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ABSTRACT

Given a collection of images and spoken audio captions, we present a method for
discovering word-like acoustic units in the continuous speech signal and ground-
ing them to semantically relevant image regions. For example, our model is able
to detect spoken instances of the words “lighthouse” within an utterance and as-
sociate them with image regions containing lighthouses. We do not use any form
of conventional automatic speech recognition, nor do we use any text transcrip-
tions or conventional linguistic annotations. Our model effectively implements a
form of spoken language acquisition, in which the computer learns not only to
recognize word categories by sound, but also to enrich the words it learns with
semantics by grounding them in images.

1 INTRODUCTION

1.1 PROBLEM STATEMENT AND MOTIVATION

Automatically discovering words and other elements of linguistic structure from continuous speech
has been a longstanding goal in computational linguists, cognitive science, and other speech pro-
cessing fields. Practically all humans acquire language at a very early age, but this task has proven
to be an incredibly difficult problem for computers. While conventional automatic speech recogni-
tion (ASR) systems have a long history and have recently made great strides thanks to the revival of
deep neural networks (DNNs), their reliance on highly supervised training paradigms has essentially
restricted their application to the major languages of the world, accounting for a small fraction of the
more than 7,000 human languages spoken worldwide (Lewis et al., 2016). The main reason for this
limitation is the fact that these supervised approaches require enormous amounts of very expensive
human transcripts. Moreover, the use of the written word is a convenient but limiting convention,
since there are many oral languages which do not even employ a writing system. In constrast, in-
fants learn to communicate verbally before they are capable of reading and writing - so there is no
inherent reason why spoken language systems need to be inseparably tied to text.

The key contribution of this paper has two facets. First, we introduce a methodology capable of not
only discovering word-like units from continuous speech at the waveform level with no additional
text transcriptions or conventional speech recognition apparatus. Instead, we jointly learn the se-
mantics of those units via visual associations. Although we evaluate our algorithm on an English
corpus, it could conceivably run on any language without requiring any text or associated ASR ca-
pability. Second, from a computational perspective, our method of speech pattern discovery runs in
linear time. Previous work has presented algorithms for performing acoustic pattern discovery in
continuous speech (Park & Glass, 2008; Jansen et al., 2010; Jansen & Van Durme, 2011) without
the use of transcriptions or another modality, but those algorithms are limited in their ability to scale
by their inherent O(n2) complexity, since they do an exhaustive comparison of the data against it-
self. Our method leverages correlated information from a second modality - the visual domain - to
guide the discovery of words and phrases. This enables our method to run in O(n) time, and we
demonstrate it scalability by discovering acoustic patterns in over 522 hours of audio data.
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1.2 PREVIOUS WORK

A sub-field within speech processing that has garnered much attention recently is unsupervised
speech pattern discovery. Segmental Dynamic Time Warping (S-DTW) was introduced by Park &
Glass (2008), which discovers repetitions of the same words and phrases in a collection of untran-
scribed acoustic data. Many subsequent efforts extended these ideas(Jansen et al., 2010; Jansen &
Van Durme, 2011; Dredze et al., 2010; Harwath et al., 2012; Zhang & Glass, 2009). Alternative
approaches based on Bayesian nonparametric modeling (Lee & Glass, 2012; Ondel et al., 2016)
employed a generative model to cluster acoustic segments into phoneme-like categories, and related
works aimed to segment and cluster either reference or learned phoneme-like tokens into word-like
and higher-level units (Johnson, 2008; Goldwater et al., 2009; Lee et al., 2015).

In parallel, the computer vision and NLP communities have begun to leverage deep learning to
create multimodal models of images and text. Many works have focused on generating annotations
or text captions for images (Socher & Li, 2010; Frome et al., 2013; Socher et al., 2014; Karpathy
et al., 2014; Karpathy & Li, 2015; Vinyals et al., 2015; Fang et al., 2015; Johnson et al., 2016). One
interesting intersection between word induction from phoneme strings and multimodal modeling of
images and text is that of Gelderloos & Chrupaa (2016), who uses images to segment words within
captions at the phoneme string level. Several recent papers have taken these ideas beyond text,
and attempted to relate images to spoken audio captions directly at the waveform level (Harwath &
Glass, 2015; Harwath et al., 2016).

While supervised object detection is a standard problem in the vision community, several recent
works have tackled the problem of weakly-supervised or unsupervised object localization (Bergamo
et al., 2014; Cho et al., 2015; Zhou et al., 2015; Cinbis et al., 2016). Although the focus of this
work is discovering acoustic patterns, in the process we jointly associate the acoustic patterns with
clusters of image crops, which we demonstrate capture visual patterns as well.

