distinguishes between two language evaluation strata: the
target, the language being implemented and the process of evaluating programs in that

3The surface syntax employed differs slightly from Scheme in ways that are irrelevant to the issue at hand.

12



language, and the host, the language in which the evaluator is written and the process of
evaluating the evaluator itself. In our case, the target is checkpointVLAD, while the
host varies among our three implementations; for the first two it is Scheme while for
the third it is the underlying hardware, achieved by compilation to machine code via c.

In the evaluator in Fig. 3, ρ denotes an environment, a mapping from variables to their
values, ρ0 denotes the empty environment that does not map any variables, ρ x denotes
looking up the variable x in the environment ρ to obtain its value, ρ[x ↦ v] denotes
augmenting an environment ρ to map the variable x to the value v, and E ρ e denotes
evaluating the expression e in the context of the environment ρ. There is a clause for
E in Fig. 3, (3) to (9), for each construct in (1). Clause (3) says that one evaluates a
constant by returning that constant. Clause (4) says that one evaluates a variable by
returning its value in the environment. The notation ⟨e, ρ⟩ denotes a closure, a lambda
expression e together with an environment ρ containing values for the free variables in e.
Clause (5) says that one evaluates a lambda expression by returning a closure with the
environment in the context that the lambda expression was evaluated in. Clause (6)
says that one evaluates an application by evaluating the callee expression to obtain a
closure, evaluating the argument expression to obtain a value, and then applying the
closure to the value with A. A, as described in (2), evaluates the body of the lambda
expression in the callee closure in the environment of that closure augmented with the
formal parameter of that lambda expression bound to the argument value. The remaining
clauses are all analogous to clause (9), which says that one evaluates an expression e1 ●e2

in the target by evaluating e1 and e2 to obtain values and then applying ● in the host to
these values.

3.3 Adding AD Operators to the Core Language

Unlike many AD systems implemented as libraries, we provide support for AD by aug-
menting the core language to include builtin AD operators for both forward and reverse
mode [26, 27, 34]. This allows seamless integration of AD into the language in a com-
pletely general fashion with no unimplemented or erroneous corner cases. In particular, it

allows nesting [32]. In checkpointVLAD, we adopt slight variants of the
Ð→
J and

←Ð
J op-

erators previously incorporated into vlad. (Nothing turns on this. The variants adopted
here are simpler, better suit our expository purposes, and allow us to focus on the issue
at hand.) In checkpointVLAD, these operators have the following signatures.

Ð→
J ∶ f x x́↦ (y, ý)

←Ð
J ∶ f x ỳ ↦ (y, x̀)

We use the notation x́ and x̀ to denote tangent or cotangent values associated with the
primal value x respectively, and the notation (x, y) to denote a pair of values. Since
in checkpointVLAD, functions can take multiple arguments but only return a single
result, which can be an aggregate like a pair, the AD operators take the primal and the
associated (co)tangent as distinct arguments but return the primal and the associated
(co)tangent as a pair of values.

The
Ð→
J operator provides the portal to forward mode and calls a function f on a

primal x with a tangent x́ to yield a primal y and a tangent ý. The
←Ð
J operator provides

the portal to reverse mode and calls a function f on a primal x with a cotangent ỳ to
yield a primal y and a cotangent x̀.4 Unlike the original vlad, here, we restrict ourselves

4In the implementation,
Ð→J and

←ÐJ are named j* and *j respectively.
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Ð→
J v1 v2 v́3 = let (v4 ⊳ v́5) = (A v1 (v2 ⊳ v́3)) in (v4, v́5) (11)
←Ð
J v1 v2 v̀3 = let (v4 ⊲ v̀5) = ((A v1 v2) ⊲ v̀3) in (v4, v̀5) (12)

E ρ (
Ð→
J e1 e2 e3) =

Ð→
J (E ρ e1) (E ρ e2) (E ρ e3) (13)

E ρ (
←Ð
J e1 e2 e3) =

←Ð
J (E ρ e1) (E ρ e2) (E ρ e3) (14)

Figure 4. Additions to the direct-style evaluator for checkpointVLAD to support AD.

to the case where (co)tangents are ground data values, i.e., reals and (arbitrary) data
structures containing reals and other scalar values, but not functions (i.e., closures).
Nothing turns on this; it allows us to focus on the issue at hand.

The implementations of vlad and checkpointVLAD are disjoint and use completely
different technology. The Stalin∇ [36] implementation of vlad is based on source-code
transformation, conceptually applied reflectively at run time but migrated to compile
time through partial evaluation. The implementation of checkpointVLAD uses some-
thing more akin to operator overloading. Again, nothing turns on this; this simplification
is for expository purposes and allows us to focus on the issue at hand (see Section 7.2).

In checkpointVLAD, AD is performed by overloading the arithmetic operations in
the host, in a fashion similar to fadbad++ [7]. The actual method used is that employed
by r6rs-ad5 and DiffSharp6. The key difference is that fadbad++ uses c++ templates
to encode a hierarchy of distinct forward-mode types (e.g.,, F<double>, F<F<double> >,
. . . ), distinct reverse-mode types (e.g.,, B<double>, B<B<double> >, . . . ), and mixtures
thereof (e.g.,, F<B<double> >, B<F<double> >, . . . ) while here, we use a dynamic, run-
time approach where numeric values are tagged with the nesting level [32, 41]. Template
instantiation at compile-time specializes code to different nesting levels. The dynamic
approach allows a single interpreter (host), formulated around unspecialized code, to
interpret different target programs with different nesting levels.

3.4 Augmenting the Direct-Style Evaluator to Support the AD Operators

We add AD into the target language as new constructs.

e ∶∶=
Ð→
J e1 e2 e3 ∣

←Ð
J e1 e2 e3 (10)

We implement this functionality by augmenting the direct-style evaluator with new

clauses for E (Fig. 4), clause (13) for
Ð→
J and clause (14) for

←Ð
J . These clauses are all

analogous to clause (9), formulated around
Ð→
J and

←Ð
J operators in the host. These are

defined in (11) and (12). The
Ð→
J and

←Ð
J operators in the host behave like A except that

they level shift to perform AD. Just like (A f x) applies a target function f (closure) to

a target value x, (
Ð→
J f x x́) performs forward mode by applying a target function f (clo-

sure) to a target primal value x and a target tangent value x́, while (
←Ð
J f x ý) performs

reverse mode by applying a target function f (closure) to a target primal value x and a
target cotangent value ỳ.

As described in (11),
Ð→
J operates by recursively walking v2, a data structure contain-

ing primals, in tandem with v́3, a data structure containing tangents, to yield a single

5https://github.com/qobi/R6RS-AD and https://engineering.purdue.edu/~qobi/stalingrad-examples2009/
6http://diffsharp.github.io/DiffSharp/
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data structure where each numeric leaf value is a dual number, a numeric primal value
associated with a numeric tangent value. This recursive walk is denoted as v2 ⊳ v́3. A is
then used to apply the function (closure) v1 to the data structure produced by v2 ⊳ v́3.
Since the input argument is level shifted and contains dual numbers instead of ordinary
reals, the underlying arithmetic operators invoked during the application perform for-
ward mode by dispatching on the tags at run time. The call to A yields a result data
structure where each numeric leaf value is a dual number. This is then recursively walked
to separate out two data structures, one, v4, containing the numeric primal result values,
and the other, v́5, containing the numeric tangent result values, which are returned as a
pair (v4, v́5) This recursive walk is denoted as let (v4 ⊳ v́5) = . . . in . . ..

As described in (12),
←Ð
J operates by recursively walking v2, a data structure containing

primals, to replace each numeric value with a tape node. A is then used to apply the
function (closure) v1 to this modified v2. Since the input argument is level shifted and
contains tape nodes instead of ordinary reals, the underlying arithmetic operators invoked
during the application perform the forward sweep of reverse mode by dispatching on the
tags at run time. The call to A yields a result data structure where each numeric leaf
value is a tape node. A recursive walk is performed on this result data structure, in
tandem with a data structure v̀3 of associated cotangent values, to initiate the reverse
sweep of reverse mode. This combined operation is denoted as ((A v1 v2) ⊲ v̀3). The
result of the forward sweep is then recursively walked to replace each tape node with its
numeric primal value and the input value is recursively walked to replace each tape node
with the cotangent computed by the reverse sweep. These are returned as a pair (v4, v̀5).
This combined operation is denoted as let (v4 ⊳ v̀5) = . . . in . . ..

3.5 An Operator to Perform Divide-and-Conquer Checkpointing in
Reverse-Mode AD

We introduce a new AD operator
✓
J to perform divide-and-conquer checkpointing.7 (For

expository simplicity, we focus for now on binary bisection checkpointing. In Section 5

below, we provide alternate implementations of
✓
J that perform treeverse and/or binomial

checkpointing.) The crucial aspect of the design is that the signature (and semantics) of
✓
J

is identical to
←Ð
J ; they are completely interchangeable, differing only in the space/time

complexity tradeoffs. This means that code need not be modified to switch back and forth
between ordinary reverse mode and various forms of divide-and-conquer checkpointing,

save interchanging calls to
←Ð
J and

✓
J .

Conceptually, the behavior of
✓
J is shown in Fig. 5. In this inductive definition, a

function f is split into the composition of two functions g and h in step (1), the capsule z
is computed by applying g to the input x in step (2), and the cotangent is computed by

recursively applying
✓
J to h and g in steps 3 and 4. This divide-and-conquer behavior is

terminated in a base case, when the function f is small, at which point the cotangent

is computed with
←Ð
J , in step (0). If step (1) splits a function f into two functions g

and h that take the same number of evaluation steps, and we terminate the recursion
when f takes a bounded number of steps, the recursive divide-and-conquer process yields
logarithmic asymptotic space/time overhead complexity.

7In the implementation,✓J is named checkpoint-*j.
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To compute (y, x̀) =
✓
J f x ỳ:

base case (f x fast): (y, x̀) =
←Ð
J f x ỳ (0)

inductive case: h ○ g = f (1)

z = g x (2)

(y, z̀) =
✓
J h z ỳ (3)

(z, x̀) =
✓
J g x z̀ (4)

Figure 5. Algorithm for binary checkpointing.

primops f x↦ l Return the number l of evaluation steps needed to com-
pute y = f(x).

interrupt f x l ↦ z Run the first l steps of the computation of f(x) and return
a capsule z.

resume z ↦ y If z = (interrupt f x l), return y = f(x).

Figure 6. General-purpose interruption and resumption interface.

