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Abstract. Many problems in machine learning involve objective functions that
are piecewise smooth [7] due to the occurrence of absolute values mins and maxes in
their evaluation procedures. See e.g. [8]. For such function we derived in [3] first
order (KKT) and second order (SSC) optimality conditions, which can be checked on
the basis of a local piecewise linearization [2] that can be computed in an AD like
fashion, e.g. using ADOL-C or Tapenade.

In that analysis, a key assumption on the local piecewise linearization was the
Linear Independence Kink Qualification (LIKQ), a generalization of the Linear Inde-
pendence Constraint Qualification (LICQ) known from smooth Nonlinear Optimiza-
tion. A rather surprising consequence is that checking the optimality conditions is not
at all combinatorial but can be done with a cubic effort like in the classical smooth
case. Moreover, as we show here first under LIKQ with SSC the natural algorithm
of successive piecewise linear optimization with a proximal term (SPLOP) achieves a
linear rate of convergence. A version of SPLOP has already been implemented and
tested in [4, 1].

Secondly, we observe that, even without any kink qualifications, local optimality
of the nonlinear objective always requires local optimality of its piecewise lineariza-
tion, and strict minimality of the latter is in fact equivalent to sharp minimality of the
former. Moreover, we show that SPLOP will converge quadratically to such sharp
minimizers, where the function exhibits linear growth. These results are indepen-
dent of the particular function representation, and allow in particular duplications of
switching variables and other intermediates.

We note that the classical theory for subgradient [9] , proximal [6] and bundle [5]
methods usually only yields convergence rates like 1/sqrt(k) or log(k)/k, where k is
the iteration counter. Only for strongly convex functions a linear convergence rate
can sometimes be established. Our assumptions LIKQ and SSC are certainly quite
strong, but they do not require convexity, even locally, near a minimizer. In case of
the Lasso problem min ||x||1+ρ||Ax−b|| our method coincides with ISTA as described
in [6].

Our current implementation of SPLOPT allows the verification of the theoretical
results mentioned above on the usual set of academic test problems. The number of
outer iterations is usually extremely low compared to more established approaches.
However, the setting up and solving the local piecewise linear problem is not yet
adapted to large structured problems.

In effect we have to solve a sequence of closely related, convex Quadratic Opti-
mization Problems (QOP), while marching through a polyhedral decomposition of the
variable domain. For several aspects, like the selection of the next polyhedron, the
handling of the many locally redundant constraints, and the exploitation of sparsity
there are obvious improvements, which we are currently exploring and implementing.
We expect to present results at least on the Lasso problem [6] and fuzzy pattern trees
as described in [8].
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