2 EXPERIMENTAL DATA

We employ a corpus of over 200,000 spoken captions for images taken from the Places205 dataset
(Zhou et al., 2014), corresponding to over 522 hours of speech data. The captions were collected us-
ing Amazon’s Mechanical Turk service, in which workers were shown images and asked to describe
them verbally in a free-form manner. Our data collection scheme is described in detail in Harwath
et al. (2016), but the experiments in this paper leverage nearly twice the amount of data. For training
our multimodal neural network as well as the pattern discovery experiments, we use a subset of
214,585 image/caption pairs, and we hold out a set of 1,000 pairs for evaluating the performance
of the multimodal network’s retrieval ability. Because we lack ground truth text transcripts for the
data, we used Google’s Speech Recognition public API to generate proxy transcripts which we use
when analyzing our system. Note that the ASR was only used for analysis of the results, and was
not involved in any of the learning.

3 AUDIO-VISUAL EMBEDDING NEURAL NETWORKS

We first train a deep multimodal embedding network similar in spirit to the one described in Har-
wath et al. (2016), but with a more sophisticated architecture. The model is trained to map entire
image frames and entire spoken captions into a shared embedding space; however, as we will show,
the trained network can then be used to localize patterns corresponding to words and phrases within
the spectrogram, as well as visual objects within the image by applying it to small sub-regions of
the image and spectrogram. The model is comprised of two branches, one which takes as input im-
ages, and the other which takes as input spectrograms. The image network is formed by taking the
off-the-shelf VGG 16 layer network (Simonyan & Zisserman, 2014) and replacing the softmax clas-
sification layer with a linear transform which maps the 4096-dimensional activations of the second
fully connected layer into our 1024-dimensional multimodal embedding space. In our experiments,
the weights of this projection layer are trained, but the layers taken from the VGG network below
it are kept fixed. The second branch of our network analyzes speech spectrograms as if they were
black and white images. Our spectrograms are computed using 40 log Mel filterbanks with a 25ms
Hamming window and a 10ms shift. Therefore, the input to this branch always has 1 color channel
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and is always 40 pixels high (corresponding to the 40 Mel filterbanks), but the width of the spec-
trogram varies depending upon the duration of the spoken caption, with each pixel corresponding to
approximately 10 milliseconds worth of audio. The specific network architecture we use is shown
below, where C denotes the number of convolutional channels, W is filter width, H is filter height,
and S is pooling stride.

1. Convolution with C=128, W=1, H=40, ReLU
2. Convolution with C=256, W=11, H=1, ReLU, maxpool with W=3, H=1, S=2
3. Convolution with C=512, W=17, H=1, ReLU, maxpool with W=3, H=1, S=2
4. Convolution with C=512, W=17, H=1, ReLU, maxpool with W=3, H=1, S=2
5. Convolution with C=1024, W=17, H=1, ReLU
6. Meanpool over entire caption width followed by L2 normalization

In practice during training, we restrict the caption spectrograms to all be 1024 frames wide (i.e.,
10sec of speech) by applying truncation or zero padding; this introduces computational savings and
was shown in Harwath et al. (2016) to only slightly degrade the performance. Additionally, both the
images and spectrograms are mean normalized before training. The overall multimodal network is
formed by tying together the image and audio branches with a layer which takes both of their output
vectors and computes an inner product between them, representing the similarity score between a
given image/caption pair. We train the network to assign high scores to matching image/caption
pairs, and lower scores to mismatched pairs. The objective function and training procedure we use
is identical to that described in Harwath et al. (2016), but we briefly describe it here.

Within a minibatch of B image/caption pairs, let Spj , j = 1, . . . , B denote the similarity score of
the jth image/caption pair as output by the neural network. Next, for each pair we randomly sample
one impostor caption and one impostor image from the same minibatch. Let Sij denote the similarity
score between the jth caption and its impostor image, and Scj be the similarity score between the
jth image and its impostor caption. The total loss for the entire minibatch is then computed as

L(θ) =
B∑
j=1

max(0, Scj − S
p
j + 1) + max(0, Sij − S

p
j + 1). (1)

We train the neural network with 50 epochs of stochastic gradient descent using a batch size B =
128, a momentum of 0.9, and a learning rate of 1e-5 which is set to geometrically decay by a factor
between 2 and 5 every 5 to 10 epochs.