The central difficulty in implementing the above is performing step (1), namely splitting
a function f into two functions g and h, such that f = h ○ g, ideally where we can specify
the split point, the number of evaluation steps through f where g transitions into h. A
sophisticated user can manually rewrite a subprogram f into two subprograms g and h.
A sufficiently powerful compiler or source transformation tool might also be able to do
so, with access to nonlocal program text. But an overloading system, with access only
to local information, would not be able to.

3.6 General-Purpose Interruption and Resumption Mechanism

We solve this problem by providing an interface to a general-purpose interruption and
resumption mechanism that is orthogonal to AD (Fig. 6). This interface allows (a) deter-
mining the number of evaluation steps of a computation, (b) interrupting a computation
after a specified number of steps, usually half the number of steps determined by the
mechanism in (a), and (c) resuming an interrupted computation to completion. A vari-
ety of implementation strategies for this interface are possible. We present two in detail
below, in Sections 3.8 and 3.12, and briefly discuss another in Section 7.2.

Irrespective of how one implements the general-purpose interruption and resumption

interface, one can use it to implement the binary bisection variant of
✓
J in the host, as

shown in Fig. 7. The function f is split into the composition of two functions g and h
by taking g as (λx.interrupt f x l), where l is half the number of steps determined by
(primops f x), and h as (λz.resume z).

3.7 Continuation-Passing-Style Evaluator

One way of implementing the general-purpose interruption and resumption interface
is to convert the evaluator from direct style to what is known in the programming-
language community as continuation-passing style (CPS) [30, 38, 40], where functions
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To compute (y, x̀) =
✓
J f x ỳ:

base case: (y, x̀) =
←Ð
J f x ỳ (0)

inductive case: l = primops f x (1)

z = interrupt f x ⌊ l2⌋ (2)

(y, z̀) =
✓
J (λz.resume z) z ỳ (3)

(z, x̀) =
✓
J (λx.interrupt f x ⌊ l2⌋) x z̀ (4)

Figure 7. Binary bisection checkpointing via the general-purpose interruption and resumption interface. Step (1)
need only be performed once at the beginning of the recursion, with steps (2) and (4) taking l at the next

recursion level to be ⌊ l
2
⌋ and step (3) taking l at the next recursion level to be ⌈ l

2
⌉. As discussed in the text, this

implementation is not quite correct, because (λz.resume z) in step (3) and (λx.interrupt f x ⌊ l
2
⌋) in step (4)

are host closures but need to be target closures. A proper implementation is given in Fig. 12.

(in this case E , A,
Ð→
J , and

←Ð
J in the host) take an additional continuation input k and

instead of yielding outputs via function-call return, do so by calling the continuation
with said output as arguments (Figs. 8 and 9). In such a style, functions never return;
they just call their continuation. With tail-call merging, this corresponds to a computed
go to and does not incur stack growth. This crucially allows an interruption to actually
return a capsule containing the saved state of the evaluator, including its continuation,
allowing the evaluation to be resumed by calling the evaluator with this saved state. This
‘level shift’ of return to calling a continuation, allowing an actual return to constitute
interruption, is analogous to the way backtracking is classically implemented in Prolog,
with success implemented as calling a continuation and failure implemented as actual
return. In our case, we further instrument the evaluator to thread two values as inputs
and outputs: the count n of the number of evaluation steps, which is incremented at each
call to E , and the limit l of the number of steps, after which an interrupt is triggered.

Fig. 8 contains the portion of the CPS evaluator for the core language corresponding
to Fig. 3, while Fig. 9 contains the portion of the CPS evaluator for the AD constructs
corresponding to Fig. 4. Except for (16), the equations in Figs. 3 and 4 are in one-to-one
correspondence to those in Figs. 8 and 9, in order. Clauses (17)–(19) are analogous to the
corresponding clauses (3)–(5) except that they call the continuation k with the result,
instead of returning that result. The remaining clauses for E in the CPS evaluator are
all variants of

E (λn l v1.
(E (λn l v2.

(k n l . . .))
n l ρ e2))

(n + 1) l ρ e1

(28)

for one-, two-, or three-argument constructs. This evaluates the first argument e1 and
calls the continuation (λn l v1. . . .) with its value v1. This continuation then evaluates
the second argument e2 and calls the continuation (λn l v2. . . .) with its value v2. This
continuation computes something, denoted by . . ., and calls the continuation k with the
resulting value.

The CPS evaluator threads a step count n and a step limit l through the evaluation
process. Each clause of E increments the step count exactly once to provide a coherent
fine-grained measurement of the execution time. Clause (16) of E implements interrup-

17



A k n l ⟨(λx.e), ρ⟩ v = E k n l ρ[x↦ v] e (15)

E k l l ρ e = ⟦k, ⟨(λ .e), ρ⟩⟧ (16)

E k n l ρ c = k (n + 1) l c (17)

E k n l ρ x = k (n + 1) l (ρ x) (18)

E k n l ρ (λx.e) = k (n + 1) l ⟨(λx.e), ρ⟩ (19)

E k n l ρ (e1 e2) = E (λn l v1.
(E (λn l v2.

(A k n l v1 v2))

n l ρ e2))

(n + 1) l ρ e1

(20)

E k n l ρ (if e1 then e2 else e3) = E (λn l v1.
(if v1

then (E k n l ρ e2)

else (E k n l ρ e3)))

(n + 1) l ρ e1

(21)

E k n l ρ (◇e) = E (λn l v.
(k n l (◇v)))

(n + 1) l ρ e

(22)

E k n l ρ (e1 ● e2) = E (λn l v1.
(E (λn l v2.

(k n l (v1 ● v2)))

n l ρ e2))

(n + 1) l ρ e1

(23)

Figure 8. CPS evaluator for the core checkpointVLAD language.

tion. When the step count reaches the step limit, a capsule containing the saved state of
the evaluator, denoted ⟦k, f⟧, is returned. Here, f is a closure ⟨(λ .e), ρ⟩ containing the
environment ρ and the expression e at the time of interruption. This closure takes an
argument that is not used. The step count n must equal the step limit l at the time of
interruption. As will be discussed below, in Section 3.8, neither the step count nor the
step limit need to be saved in the capsule, as the computation is always resumed with
different step count and limit values.

Several things about this CPS evaluator are of note. First, all builtin unary and binary
operators are assumed to take unit time. This follows from the fact that all clauses for E ,
as typified by (28), increment the step count by one. Second, the builtin unary and binary
operators in the host are implemented in direct style and are not passed a continuation.
This means that clauses (22) and (23), as typified by (28), must call the continuation k on
the result of the unary and binary operators. Third, like all builtin operators, invocations

of the
Ð→
J and

←Ð
J operators, including the application of v1, are assumed to take unit time.

This follows from the fact that clauses (26) and (27), again as typified by (28), increment

the step count by one. Fourth, like all builtin operators,
Ð→
J and

←Ð
J in the host, in (24)

and (25), are implemented in direct style and are not passed a continuation. This means
that clauses (26) and (27), as typified by (28), must call the continuation k on the result

of
Ð→
J and

←Ð
J . Finally, since

Ð→
J and

←Ð
J receive target functions (closures) for v1, they must

apply these to their arguments with A. Since A is written in CPS in the CPS evaluator,
these calls to A in (24) and (25) must be provided with a continuation k, a step count n,

18



Ð→
J v1 v2 v́3 = A (λn l (v4 ⊳ v́5).

(v4, v́5))

0 ∞ v1 (v2 ⊳ v́3)

(24)

←Ð
J v1 v2 v̀3 = A (λn l v.

let (v4 ⊲ v̀5) = v ⊲ v̀3

in (v4, v̀5))

0 ∞ v1 v2

(25)

E k n l ρ (
Ð→
J e1 e2 e3) = E (λn l v1.

(E (λn l v2.
(E (λn l v3.

(k n l (
Ð→
J v1 v2 v3)))

n l ρ e3))

n l ρ e2))

(n + 1) l ρ e1

(26)

E k n l ρ (
←Ð
J e1 e2 e3) = E (λn l v1.

(E (λn l v2.
(E (λn l v3.

(k n l (
←Ð
J v1 v2 v3)))

n l ρ e3))

n l ρ e2))

(n + 1) l ρ e1

(27)

Figure 9. Additions to the CPS evaluator for checkpointVLAD to support AD.

and a step limit l as arguments. The continuation argument simply returns the result.
The step count, however, is restarted at zero, and the step limit is set to ∞. This means

that invocations of
Ð→
J and

←Ð
J are atomic and cannot be interrupted internally. We discuss

this further below in Section 7.4.

3.8 Implementing the General-Purpose Interruption and Resumption
Interface with the CPS Evaluator

With this CPS evaluator, it is possible to implement the general-purpose interruption and
resumption interface (Fig. 10). The implementation of primops (29) calls the evaluator
with no step limit and simply counts the number of steps to completion. The imple-
mentation of interrupt (30) calls the evaluator with a step limit that must be smaller
than that needed to complete so an interrupt is forced and the capsule ⟦k, ⟨(λ .e), ρ⟩⟧ is
returned. The implementation of resume (31) calls the evaluator with arguments from
the saved capsule. Since the closure in the capsule does not use its argument, an arbitrary
value � is passed as that argument.

Note that the calls to A in
Ð→
J (24),

←Ð
J (25), primops (29), interrupt (30), and

resume (31) are the only portals into the CPS evaluator. The only additional call to A
is in the evaluator itself, clause (20) of E . All of the portals restart the step count at
zero. Except for the call in interrupt (30), none of the portals call the evaluator with
a step limit. In particular, resume (31) does not provide a step limit; other mechanisms
detailed below provide for interrupting a resumed capsule.

This implementation of the general-purpose interruption and resumption interface can-
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primops f x = A (λn l v.n) 0 ∞ f x (29)

interrupt f x l = A (λn l v.v) 0 l f x (30)

resume ⟦k, f⟧ = A k 0 ∞ f � (31)

Figure 10. Implementation of the general-purpose interruption and resumption interface using the CPS evaluator.

not be used to fully implement
✓
J in the host as depicted in Fig. 7. The reason is that

the calls to
←Ð
J in the base case, step (0), and interrupt in step (2), must take a target

function (closure) for f , because such is what is invoked by the calls to A in
←Ð
J (25)

and interrupt (30). As written in Fig. 7, the recursive calls to
✓
J , namely steps (3)

and (4), pass (λz.resume z) and (λx.interrupt f x ⌊ l2⌋) for f . There are two prob-
lems with this. First, these are host closures produced by host lambda expressions, not
target closures. Second, these call the host functions resume and interrupt that are
not available in the target. Thus it is not possible to formulate these as target closures
without additional machinery.

Examination of Fig. 7 reveals that the general-purpose interruption and resumption in-

terface is invoked four times in the implementation of
✓
J . primops is invoked in step (1),

interrupt is invoked in steps (2) and (4), and resume is invoked in step (3). Of
these, primops is invoked only in the host, resume is invoked only in the target,
and interrupt is invoked in both the host and the target. Thus we need to expose
interrupt and resume to the target. We do not need to expose primops to the tar-
get; the implementation in Fig. 7 only uses it in the host. For interrupt, the call in
step (2) can use the host implementation (30) in Fig. 10 but the call in step (4) must
use a new variant exposed to the target. For resume, the call in step (3) must also use
a new variant exposed to the target. The host implementation (31) in Fig. 10 is never
used since resume is never invoked in the host.

We expose interrupt and resume to the target by adding them to the target language
as new constructs.

e ∶∶= interrupt e1 e2 e3 ∣ resume e (32)

We implement this functionality by augmenting the CPS evaluator with new clauses
for E (Fig. 11), clause (35) for interrupt and clause (36) for resume. We discuss the
implementation of these below. But we first address several other issues.

With appropriate implementations of interrupt and resume expressions in the tar-
get language, one can create target closures for the expressions (λz.resume z) and

(λx.interrupt f x ⌊ l2⌋), and use these to formulate a proper implementation of
✓
J in

the host. We formulate a target closure to correspond to (λz.resume z) and denote this
as R. The definition is given in (34) in Fig. 11. Note that since (λz.resume z) does not
contain any free variables, the closure created by R is constructed from the empty envi-
ronment ρ0. Thus there is a single constant R. We similarly formulate a target closure to
correspond to (λx.interrupt f x l) and denote this as I. The definition is given in (33)
in Fig. 11. Here, however, (λx.interrupt f x l) contains two free variables: f and l.
Thus the closure created by I contains a nonempty environment with values for these
two variables. To provide these values, I is formulated as a function that takes these
values as arguments.
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I f l = ⟨(λx.(interrupt f x l)), ρ0[f ↦ f][l ↦ l]⟩ (33)

R = ⟨(λz.(resume z)), ρ0⟩ (34)

E k n l ρ (interrupt e1 e2 e3) = E (λn l v1.
(E (λn l v2.

(E (λn l v3.
if l =∞
then (A k 0 v3 v1 v2)

else let ⟦k, f⟧ = (A k 0 l v1 v2)

in ⟦k, (I f (v3 − l))⟧)
n l ρ e3))

n l ρ e2))

(n + 1) l ρ e1

(35)

E k n l ρ (resume e) = E (λn l ⟦k′, f⟧.
(A k′ 0 l f �)

(n + 1) l ρ e

(36)

Figure 11. Additions to the CPS evaluator for checkpointVLAD to expose the general-purpose interruption and

resumption interface to the target.

To compute (y, x̀) =
✓
J f x ỳ:

base case: (y, x̀) =
←Ð
J f x ỳ (0)

inductive case: l = primops f x (1)

z = interrupt f x ⌊ l2⌋ (2)

(y, z̀) =
✓
J R z ỳ (3)

(z, x̀) =
✓
J (I f ⌊ l2⌋) x z̀ (4)

Figure 12. Binary bisection checkpointing in the CPS evaluator. This is a proper implementation of the algorithm
in Fig. 7 where the host closure (λz.resume z) in step (3) is replaced with the target closure R and the host

closure (λx.interrupt f x ⌊ l
2
⌋) in step (4) is replaced with the target closure (I f ⌊ l

2
⌋).

With (I f l) and R, it is now possible to reformulate the definition of
✓
J in the

host from Fig. 7, replacing the host closure (λz.resume z) in step (3) with the target
closure R and the host closure (λx.interrupt f x ⌊ l2⌋) in step (4) with the target

closure (I f ⌊ l2⌋). This new, proper, definition of
✓
J in the host is given in Fig. 12.

In this proper implementation of
✓
J in the host, the interrupt and resume operations

need to be able to nest, even without nesting of calls to
✓
J in the target. The recursive

calls to
✓
J in the inductive case of Fig. 12 imply that it must be possible to interrupt

a resumed capsule. This happens when passing R for f in step (3) and then passing
(I f . . .) for f in step (4), i.e., the left branch of a right branch in the checkpoint tree.
The resulting function f = (I R . . .) will interrupt when applied to some capsule. It also
happens when passing (I f . . .) for f twice in succession in step (4), i.e., the left branch
of a left branch in the checkpoint tree. The resulting function f = (I (I f . . .) . . .) will
interrupt and the capsule produced will interrupt when resumed.

Consider all the ways that evaluations of interrupt and resume expressions can nest.
User code will never contain interrupt and resume expressions; they are created only
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by invocations of I and R. R is only invoked by step (3) of
✓
J in Fig. 12. I is invoked two

ways: step (4) of
✓
J in Fig. 12 and a way that we have not yet encountered, evaluation

of nested interrupt expressions in the else branch of clause (35) in Fig. 11.

Consider all the ways that evaluations of I and R can be invoked in
✓
J in Fig. 12.

✓
J is invoked with some user code for f , i.e., code that does not contain interrupt

and resume expressions. The inductive cases for
✓
J create a binary checkpoint tree of

invocations. The leaf nodes of this binary checkpoint tree correspond to the base case in

step (0) where the host
←Ð
J is invoked. At internal nodes, the host interrupt is invoked

in step (2). The target closure values that can be passed to the host
←Ð
J and interrupt

are constructed from f , I, and R in steps (3) and (4). What is the space of all possible
constructed target closures? The constructed target closures invoked along the left spine
of the binary checkpoint tree look like the following

(I (I . . . (I (I f l0) l1) . . . li−1) li) (37)

with zero or more nested calls to I. In this case li < li−1 < ⋯ < l1 < l0, because the recursive

calls to
✓
J in step (4) of Fig. 12 always reduce l. The constructed target closures invoked

in any other node in the binary checkpoint tree look like the following

(I (I . . . (I (I R l0) l1) . . . li−1) li) (38)

with zero or more nested calls to I. In this case, again, li < li−1 < ⋯ < l1 < l0, for the same

reason. These are the possible target closures f passed to
←Ð
J in step (0) or interrupt

in step (2) of
✓
J in Fig. 12. (We assume that the call to primops in step (1) is hoisted

out of the recursion.)
A string of calls to I as in (37) will result in a nested closure structure whose invocation

will lead to nested invocations of interrupt expressions.

⟨(λx.(interrupt f x l)),
ρ0[f ↦ ⟨(λx.(interrupt f x l)),

ρ0[f ↦ ⟨. . .
(λx.(interrupt f x l)),
ρ0[f ↦ ⟨(λx.(interrupt f x l)),

ρ0[f ↦ f]
[l ↦ l0]⟩]

[l ↦ l1] . . .⟩]
[l ↦ li−1]⟩]

[l ↦ li]⟩

(39)

A string of calls to I as in (38) will also result in a nested closure structure whose
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invocation will lead to nested invocations of interrupt expressions.

⟨(λx.(interrupt f x l)),
ρ0[f ↦ ⟨(λx.(interrupt f x l)),

ρ0[f ↦ ⟨. . .
(λx.(interrupt f x l)),
ρ0[f ↦ ⟨(λx.(interrupt f x l)),

ρ0[f ↦ ⟨(λz.(resume z)), ρ0⟩]

[l ↦ l0]⟩]
[l ↦ l1] . . .⟩]

[l ↦ li−1]⟩]

[l ↦ li]⟩

(40)

In both of these, li < li−1 < ⋯ < l1 < l0, so the outermost interrupt expression will
interrupt first. Since the CPS evaluator only maintains a single step limit, li will be that
step limit during the execution of the innermost content of these nested closures, namely f
in (39) and ⟨(λz.(resume z)), ρ0⟩ in (40). None of the other intervening interrupt
expressions will enforce their step limits during this execution. Thus we need to arrange
for the capsule created when the step limit li is reached during the execution of f or
⟨(λz.(resume z)), ρ0⟩ to itself interrupt with the remaining step limits li−1, . . . , l1, l0.
This is done by rewrapping the closure in a capsule with interrupt expressions. The
interruption of f or ⟨(λz.(resume z)), ρ0⟩ will produce a capsule that looks like the
following

⟦k, f⟧ (41)

where the closure f contains only user code, i.e., no interrupt or resume expressions.
The f in (41) is wrapped with calls to I to reintroduce the step limits li−1, . . . , l1, l0.

⟦k, (I . . . (I (I f l0) l1) . . . li−1)⟧ (42)

This will yield a capsule that looks like the following

⟦k, ⟨(λx.(interrupt f x l)),
ρ0[f ↦ ⟨. . .

(λx.(interrupt f x l)),
ρ0[f ↦ ⟨(λx.(interrupt f x l)),

ρ0[f ↦ f]
[l ↦ l0]⟩]

[l ↦ l1] . . .⟩]
[l ↦ li−1]⟩⟧

(43)

which will interrupt upon resumption. Each such interruption will peel off one interrupt
expression. Note that since the closure f in a capsule (41) contains only user code, it
will not contain a resume expression. Further, since the wrapping process (43) only
introduces interrupt expressions via calls to I (42), and never introduces resume ex-
pressions, the closures in capsules, whether wrapped or not, will never contain resume
expressions.

When there is no contextual step limit, i.e., when l = ∞, the interrupt expression
must introduce v3, the step limit specified as the argument to the interrupt expression,
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as the step limit. This is handled by the then branch of clause (35) in Fig. 11. When
there is a contextual step limit, i.e., when l /= ∞, the interrupt expression must wrap
the returned capsule. This wrapping is handled by the else branch of clause (35) in
Fig. 11. Since capsule resumption restarts the step count at zero, the wrapping that
handles nested step limits is relativized to this restart by the v3 − l in the else branch in
clause (35).

Capsule resumption happens in one place, the call to A in clause (36) in Fig. 11 for a
resume expression. Except for the contextual step limit l, this is the same as the call
to A in the implementation of resume in (31) in Fig. 10. Said resumption is performed by
applying the capsule closure f , a target closure, to �, since the lambda expression in the
capsule closure ignores its argument. This call to A is passed the capsule continuation k′

as its continuation. Unlike the implementation of resume in (31), the step limit l is that
which is in effect for the execution of the resume expression. This is to allow capsule
resumption to itself interrupt. Because capsules are resumed with a step count of zero
and the step limit at the time of resumption, the step count and limit at the time of the
interruption need not be saved in the capsule.