4 FINDING AND CLUSTERING AUDIO-VISUAL CAPTION GROUNDINGS

Although we have trained our multimodal network to compute embeddings at the granularity of
entire images and entire caption spectrograms, we can easily apply it in a more localized fashion.
In the case of images, we can simply take any arbitrary crop of an original image and resize it
to 224x224 pixels. The audio network is even more trivial to apply locally, because it is entirely
convolutional and the final mean pooling layer ensures that the output will be a 1024-dim vector no
matter the extent of the input. The bigger question is where to locally apply the networks in order to
discover meaningful acoustic and visual patterns.

Given an image and its corresponding spoken audio caption, we use the term grounding to refer
to extracting meaningful segments from the caption and associating them with an appropriate sub-
region of the image. For example, if an image depicted a person eating ice cream and its caption
contained the spoken words “A person is enjoying some ice cream,” an ideal set of groundings would
entail the acoustic segment containing the word “person” linked to a bounding box around the per-
son, and the segment containing the word “ice cream” linked to a box around the ice cream. We use
a constrained brute force ranking scheme to evaluate all possible groundings (with a restricted gran-
ularity) between an image and its caption. Specifically, we divide the image into a grid, and extract
all of the image crops whose boundaries sit on the grid lines. Because we are mainly interested in
extracting regions of interest and not high precision object detection boxes, to keep the number of
proposal regions under control we impose several restrictions. First, we use a 10x10 grid on each
image regardless of its original size. Second, we define minimum and maximum aspect ratios as 2:3
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and 3:2 so as not to introduce too much distortion and also to reduce the number of proposal boxes.
Third, we define a minimum bounding width as 30% of the original image width, and similarly a
minimum height as 30% of the original image height. In practice, this results in a few thousand
proposal regions per image.

To extract proposal segments from the audio caption spectrogram, we similarly define a 1-dim grid
along the time axis, and consider all possible start/end points at 10 frame (pixel) intervals. We
impose minimum and maximum segment length constraints at 50 and 100 frames (pixels), implying
that our discovered acoustic patterns are restricted to fall between 0.5 and 1 second in duration. The
number of proposal segments will vary depending on the caption length, and typically number in the
several thousands. Note that when learning groundings we consider the entire audio sequence, and
do not incorporate the 10sec duration constraint imposed during the first stage of learning.

Figure 1: An example of our grounding method. The left image displays a grid defining the allowed
start and end coordinates for the bounding box proposals. The bottom spectrogram displays several
audio region proposals drawn as the families of stacked red line segments. The image on the right
and spectrogram on the top display the final output of the grounding algorithm. The top spectrogram
also displays the time-aligned text transcript of the caption, so as to demonstrate which words were
captured by the groundings. In this example, the top 3 groundings have been kept, with the colors
indicating the audio segment which is grounded to each bounding box.

Once we have extracted a set of proposed visual bounding boxes and acoustic segments for a given
image/caption pair, we use our multimodal network to compute a similarity score between each
unique image crop/acoustic segment pair. Each triplet of an image crop, acoustic segment, and
similarity score constitutes a proposed grounding. A naive approach would be to simply keep the
top N groundings from this list, but in practice we ran into two problems with this strategy. First,
many proposed acoustic segments capture mostly silence due to pauses present in natural speech.
We solve this issue by using a simple voice activity detector (VAD) which was trained on the TIMIT
corpus(Garofolo et al., 1993). If the VAD estimates that 40% or more of any proposed acoustic
segment is silence, we discard that entire grounding. The second problem we ran into is the fact
that the top of the sorted grounding list is dominated by highly overlapping acoustic segments. This
makes sense, because highly informative content words will show up in many different groundings
with slightly perturbed start or end times. To alleviate this issue, when evaluating a grounding from
the top of the proposal list we compare the interval intersection over union (IOU) of its acoustic
segment against all acoustic segments already accepted for further consideration. If the IOU exceeds
a threshold of 0.1, we discard the new grounding and continue moving down the list. We stop
accumulating groundings once the scores fall to below 50% of the top score in the “keep” list, or
when 10 groundings have been added to the “keep” list, whichever comes first. Figure 1 displays a
pictorial example of our grounding procedure.
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Once we have completed the grounding procedure, we are left with a small set of regions of interest
in each image and caption spectrogram. We use the respective branches of our multimodal network
to compute embedding vectors for each grounding’s image crop and acoustic segment. We then
employ k-means clustering separately on the collection of image embedding vectors as well as the
collection of acoustic embedding vectors. The last step is to establish an affinity score between each
image cluster I and each acoustic cluster A; we do so using the equation

Affinity(I,A) =
∑
i∈I

∑
a∈A

i>a · Pair(i,a) (2)

where i is an image crop embedding vector, a is an acoustic segment embedding vector, and
Pair(i,a) is equal to 1 when i and a belong to the same grounding pair, and 0 otherwise. After
clustering, we are left with a set of acoustic pattern clusters, a set of visual pattern clusters, and a set
of linkages describing which acoustic clusters are associated with which image clusters. In the next
section, we investigate the properties of these clusters in more detail.