As a result of this, all interrupt expressions will appear in one of two places. The first
is a preamble (39) or (40) wrapped around either a user function f by (37) or a resume

expression in R by (38), respectively. Such will always be invoked either by
←Ð
J in the base

case, step (0), or by interrupt in step (2), of Fig. 12. The second is a preamble (43)
wrapped around the closure of a capsule by the else branch in clause (35) of Fig. 11,
i.e., (42). Such will always be invoked during capsule resumption, i.e., clause (36) of
Fig. 11. We assume that the step limits are such that an interruption never occurs during
either of these preambles. This is enforced by ensuring that the termination criterion that

triggers the base case, step (0), of Fig. 12 is sufficiently long so that the calls to A in
←Ð
J in

step (0) and interrupt in step (2) won’t interrupt before completion of the preamble.
There is one further requirement to allow the CPS evaluator to support divide-and-

conquer checkpointing. The base case use of
←Ð
J in step (0) of Fig. 12 needs to be able to

produce cotangents z̀ of capsules z in step (3) and consume them in step (4). A capsule
⟦k, f⟧ is the saved state of the evaluator. The value f is a target closure ⟨(λx.e), ρ⟩

which contains an environment with saved state. This state is visible to
←Ð
J . But the

continuation k is a host continuation, which is opaque. Any evaluator variables that

it closes over are not visible to
←Ð
J . Thus the implementation of host continuations in

the CPS evaluator must employ a mechanism to expose such. When we replace the
CPS evaluator with a direct-style evaluator applied to CPS-converted target code, in
Sections 3.11 and 3.12 below, this will no-longer be necessary since continuations will be

represented as target closures which are visible to
←Ð
J .

3.9 Augmenting the CPS Evaluator to Support Divide-and-Conquer
Checkpointing

We can now add the
✓
J operator to the target language as a new construct.

e ∶∶=
✓
J e1 e2 e3 (44)

We implement this functionality by augmenting the CPS evaluator with a new clause (45)
for E (Fig. 13).
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E k n l ρ (
✓
J e1 e2 e3) = E (λn l v1.

(E (λn l v2.
(E (λn l v3.

(k n l (
✓
J v1 v2 v3)))

n l ρ e3))

n l ρ e2))

(n + 1) l ρ e1

(45)

Figure 13. Addition to the CPS evaluator for checkpointVLAD to support divide-and-conquer checkpointing.

With this addition, target programs can perform divide-and-conquer checkpointing

simply by calling
✓
J instead of

←Ð
J . Note that it is not possible to add the

✓
J operator to

the direct-style evaluator because the implementation of binary bisection checkpointing
is built on the general-purpose interruption and resumption interface which is, in turn,
built on the CPS evaluator. We remove this limitation below in Section 3.12. Also note
that since the implementation of binary bisection checkpointing is built on the general-
purpose interruption and resumption interface which is, in turn, built on an evaluator,
it is only available for programs that are evaluated, i.e., for programs in the target, but
not for programs in the host. We remove this limitation below as well, in Section 3.13.

3.10 Some Intuition

The algorithm in Fig. 12 corresponds to Fig. 2(b). The start of the computation of f
in Fig. 12 corresponds to u in Fig. 2(b). The computation state at u is x in Fig. 12.
Collectively, the combination of f and x in Fig. 12 comprises a snapshot, the gold line in
Fig. 2(b). The end of the computation of f in Fig. 12 corresponds to v in Fig. 2(b). The
computation state at v is y in Fig. 12. Step (1) computes ⌊ l2⌋ which corresponds to the
split point p in Fig. 2(b). Step (2) corresponds to the green line in Fig. 2(b), i.e., running
the primal without taping from the snapshot f and x at u until the split point p which
is ⌊ l2⌋. The capsule z in Fig. 12 corresponds to the computation state at p in Fig. 2(b).
Brown and pink lines in Fig. 2 denote capsules. If step (3) would incur the base case,
step (0), in the recursive call, it would correspond to the right stage (pair of red and
blue lines) in Fig. 2(b). If step (4) would incur the base case, step (0), in the recursive
call, it would correspond to the left stage (pair of red and blue lines) in Fig. 2(b). Note
that f and x is used both in steps (2) and (4). Referring to this as a snapshot is meant
to convey that the information must be saved across the execution of step (3). And it
must be possible to apply f to x twice, once in step (2) and once in step (4). In some
implementations, such a snapshot involves saving mutable state that must be restored.
In our formulation in a functional framework (Section 7.3), we need not explicitly save
and restore state; we simply apply a function twice. Nonetheless, the storage required
for the snapshot is implicit in the extended lifetime of the values f and x which extends

from the entry into
✓
J , over step (3), until step (4).

Note that recursive calls to
✓
J in step (4) extend the lifetime of a snapshot. These are

denoted as the black tick marks on the left of the gold and pink lines. In the treeverse
algorithm from [13, Figs. 2 and 3], the lifetime of one snapshot ends at a tick mark by
a call to retrieve in one recursive call to treeverse in the while loop of the parent
and the lifetime of a new snapshot begins by a call to snapshot in the next recursive
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call to treeverse in the while loop of the parent. But since the state retrieved and
then immediately saved again as a new snapshot is the same, these adjacent snapshot
execution intervals can conceptually be merged.

Also note that recursive calls to
✓
J in step (3) pass R and a capsule z as the f and x

of the recursive call. Thus capsules from one level of the recursion become snapshots at
the next level, for all but the base case step (0). Pink lines in Fig. 2 denote values that
are capsules at one level but snapshots at lower levels. Some, but not all, capsules are
snapshots. Some, but not all, snapshots are capsules. Gold lines in Fig. 2 denote snapshots
that are not capsules. Brown lines in Fig. 2 denote capsules that are not snapshots. Pink
lines in Fig. 2 denote values that are both snapshots and capsules.

It is now easy to see that the recursive call tree of the algorithm in Fig. 12 is isomorphic
to a binary checkpoint tree. The binary checkpoint tree on the left below corresponds to
the call tree on the right produced by the algorithm in Fig. 12.

[u, v)

[u, p) [p, v)

z = (interrupt f x ⌊ l2⌋)

(z, x̀) = (
✓
J (I f ⌊ l2⌋) x z̀) (y, z̀) = (

✓
J R z ỳ)

The above depicts just one level of the recursion. If one unrolls the above call tree to a
depth of three one obtains the binary checkpoint tree depicted in Fig. 19.

3.11 CPS Conversion

So far, we have formulated divide-and-conquer checkpointing via a CPS evaluator. This
can be—and has been—used to construct an interpreter. A compiler can be—and has
been—constructed by generating target code in CPS that is instrumented with step
counting, step limits, and limit checks that lead to interrupts. Code in direct style can be
automatically converted to CPS using a program transformation known in the program-
ming language community as CPS conversion. Many existing compilers, such as sml/nj
for sml, perform CPS conversion as part of the compilation process [5].

We illustrate CPS conversion for the untyped lambda calculus (Fig. 14).

e ∶∶= x ∣ λx.e ∣ e1 e2 (46)

The notation 2e∣k7 denotes the transformation of the expression e to CPS so that it calls
the continuation k with the result. There is a clause for 2e∣k7 in Fig. 14, (47) to (49),
for each construct in (46). Clause (47) says that one converts a variable x by calling
the continuation k with the value of that variable. Clause (48) says that one converts
a lambda expression (λx.e) by adding a continuation variable k′ to the lambda binder,
converting the body relative to that variable, and then calling the continuation k with
that lambda expression. Clause (49) says that one converts an application (e1 e2) by
converting e1 with a continuation that receives the value x1 of e1, then converts e2 with
a continuation that receives the value x2 of e2, and then calls x1 with the continuation k
and x2. Clause (50) says that the top level expression e0 can be converted with the
identity function as the continuation.

This technique can be extended to thread a step count n and a step limit l through
the computation along with the continuation k, and to arrange for the step count to be
incremented appropriately. Further, this technique can be applied to the entire target

26



2x∣k7↝ k x (47)

2(λx.e)∣k7↝ k (λk′ x.2e∣k′7) (48)

2(e1 e2)∣k7↝ 2e1∣(λx1.2e2∣(λx2.(x1 k x2))7)7 (49)

e0 ↝ 2e0∣(λx.x)7 (50)

Figure 14. CPS conversion for the untyped lambda calculus.

language (Fig. 15). Clauses (51)–(60) correspond one-to-one to the checkpointVLAD
constructs in (1), (10), and (44). Since CPS conversion is only applied once at the be-
ginning of compilation, to the user program, and the user program does not contain
interrupt and resume expressions, since these only appear internally in the target
closures created by I and R, CPS conversion need not handle these constructs. Finally,
⟪e⟫k,n,l denotes a limit check that interrupts and returns a capsule when the step count n
reaches the step limit l. The implementation of this limit check is given in (61). Each of
the clauses (51)–(60) is wrapped in a limit check.

3.12 Augmenting the Direct-Style Evaluator to Support CPS-Converted
Code and Divide-and-Conquer Checkpointing

The direct-style evaluator must be modified in several ways to support CPS-converted
code and divide-and-conquer checkpointing (Fig. 16). First, CPS conversion introduced
lambda expressions with multiple arguments and their corresponding applications. Con-
tinuations have three arguments and converted lambda expressions have four. Thus we
add several new constructs into the target language to replace the single argument lambda
expressions and applications from (1).

e ∶∶= λ3n l x.e ∣ λ4k n l x.e ∣ e1 e2 e3 e4 ∣ e1 e2 e3 e4 e5 (62)

Second, we need to modify E to support these new constructs. We replace clause (2)
with clauses (63) and (64) to update A and clauses (5) and (6) with clauses (65)–(68)
to update E . Third, we need to add support for interrupt and resume expressions,
as is done with clauses (69) and (70). These are direct-style variants of clauses (35)
and (36) from the CPS evaluator and are needed to add support for the general-purpose
interruption and resumption interface to the direct-style evaluator when evaluating CPS
code. Note that the calls to A from (35) and (36) are modified to use the converted
form A4 of A (64) in (69) and (70). Similarly, the calls to continuations from (35) and (36)
are modified to use the continuation form A3 of A (63) in (69) and (70). Fourth, the

calls to A4 must be modified in the host implementations of the AD operators
Ð→
J and

←Ð
J ,

as is done with (71) and (72). Note that unlike the corresponding (11) and (12), the
calls to A4 here take target closures instead of host closures. Fifth, the general-purpose
interruption and resumption interface, (29), (30), (33), and (34), must be migrated from
the CPS evaluator to the direct-style evaluator as (73)–(76). In doing so, the calls to A4

in primops and interrupt are changed to use (64), the host continuations are modified
to be target continuations in (73) and (74), and the lambda expressions in (75) and (76)
are CPS converted.
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2c∣k,n, l7↝ ⟪k (n + 1) l c⟫k,n,l (51)

2x∣k,n, l7↝ ⟪k (n + 1) l x⟫k,n,l (52)

2(λx.e)∣k,n, l7↝ ⟪k (n + 1) l (λ4k n l x.2e∣k,n, l7)⟫k,n,l (53)

2(e1 e2)∣k,n, l7↝ ⟪2e1∣(λ3n l x1.
2e2∣(λ3n l x2.

(x1 k n l x2)),
n, l7),

(n + 1), l7⟫k,n,l

(54)

2(if e1 then e2 else e3)∣k,n, l7↝ ⟪2e1∣(λ3n l x1.
(if x1

then 2e2∣k,n, l7
else 2e3∣k,n, l7)),

(n + 1), l7⟫k,n,l

(55)

2(◇e)∣k,n, l7↝ ⟪2e∣(λ3n l x.
(k n l (◇x))),

(n + 1), l7⟫k,n,l

(56)

2(e1 ● e2)∣k,n, l7↝ ⟪2e1∣(λ3n l x1.
2e2∣(λ3n l x2.

(k n l (x1 ● x2))),
n, l7),

(n + 1), l7⟫k,n,l

(57)

2(
Ð→
J e1 e2 e3)∣k,n, l7↝ ⟪2e1∣(λ3n l x1.

2e2∣(λ3n l x2.
2e3∣(λ3n l x3.

(k n l (
Ð→
J x1 x2 x3))),

n, l7),
n, l7),

(n + 1), l7⟫k,n,l

(58)

2(
←Ð
J e1 e2 e3)∣k,n, l7↝ ⟪2e1∣(λ3n l x1.

2e2∣(λ3n l x2.
2e3∣(λ3n l x3.

(k n l (
←Ð
J x1 x2 x3))),

n, l7),
n, l7),

(n + 1), l7⟫k,n,l

(59)

2(
✓
J e1 e2 e3)∣k,n, l7↝ ⟪2e1∣(λ3n l x1.

2e2∣(λ3n l x2.
2e3∣(λ3n l x3.

(k n l (
✓
J x1 x2 x3))),

n, l7),
n, l7),

(n + 1), l7⟫k,n,l

(60)

⟪e⟫k,n,l ↝ if n = l then ⟦k, λ4k n l .e⟧ else e (61)

Figure 15. CPS conversion for the checkpointVLAD language that threads step counts and limits.
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A3 ⟨(λ3n l x.e), ρ⟩ n
′ l′ v = E ρ[n↦ n′][l ↦ l′][x↦ v] e (63)

A4 ⟨(λ4k n l x.e), ρ⟩ k
′ n′ l′ v = E ρ[k ↦ k′][n↦ n′][l ↦ l′][x↦ v] e (64)

E ρ (λ3n l x.e) = ⟨(λ3n l x.e), ρ⟩ (65)

E ρ (λ4k n l x.e) = ⟨(λ4k n l x.e), ρ⟩ (66)

E ρ (e1 e2 e3 e4) = A3 (E ρ e1) (E ρ e2) (E ρ e3) (E ρ e4) (67)

E ρ (e1 e2 e3 e4 e5) = A4 (E ρ e1) (E ρ e2) (E ρ e3) (E ρ e4) (E ρ e5) (68)

Eρ (interrupt e1 e2 e3) = let v1 = (E ρ e1)

v2 = (E ρ e2)

v3 = (E ρ e3)

k = ρ ‘k’
l = ρ ‘l’

in if l =∞
then (A4 v1 k 0 v3 v2)

else let ⟦k, f⟧ = (A4 v1 k 0 l v2)

in ⟦k, (I f (v3 − l))⟧

(69)

E ρ (resume e) = let ⟦k′, f⟧ = (E ρ e)
l = ρ ‘l’

in (A4 f k
′ 0 l �)

(70)

Ð→
J v1 v2 v́3 = let (v4 ⊳ v́5) = (A4 v1 ⟨(λ3n l v.v), ρ0⟩ 0 ∞ (v2 ⊳ v́3))

in (v4, v́5)

(71)

←Ð
J v1 v2 v̀3 = let (v4 ⊲ v̀5) = ((A4 v1 ⟨(λ3n l v.v), ρ0⟩ 0 ∞ v2) ⊲ v̀3)

in (v4, v̀5)

(72)

primops f x = A4 f ⟨(λ3n l v.n), ρ0⟩ 0 ∞ x (73)

interrupt f l n = A4 f ⟨(λ3n l v.v), ρ0⟩ 0 l x (74)

I f l = ⟨(λ4k n l x.(interrupt f x l)), ρ0[f ↦ f][l ↦ l]⟩ (75)

R = ⟨(λ4k n l z.(resume z)), ρ0⟩ (76)

Figure 16. Extensions to the direct-style evaluator and the implementation of the general-purpose interruption

and resumption interface to support divide-and-conquer checkpointing on target code that has been converted to

CPS.

3.13 Compiling Direct-Style Code to C

One can compile target checkpointVLAD code, after CPS conversion, to c (Figs. 17
and 18). Modern implementations of c, like GCC, together with modern memory man-
agement technology, like the Boehm-Demers-Weiser garbage collector [8], allow the com-
pilation process to be a straightforward mapping of each construct to a small fragment of
c code. In particular, garbage collection, GC malloc, eases the implementation of closures
and statement expressions, ({...}), together with nested functions, ease the implemen-
tation of lambda expressions. Furthermore, the flow analysis, inlining, and tail-call merg-
ing performed by GCC generates reasonably efficient code. In Figs. 17 and 18, S denotes
such a mapping from checkpointVLAD expressions e to c code fragments. Instead
of environments ρ, S takes π, a mapping from variables to indices in environment, the
run-time environment data structure. Here, π x denotes the index of x, πi denotes the
variable for index i, φ e denotes a mapping for the free variables in e, and N denotes
a mapping from a checkpointVLAD operator to the name of the c function that im-
plements that operator. This, together with a library containing the typedef for thing,
the enum for tag, definitions for null constant, true constant, false constant, cons,
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S π () = null constant (77)

S π true = true constant (78)

S π false = false constant (79)

S π (c1, c2) = cons((S π c1), (S π c1)) (80)

S π n = n (81)

S π ‘k’ = continuation (82)

S π ‘n’ = count (83)

S π ‘l’ = limit (84)

S π ‘x’ = argument (85)

S π x = as closure(target)->environment[π x] (86)

S π (λ3n l x.e) = ({

thing function(thing target,

thing count,

thing limit,

thing argument) {

return (S (φ e) e);
}

thing lambda = (thing)GC malloc(sizeof(struct {

enum tag tag;

struct {

thing (*function)();

unsigned n;

thing environment[∣φ e∣];
}

}

set closure(lambda);

as closure(lambda)->function = &function;

as closure(lambda)->n = ∣φ e∣;
as closure(lambda)->environment[0] = S π (φ e)0

⋮

as closure(lambda)->environment[∣φ e∣ − 1] = S π (φ e)∣φ e∣−1

lambda;

})

(87)

Figure 17. Compiler for the checkpointVLAD language when in CPS. Part I.

as closure, set closure, continuation apply, converted apply, is false, and all
of the functions named by N (essentially a translation of r6rs-ad, the general-purpose
interruption and resumption interface from Fig. 16, and the implementation of binary
bisection checkpointing from Fig. 12 into c), allows arbitrary checkpointVLAD code
to be compiled to machine code, via c, with complete support for AD, including forward
mode, reverse mode, and binary bisection checkpointing.

3.14 Implementations

We have written three complete implementations of checkpointVLAD.8 All three ac-
cept exactly the same source language in its entirety and are able to run both exam-
ples discussed in Section 6. The first implementation is an interpreter based on the
CPS evaluator (Figs. 8, 9, 11, and 13), where the evaluator, the operator overload-
ing implementation of AD, the general-purpose interruption and resumption mechanism
(Fig. 10), and the binary bisection checkpointing driver (Fig. 12) are implemented in

8The code for all three implementations will be released on github upon acceptance of this manuscript.
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S π (λ4k n l x.e) = ({

thing function(thing target,

thing continuation,

thing count,

thing limit,

thing argument) {

return (S (φ e) e);
}

thing lambda = (thing)GC malloc(sizeof(struct {

enum tag tag;

struct {

thing (*function)();

unsigned n;

thing environment[∣φ e∣];
}

}

set closure(lambda);

as closure(lambda)->function = &function;

as closure(lambda)->n = ∣φ e∣;
as closure(lambda)->environment[0] = S π (φ e)0

⋮

as closure(lambda)->environment[∣φ e∣ − 1] = S π (φ e)∣φ e∣−1

lambda;

})

(88)

S π (e1 e2 e3 e4) = continuation apply((S π e1),

(S π e2),

(S π e3),

(S π e4))

(89)

S π (e1 e2 e3 e4 e5) = converted apply((S π e1),

(S π e2),

(S π e3),

(S π e4),

(S π e5))

(90)

S π (if e1 then e2 else e3) = (!is false((S π e1))?(S π e2):(S π e3)) (91)

S π (◇e) = (N ◇)((S π e)) (92)

S π (e1 ● e2) = (N ●)((S π e1), (S π e2)) (93)

S π (
Ð→
J e1 e2 e3) = (N

Ð→
J )((S π e1), (S π e2), (S π e3)) (94)

S π (
←Ð
J e1 e2 e3) = (N

←Ð
J )((S π e1), (S π e2), (S π e3)) (95)

S π (
✓
J e1 e2 e3) = (N

✓
J )((S π e1), (S π e2), (S π e3)) (96)

Figure 18. Compiler for the checkpointVLAD language when in CPS. Part II.

Scheme. The second implementation is a hybrid compiler/interpreter that translates
the checkpointVLAD source program into CPS using CPS conversion (Fig. 15) and
then interprets this with an interpreter based on the direct-style evaluator (Figs. 3, 4,
and 16), where the compiler, the evaluator, the operator overloading implementation
of AD, the general-purpose interruption and resumption mechanism (Fig. 16), and the
binary bisection checkpointing driver (Fig. 12) are implemented in Scheme. The third
implementation is a compiler that translates the checkpointVLAD source program
into CPS using CPS conversion (Fig. 15) and then compiles this to machine code via c
using GCC, where the compiler (Figs. 17 and 18) is implemented in Scheme, the eval-
uator is the underlying hardware, and the operator overloading implementation of AD,
the general-purpose interruption and resumption mechanism (Fig. 16), and the binary
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bisection checkpointing driver (Fig. 7) are implemented in c. The first implementation
was used to generate the results reported in [35] and presented at AD (2016). The tech-
niques of Figs. 14 and 15 were presented at AD (2016). The third implementation was
used to generate the results reported here.

4. Complexity

Fig. 19 illustrates the checkpoint tree that results from binary bisection checkpointing,

our implementation of
✓
J (Fig. 12), with a recursion depth of three. The internal nodes

correspond to invocations of interrupt in step (2). The right branches of each node
correspond to step (3). The left branches of each node correspond to step (4). The

leaf nodes correspond to invocations of
←Ð
J in the base case, step (0). Each leaf node

corresponds to a stage, the red, blue, and violet lines in Fig. 2(g). The checkpoint tree
is traversed in depth-first right-to-left preorder. In our implementation, we terminate
the recursion when the step limit l is below a fixed constant. Consider a general primal
computation f that uses maximal live storage w and that runs for t steps. We assume
that O(t) ≥ O(w), i.e., that the computation uses all storage.

The space complexity of classical reverse mode, including our implementation of
←Ð
J , is

the sum of the space required for the primal and the space required for the tape. The
space required for the primal is O(w). The space required for the tape is O(t). Thus
the total space requirement is O(w + t), which is O(t) since O(t) ≥ O(w). The space
overhead compared with computing just the primal is thus O(t).

The time complexity of classical reverse mode, including our implementation of
←Ð
J , is

the sum of the time required for the forward and reverse sweeps. The time required for
the forward sweep is O(t). The time required for the reverse sweep is also O(t). Thus
the total time requirement is O(t). The time overhead compared with computing just
the primal is thus O(1).

The space complexity of binary bisection checkpointing, including our implementation

of
✓
J , is the sum of the space required for the primal, the snapshots, and the tape. When

recursion is terminated when the step limit l is below a fixed constant, the checkpoint
tree has depth O(log t). The number of live snapshots is proportional to the depth of
the checkpoint tree, O(log t). The size of each snapshot is proportional to the maximal
live storage, O(w). Thus the space required for the snapshots is O(w log t). The space
required for the tape is proportional to the length of each stage, which is constant in
our implementation. Thus the space required for the tape is O(1). Thus the total space
requirement is O(w log t) The space overhead compared with computing just the primal
is thus O(log t).

The time complexity of binary bisection checkpointing, including our implementation

of
✓
J , is the sum of the time required to (re)compute the primal across all checkpoints

and the time required to perform the forward and reverse sweeps across all stages. Each
internal level in the checkpoint tree takes time proportional to the time required to
run the entire primal, i.e., O(t). There are O(log t) levels. Thus the time required to
(re)compute the primal across all checkpoints is O(t log t). The leaf level in the checkpoint
tree takes time proportional to the time required to run the forward and reverse sweeps for
the entire primal f in classical reverse mode, i.e., O(t). Thus the total time requirement is
O(t log t). The time overhead compared with computing just the primal is thus O(log t).
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5. Extensions to Support Treeverse and Binomial Checkpointing

The general-purpose interruption and resumption interface allows implementation of
✓
J

using the treeverse algorithm from [13, Fig. 4] as shown in Fig. 20. This supports the full
functionality of that algorithm with the ability to select arbitrary execution points as
split points. By selecting the choice of mid as either [13, equation (12)] or [13, equation
(16)], one can select between bisection and binomial checkpointing. By selecting which
of d, t, and α the user specifies, computing the others from the ones specified, together
with n, using the methods described in [13] one can select the termination criterion to be
either fixed space overhead, fixed time overhead, or logarithmic space and time overhead.9

All of this functionality has been implemented in all three of our implementations: the
interpreter, the hybrid compiler/interpreter, and the compiler.

But it turns out that the binary checkpointing algorithm from Fig. 12 can be easily
modified to support all of the functionality of the treeverse algorithm, including the
ability to select either bisection or binomial checkpointing and the ability to select any
of the termination criteria, including either fixed space overhead, fixed time overhead,
or logarithmic space and time overhead, with exactly the same guarantees as treeverse.
The idea is simple and follows from the observation that the right branch introduces a
snapshot and the left branch introduces (re)computation of the primal. One maintains
two counts, a right-branch count δ and a left-branch count τ , decrementing them as one
descends into a right or left branch respectively, to limit the number of snapshots or the
amount of (re)computation introduced. The base case is triggered when either gets to zero
or a specified constant bound on the number of steps to be taped is reached. The binary
checkpoint tree so produced corresponds to the associated n-ary checkpoint tree produced
by treeverse, as discussed in Section 1. Again, this supports the full functionality of
treeverse with the ability to select arbitrary execution points as split points. By selecting
the choice of mid as either [13, equation (12)] or [13, equation (16)], one can select
between bisection and binomial checkpointing. By selecting which of d, t, and α the
user specifies, computing the others from the ones specified, together with n, using the
methods described in [13] one can select the termination criterion to be either fixed
space overhead, fixed time overhead, or logarithmic space and time overhead. All of this
functionality has been implemented in all three of our implementations: the interpreter,
the hybrid compiler/interpreter, and the compiler.

As per [13], with a binomial strategy for selecting split points, the termination criteria
can be implemented as follows. Given a measured number n of evaluation steps, d, t,
and α are mutually constrained by a single constraint.

n = primops f x (97)

η(d, t) = (
d + t
t

) (98)

α = ⌈
n

η(d, t)
⌉ (99)

One can select any two and determine the third. Selecting d and α to determine
t = O ( d

√
n) yields the fixed space overhead termination criterion. Selecting t and α

to determine d = O ( t
√
n) yields the fixed time overhead termination criterion. Alterna-

9In Section 5 and Figs. 20 and 21 we use notation similar to that in [13] to facilitate understanding. Thus n and t
here means something different then elsewhere in this manuscript.
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treeverse f x ỳ α δ τ β σ φ = if σ > β
then let z = interrupt f x (σ − β)

in firstR z ỳ α (δ − 1) τ β σ φ
else first f x ỳ α δ τ β σ φ

first f x ỳ α δ τ β σ φ = if φ − σ > α ∧ δ /= 0 ∧ τ /= 0
then let κ = mid δ τ σ φ

(y, z̀) = treeverse f x ỳ α δ τ σ κ φ
in rest f x z̀ α y δ (τ − 1) β σ κ

else
←Ð
J (I f (φ − σ)) x ỳ

rest f x ỳ α y δ τ β σ φ = if φ − σ > α ∧ δ /= 0 ∧ τ /= 0
then let κ = mid δ τ σ φ

( , z̀) = treeverse f x ỳ α δ τ σ κ φ
in rest f x z̀ α y δ (τ − 1) β σ κ

else let ( , x̀) =
←Ð
J (I f (φ − σ)) x ỳ

in (y, x̀)

✓
J f x ỳ = let n = primops f x

pick α d t
in treeverse f x ỳ α d t 0 0 n

Figure 20. Implementation of treeverse from [13, Fig. 4] using the general-purpose interruption and resumption

interface, written in a functional style with no mutation. The variables δ, τ , β, σ, φ, n, d, and t have the same

meaning as in [13]. The variables f , x, x̀, y, ỳ, z, and z̀ have the same meaning as earlier in this manuscript.
The variable α denotes an upper bound on the number of evaluation steps for a leaf node. Different termination

criteria allow the user to specify some of α, d, and t and compute the remainder as a function of the ones specified,

together with n.

binary f x ỳ α δ τ φ = if φ ≤ α ∨ δ = 0 ∨ τ = 0

then
←Ð
J f x ỳ

else let κ = mid δ τ 0 φ
z = interrupt f x κ
(y, z̀) = binaryR z ỳ (δ − 1) τ (φ − κ)
(z, x̀) = binary (I f κ) x z̀ δ (τ − 1) κ

in (y, x̀)

✓
J f x ỳ = let n = primops f x

pick α d t
in binary f x ỳ α d t n

Figure 21. Implementation of binary checkpointing using the general-purpose interruption and resumption in-

terface in a fashion that supports all of the functionality of treeverse from [13, Fig. 4]. The variables δ, τ , φ,
n, d, and t have the same meaning as in [13]. The variables f , x, x̀, y, ỳ, z, and z̀ have the same meaning as
earlier in this manuscript. The variable α denotes an upper bound on the number of evaluation steps for a leaf

node. Different termination criteria allow the user to specify some of α, d, and t and compute the remainder as a
function of the ones specified, together with n.

tively, one can further constrain d = t. With this, selecting α to determine d and t yields
the logarithmic space and time overhead termination criterion.
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6. Examples

As discussed in Section 2, existing implementations of divide-and-conquer checkpointing,
such as Tapenade, are limited to placing split points at execution points corresponding
to particular syntactic program points in the source code, i.e., loop iteration boundaries.
Our approach can place split points are arbitrary execution points. The example in List-
ing 1 illustrates a situation where placing split points only at loop iteration boundaries
can fail to yield the sublinear space overhead of divide-and-conquer checkpointing while
placement of split points at arbitrary execution points will yield the sublinear space
overhead of divide-and-conquer checkpointing. To illustrate this, we run the Fortran
variant of this example two different ways with Tapenade:

(1) without checkpointing, by removing all pragmas and
(2) with divide-and-conquer checkpointing, particularly the treeverse algorithm applied

to a root execution interval corresponding to the invocations of the outer DO loop,
split points selected with the binomial criterion from execution points corresponding
to iteration boundaries of the outer DO loop, and a fixed space overhead termination
criterion, by placing the c$ad binomial-ckp pragma as shown in Listing 2.

For comparison, we reformulate this Fortran example in checkpointVLAD (List-
ing 2) and run it two different ways:

(1) without checkpointing, by calling
←Ð
J , written here as *j and

(2) with divide-and-conquer checkpointing, particularly the binary checkpointing algo-
rithm applied to a root execution interval corresponding to the entire derivative
calculation, split points selected with the bisection criterion from arbitrary execu-
tion points, and a logarithmic space and time overhead termination criterion, by

calling
✓
J , written here as checkpoint-*j.

For this example, n is the number of iterations of the outer loop. Using the nota-
tion from Section 4, the maximal space usage of the primal for this example should be
w = O(1), since there are no arrays; the amount of storage taken by the primal is con-
stant. The time required for the primal for this example should be t = O(n), since there
are n iterations of the outer loop and the inner loop has average case O(1) iterations per
iteration of the outer loop. The analysis in Sections 4 and 5 predicts the following asymp-
totic space and time complexity of the Tapenade and checkpointVLAD variants that
compute derivatives on this particular example:

space time
primal O(1) O(n)
Tapenade no checkpointing O(n) O(n)

Tapenade divide-and-conquer checkpointing O(1) O (n d
√
n)

checkpointVLAD no checkpointing O(n) O(n)
checkpointVLAD divide-and-conquer checkpointing O(logn) O(n logn)

The efficacy of our method can be seen in the plots (Fig. 22) of the observed space and
time usage of the above two Fortran variants and the above two checkpointVLAD
variants with varying n. We observe that Tapenade space and time usage grows with n

for all cases. checkpointVLAD space and time usage grows with n with
←Ð
J . check-

pointVLAD space usage is constant with
✓
J . checkpointVLAD time usage grows

with n with
✓
J . Only the first three data points are shown for the checkpointVLAD
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Listing 2 A rendering of the example from Listing 1 in checkpointVLAD. Space and time overhead of two

variants of this example when run under checkpointVLAD are presented in Fig. 22. The variant for divide-and-
conquer checkpointing is shown. The variant with no checkpointing replaces checkpoint-*j with *j.

(define (car (cons car cdr)) car)

(define (cdr (cons car cdr)) cdr)

(define (ilog2 n) (floor (/ (log n) (log 2))))

(define (f n x)
(let outer ((i 1) (y x))
(if (> i n)

y
(outer
(+ i 1)
(let ((m (expt

2
(- (ilog2 n)

(ilog2
(+ 1 (modulo (* (* (floor (expt 3 x)) i)

1007)
n)))))))

(let inner ((j 1) (y y))
(if (> j m)

y
(inner (+ j 1) (sqrt (* y y))))))))))

(let* ((n (read-real ))
(x (read-real ))
(y-grave (read-real ))
(result (checkpoint-*j (lambda (x) (f n x)) x y-grave )))

(cons (write-real (car result )) (write-real (cdr result ))))

variant without checkpointing as the tape needed for this example exceeds our available
RAM with large n.

The crucial aspect of this example is that we observe sublinear space usage over-
head with divide-and-conquer checkpointing in checkpointVLAD but not with such
in Tapenade.10 The reason that we fail to observe sublinear space usage overhead with
divide-and-conquer checkpointing in Tapenade is that the space overhead guarantees
only hold when the asymptotic time complexity of the loop body does not exceed the
asymptotic space complexity of the whole primal computation. In this case, the sublin-
ear space overhead guarantee would only hold if the asymptotic time complexity of the
loop body is O(1). Since the asymptotic time complexity of the loop body is O(n), the
requisite tape size grows with O(n) even though the number of snapshots, and the size
of those snapshots, is bounded by a constant.

The purpose of this example is simply to illustrate our central claim:

Situations arise where placing split points only at loop iteration boundaries can fail to yield
the sublinear space overhead of divide-and-conquer checkpointing while placement of split
points at arbitrary execution points will yield the sublinear space overhead of divide-and-

10Technically, the space and time usage overhead of the checkpointVLAD variant of this example with divide-
and-conquer checkpointing should be logarithmic. It is difficult to see that precise overhead in the plots. The

observed overhead appears to be constant. We are not sure why. Perhaps, the memory usage is so low, under
about 10MB, that the fixed memory required by the code, the libraries, the stack, and memory management
swamps the memory usage for the snapshots and tape. Moreover, the memory hierarchy of modern computers,

i.e., caches, translate lookaside buffers, virtual memory, operating-system overhead, and the algorithms employed

by memory management obscure time measurement. Furthermore, a logarithmic factor for both space and time
is difficult to observe in log-log plots. But nothing turns on this. Asymptotic complexity is a model that holds in

the limit; observations short of that limit often fail to fit the model. In our case, we are doing better than the
model prediction, not worse. Our next example, below, shows that our implementation of checkpointVLAD does
indeed exhibit the theoretical logarithmic space and time usage overhead.
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Figure 22. Space and time usage of reverse-mode AD with and without divide-and-conquer checkpointing for the
example in Listings 1 and 2. Space and time usage was measured with /usr/bin/time --verbose.

conquer checkpointing.

This example illustrates that divide-and-conquer checkpointing in Tapenade, including
binomial checkpointing, can fail to yield sublinear space overhead in situations where
checkpointVLAD can exhibit such.

Our contribution is the method discussed in Section 3 for building language implemen-
tations, both interpreted and compiled, that support divide-and-conquer checkpointing
where placement of split points at arbitrary execution points will yield the desired sublin-
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ear space and time overhead. We have implemented our method, both as an interpreter,
as a hybrid compiler/interpreter, and as a compiler, to illustrate our contribution and
provide concrete documentation to others who wish to build upon our work. We do not
view our implementation artifacts themselves as contributions. We make no claim that
our implementations are particularly useful or efficient. They may exhibit poor constant
factors and otherwise be unusable. Thus the comparison of absolute space and time usage
between Tapenade and checkpointVLAD is unwarranted. The plots in Fig. 22 serve
solely to illustrate our central claim and the fact that our method succeeds in achieving
our objective: sublinear space overhead of divide-and-conquer checkpointing with place-
ment of split points at arbitrary execution points. We leave it to others to build upon
our work and incorporate our method into a useful and efficient implementation.

To illustrate that our method has the potential to scale to larger programs, we run a
slightly larger example, computing the gradient of the determinant of a matrix, a varia-
tion of an example from [13]. Here, the determinant is computed by Gaussian elimination
without pivoting. To reduce the output to a single number that can be checked for cor-
rectness, we compute the determinant of the gradient of the determinant of the identity
matrix. We do this for n × n matrices of varying n. Fortran and checkpointVLAD
implementations of this example are shown in Listings 3 and 4. Again, we run the variants
with Tapenade and checkpointVLAD the same two ways as the previous example.

For this example, n is the number of rows or columns in the matrix. Using the notation
from Section 4, the maximal space usage of the primal for this example should be w =

O(n2). The time required by the primal for this example should be t = O(n3). However,
checkpointVLAD does not provide arrays with constant time access and update; such
is emulated with nested lists and has O(n) access and update. Thus the time required by
the primal for this example with checkpointVLAD should be t = O(n4). The analysis
in Sections 4 and 5 predicts the following asymptotic space and time complexity of the
Tapenade and checkpointVLAD variants that compute derivatives on this particular
example:

space time
Fortran primal O(n2) O(n3)

Tapenade no checkpointing O(n3) O(n3)

Tapenade divide-and-conquer checkpointing O(n2) O (n3 d
√
n)

checkpointVLAD primal O(n2) O(n4)

checkpointVLAD no checkpointing O(n3) O(n4)

checkpointVLAD divide-and-conquer checkpointing O(n2 logn) O(n4 logn)

In this case, the fixed space overhead guarantee of Tapenade should hold because the
asymptotic time complexity of the body of the outer loop is O(n2) which is the same
as the asymptotic time complexity of the whole primal. Nominally, the tape required by
checkpointVLAD without checkpointing should be O(n4). But even though that is
the time complexity, the tape length is the number of arithmetic operations, which is
only O(n3).

Observed space and time usage for varying n of the Fortran/Tapenade variants are
shown in Fig. 23. Those for the checkpointVLAD variants are shown in Fig. 24. We
overlay fits of the expected complexity classes obtained by linear regression on all but the
space and time usage of the Fortran/Tapenade variant without checkpointing because
these fits are poor for unknown reasons. Such is not our concern here. The other fits
seem quite good. This suggests that, on this example, divide-and-conquer checkpointing
in both Tapenade and checkpointVLAD exhibit the expected sublinear space and
time overhead.
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Listing 3 Fortran determinant example. This example is rendered in checkpointVLAD in Listing 4. Space and

time overhead of two variants of this example when run under Tapenade are presented in Fig. 23. The pragma
used for the variant with divide-and-conquer checkpointing of the outer DO loop is shown. This pragma is removed

for the variant with no checkpointing.

subroutine ident(n, a)
double precision a(n, n)
do i = 1, n

do j = 1, n
a(i, j) = 0.0d0
if (i.eq.j) a(i, j) = 1.0d0

end do
end do
end

subroutine det(n, a, d)
include ’determinant.inc’
double precision a(n, n), b(nn , nn), c, d, e
do i = 1, n

do j = 1, n
b(i, j) = a(i, j)

end do
end do
d = 1.0d0

c$ad binomial -ckp n+1 30 1
do i = 1, n

c = b(i, i)
d = d*c
do j = i, n

b(i, j) = b(i, j)/c
end do
do j = i+1, n

e = b(j, i)
do k = i+1, n

b(j, k) = b(j, k)-e*b(i, k)
end do

end do
end do
end

program main
include ’determinant.inc’
double precision a(nn , nn), ab(nn , nn), d, db
read *, n
call ident(n, a)
call det(n, a, d)
db = 1.0d0
call det_b(n, a, ab , d, db)
call det(n, ab , d)
print *, d
end

7. Discussion

The techniques described above are relevant to current research trends and can be made
efficient with currently available implementation technology.

7.1 Deep Learning

Simple deep or recurrent neural networks are systems of the basic form y(t + 1) =

f(y(t),w) where w is to be found so as to optimize some functional E of the map-
ping y(0) ↦ y(T ). This is typically done using a gradient method, with the gradient
∇wE calculated using reverse-mode AD [25]. A variety of methods have been developed
to allow this optimization to be successful, under the general rubric of “Deep Learning”
[12, 22, 31]. The storage overhead of doing this has, for both very deep networks and
recurrent networks that run for a considerable number of time steps, come to severely
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Listing 4 A rendering of the example from Listing 3 in checkpointVLAD. Space and time overhead of two

variants of this example when run under checkpointVLAD are presented in Fig. 24. The variant for divide-and-
conquer checkpointing is shown. The variant with no checkpointing replaces checkpoint-*j with *j.

(define (car (cons car cdr)) car)

(define (cdr (cons car cdr)) cdr)

(define (matrix-rows a)
(if (null? a) 0 (+ (matrix-rows (cdr a)) 1)))

(define (list-ref l i)
(if (zero? i) (car l) (list-ref (cdr l) (- i 1))))

(define (matrix-ref a i j) (list-ref (list-ref a i) j))

(define (list-set l i x)
(if (zero? i)

(cons x (cdr l))
(cons (car l) (list-set (cdr l) (- i 1) x))))

(define (matrix-set a i j x)
(list-set a i (list-set (list-ref a i) j x)))

(define (map-n f n)
(if (zero? n) ’() (cons (f (- n 1)) (map-n f (- n 1)))))

(define (identity-matrix n)
(map-n (lambda (i) (map-n (lambda (j) (if (= i j) 1 0)) n)) n))

(define (determinant a)
(let ((n (matrix-rows a)))
(let loop ((i 0) (b a) (d 1))
(if (= i n)

d
(let* ((c (matrix-ref b i i))

(b (let loop ((j i) (b b))
(if (= j n)

b
(loop (+ j 1)

(matrix-set
b i j (/ (matrix-ref b i j) c)))))))

(loop
(+ i 1)
(let loop ((j (+ i 1)) (b b))
(if (= j n)

b
(loop
(+ j 1)
(let ((e (matrix-ref b j i)))
(let loop ((k (+ i 1)) (b b))
(if (= k n)

b
(loop (+ k 1)

(matrix-set
b j k
(- (matrix-ref b j k)

(* e (matrix-ref b i k)))))))))))
(* d c)))))))

(write-real
(determinant
(cdr
(checkpoint-*j determinant (identity-matrix (read-real )) 1))))

tax the limits of existing platforms. In response to this, variants of divide-and-conquer
checkpointing in reverse-mode AD have been rediscovered and deployed by that commu-
nity [9, 16]. These implementations are far from automatic, and depend on compile-time
analysis of the static primal flow graphs. For this reason, the work on divide-and-conquer
checkpointing in reverse mode in the AD community may have important applications
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Figure 23. Space and time usage of reverse-mode AD with and without divide-and-conquer checkpointing for the
example in Listing 3. Space and time usage was measured with /usr/bin/time --verbose.

in deep learning—and the deep learning community may have new ideas of interest to
the AD community as well [6, 23].

7.2 Implementation Technologies

One can use posix fork() to implement the general-purpose interruption and resumption
interface, allowing it to apply in the host, rather than the target, and thus it could be
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Figure 24. Space and time usage of reverse-mode AD with and without divide-and-conquer checkpointing for the
example in Listings 4. Space and time usage was measured with /usr/bin/time --verbose.

used to provide an overloaded implementation of divide-and-conquer checkpointing in a
fashion that was largely transparent to the user [13]. However, the Associate Editor of
this journal has reported that

It was found to be rather slow and not further pursued by the author.

Indeed, [13] reports:

For example, the calculation of a 10 × 10 determinant using Legendre’s rule involves
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10! = 3,628,800 multiplications and additions or subtractions. Since the determinant was
computed using a recursive function call, many assignments and so-called death notices
had to be recorded. These overhead operations brought the total length of the tape to
almost T = 814 megabytes, corresponding to nearly a million computational steps of one
kilobyte size. As predicted by the theory this problem could be solved for the combination
d = t = 12. The computing time was extensive, because all forward sweeps were performed
with recording for programming simplicity. An efficient version is currently being developed.

and the last paragraph of [13] states:

For the sake of user convenience and computational efficiency, it would be ideal if reverse
automatic differentiation were implemented at the compiler level.

We have exhibited such a compiler. As shown in Section 6, not only can we compute the
derivative of the determinant of a 10 × 10 matrix with a total of 4048 kilobytes in 0.38
seconds, we can do so for a 100×100 matrix with a total of 82560 kilobytes in 44056.15 sec-
onds. Even with this, our implementation is not as efficient as Tapenade. There can be
a number of reasons for this. First, Fortran unboxes double precision numbers whereas
checkpointVLAD boxes them. This introduces storage allocation, reclamation, and
access overhead for arithmetic operations. Second, array access and update in Fortran
take constant time whereas access and update in checkpointVLAD take linear time.
Array update in checkpointVLAD further involves storage allocation and reclama-
tion overhead. Third, Tapenade implements the base case reverse mode of divide-and-
conquer checkpointing using source-code transformation whereas checkpointVLAD
implements it with operator overloading. In particular, the dynamic method for sup-
porting nesting involves tag dispatch for every arithmetic operation.

We have exhibited a very aggressive compiler (Stalin∇) for vlad that ameliorates
some of these issues. It unboxes double precision numbers and implements AD via source-
code transformation instead of operator overloading as is done by checkpointVLAD.
This allows it to have numerical performance rivaling Fortran. While it does not sup-
port constant-time array access and update, methods that are well-known in the pro-
gramming languages community (e.g., monads and uniqueness types) can be used to
add such. But it does not include support for divide-and-conquer checkpointing. How-
ever, there is no barrier, in principle, to supporting divide-and-conquer checkpointing,
of the sort described above, in an aggressive optimizing compiler that implements AD
via source-code transformation. One would simply need to reformulate the source-code
transformations that implement AD, along with the aggressive compiler optimizations, in
CPS instead of direct style. Moreover, the techniques presented here could be integrated
into other compilers for other languages that generate target code in CPS by instrument-
ing the CPS conversion with step counting, step limits, and limit-check interruptions.11

A driver can be wrapped around such code to implement
✓
J . For example, existing com-

pilers, like sml/nj [5], for functional languages like sml, already generate target code in
CPS, so it seems feasible to adapt such to the purpose of AD with divide-and-conquer
checkpointing. In fact, the overhead of the requisite instrumentation for step counting,
step limits, and limit-check interruptions need not be onerous because the step counting,
step limits, and limit-check interruptions for basic blocks can be factored, and those for
loops can be hoisted, much as is done for the instrumentation needed to support storage
allocation and garbage collection in implementations like MLton [44], for languages like
sml, that achieve very low overhead for automatic storage management.

11We note that many optimizing compilers, for example GCC, use an intermediate program representation called
Single Static Assignment, or SSA, which is formally equivalent to CPS [4, 20].
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7.3 Advantages of Functional Languages for Interruption and Resumption

The reason that checkpointVLAD does not support linear-time array update is that
functional languages do not support assignment statements. Thus array updates involve
copying. Functional languages simplify interruption and resumption, allowing such to
be much more efficient. Two different capsules taken at two different execution points
can share common substructure, by way of pointers, without needing to copy that sub-
structure. Indeed, CPS in the checkpointVLAD implementation renders all program
state, including the stack and variables in the environment, as closures, possibly nested.
Creating a capsule simply involves saving a pointer to a closure. Resuming a capsule sim-
ply involves invoking the saved closure, a simple function call that is passed the closure
environment as its argument. The garbage collector can traverse the pointer structure of
the program state to determine the lifetime of a capsule. The interruption and resump-
tion framework need not do so itself. The ability to mutate structure with assignment
statements would foil all that.

7.4 Nesting of AD Operators

It has been argued that the ability to nest AD operators is important in many practical
domains [2, 3, 10, 23, 27–29]. Supporting nested use of AD operators involves many
subtle issues [24, 32, 33]. checkpointVLAD addresses these issues and fully supports
nested use of AD operators. One can write programs of the form

α (λx.(. . . (β f . . .))) . . . (100)

where each of α and β can be any of
Ð→
J ,
←Ð
J , and

✓
J . I.e., one can apply AD to one

function that, in turn, applies AD to another function. This allows one not only to do
forward-over-reverse, reverse-over-forward, and reverse-over-reverse, it also allows one to
do things like divide-and-conquer-reverse-over-forward, reverse-over-divide-and-conquer-
reverse, and even divide-and-conquer-reverse-over-divide-and-conquer-reverse.

There is one catch however. When one applies an AD operator, that application is
considered to be atomic by an application of a surrounding AD operator. This is evident
by the n + 1 in (26), (27), (45), and (58)–(60). What this means is that if α in (100)

were
✓
J , a split point for α could not occur inside f . While this does not affect the

correctness of the result, it could affect the space and time complexity.
The reason for this is that while the semantics of the AD operators are functional,

their internal implementation involves mutation. In particular, to support nesting,
Ð→
J ,

←Ð
J , and

✓
J internally maintain and update an ε tag as described in [32]. The ε tag

is incremented upon entry to an AD operator and decremented upon exit from that
invocation to keep track of the nesting level. All computation within a level must be
performed with the same ε tag. This requires that the entries to and exits from AD

operator invocations obey last-in-first-out sequencing. If α were
✓
J , and the computation

of f were interrupted, then situations could arise where the last-in-first-out sequencing
of β was violated. Moreover, since divide-and-conquer checkpointing executes different
portions of the forward sweep different numbers of times, the number of entries into a
nested AD operator could exceed the number of exits from that operator.

Reverse mode involves a further kind of mutation. The forward sweep creates a tape
represented as a directed acyclic graph. The nodes in this tape contain slots for the
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cotangent values associated with the corresponding primal values. The reverse sweep
operates by traversing this graph to accumulate the cotangents in these slots. Such
accumulations is done by mutation.

The above issues arise because of mutation in the implementation of AD operators.
Conceivably, these could be addressed using methods that are well-known in the pro-
gramming languages community for supporting mutation in functional languages (e.g.,

monads and uniqueness types). Issues arise beyond this, however. If both α and β were
✓
J ,

and
✓
J was not atomic, situations could arise where f could interrupt for α instead of β.

Currently, interruption is indicated by returning instead of calling a continuation. If f
were to return instead of calling a continuation, there is no way to indicate that that
interruption was due to α instead of β. This situation resembles a situation that arises
with probabilistic programming languages. Probabilistic programming languages provide
a sampling operation, a mechanism for sampling from a distribution, and an expectation
operator, a mechanism for aggregating samples into the expectation of a distribution.
Nesting such must obey a last-in-first-out sequencing: a sampling operation must be per-
formed relative to the immediate surrounding expectation operator invocation, not to
one outside that at a higher scope. It is unclear whether this issue could be resolved.

8. Conclusion

Reverse-mode AD with divide-and-conquer checkpointing is an enabling technology, al-
lowing gradients to be efficiently calculated even where classical reverse mode imposes an
impractical storage overhead. We have shown that it is possible to provide an operator
that implements reverse-mode AD with divide-and-conquer checkpointing, implemented
as an interpreter, a hybrid compiler/interpreter, and a compiler, which

● has an identical API to the classical reverse-mode AD operator,
● requires no user annotation,
● takes the entire derivative calculation as the root execution interval, not just the exe-

cution intervals corresponding to the invocations of particular constructs such as DO
loops,

● takes arbitrary execution points as candidate split points, not just the execution points
corresponding to the program points at the boundaries of particular constructs like
the iteration boundaries of DO loops,

● supports both an algorithm that constructs binary checkpoint trees and the treeverse
algorithm that constructs n-ary checkpoint trees,

● supports selection of actual split points from candidate split points using both a bi-
section and a binomial criterion, and

● supports any of the termination criteria of fixed space overhead, fixed time overhead,
or logarithmic space and time overhead,

yet still provides the favorable storage requirements of reverse mode with divide-and-
conquer checkpointing, guaranteeing sublinear space and time overhead.
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