5 EXPERIMENTS AND ANALYSIS

We trained our multimodal network on a set of 214,585 image/caption pairs, and vetted it with an
image search (given caption, find image) and annotation (given image, find caption) task similar to
the one used in Harwath et al. (2016); Karpathy et al. (2014); Karpathy & Li (2015). The image
annotation and search recall scores on a 1,000 image/caption pair held-out test set are shown in
Table 1, and are compared against the model architecture used in Harwath et al. (2016). We then
performed the grounding and pattern clustering steps on the entire training dataset. This resulted in
a total of 1,161,305 unique grounding pairs.

In order to evaluate the acoustic pattern discovery and clustering, we wish to assign a label to each
cluster and cluster member, but this is not completely straightforward since each acoustic segment
may capture part of a word, a whole word, multiple words, etc. Our strategy is to force-align the
Google recognition hypothesis text to the audio, and then assign a label string to each acoustic
segment based upon which words it overlaps in time. The alignments are created with the help of a
Kaldi (Povey et al., 2011) speech recognizer based on the standard WSJ recipe and trained using the
Google ASR hypothesis as a proxy for the transcriptions. Any word whose duration is overlapped
30% or more by the acoustic segment is included in the label string for the segment. We then
employ a majority vote scheme to derive the overall cluster labels. When computing the purity of a
cluster, we count a cluster member as matching the cluster label as long as the overall cluster label
appears in the member’s label string. In other words, an acoustic segment overlapping the words “the
lighthouse” would receive credit for matching the overall cluster label “lighthouse”. Several example
clusters and a breakdown of the labels of their members are shown in Table 2. We investigated some
simple schemes for predicting highly pure clusters, and found that the empirical variance of the
cluster members (average squared distance to the cluster centroid) was a good indicator. Figure 2
displays a scatter plot of cluster purity weighted by the natural log of the cluster size against the
empirical variance. Large, pure clusters are easily predicted by their low empirical variance, while
a high empirical variance is indicative of a garbage cluster.

Ranking a set of k = 500 acoustic clusters by their variance, Table 3 displays some statistics for the
50 lowest-variance clusters. We see that most of the clusters are very large and highly pure, and their
labels reflect interesting object categories being identified by the neural network. We additionally
compute the coverage of each cluster by counting the total number of instances of the cluster label
anywhere in the training data, and then compute what fraction of those instances were captured
by the cluster. We notice many examples of high coverage clusters, e.g. the “skyscraper” cluster
captures 84% of all occurrences of the word “skyscraper” anywhere in the training data, while the
“baseball” cluster captures 86% of all occurrences of the word “baseball”. This is quite impressive
given the fact that no conventional speech recognition was employed, and neither the multimodal
neural network nor the grounding algorithm had access to the text transcripts of the captions.

To get an idea of the impact of the k parameter as well as a variance-based cluster pruning threshold
based on Figure 2, we swept k from 250 to 2000 and computed a set of statistics shown in Table
4. We compute the standard overall cluster purity evaluation metric in addition to the average cov-
erage across clusters. The table shows the natural tradeoff between cluster purity and redundancy
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(indicated by the average cluster coverage) as k is increased. In all cases, the variance-based clus-
ter pruning greatly increases both the overall purity and average cluster coverage metrics. We also
notice that more unique cluster labels are discovered with a larger k.

Next, we examine the image clusters. Figure 3 displays the 9 most central image crops for a set
of 10 different image clusters, along with the majority-vote label of each image cluster’s associated
audio cluster. In all cases, we see that the image crops are highly relevant to their audio cluster label.
We include many more example image clusters in Appendix A.

Finally, we wish to examine the semantic embedding space in more depth. We took the top 150
clusters from the same k = 500 clustering run described in Table 3 and performed t-SNE (van der
Maaten & Hinton, 2008) analysis on the cluster centroid vectors. We projected each centroid down
to 2 dimensions and plotted their majority-vote labels in Figure 4. Immediately we see that different
clusters which capture the same label closely neighbor one another, indicating that distances in the
embedding space do indeed carry information discriminative across word types (and suggesting that
a more sophisticated clustering algorithm than k-means would perform better). More interestingly,
we see that semantic information is also reflected in these distances. The cluster centroids for “lake,”
“river,” “body,” “water,” “waterfall,” “pond,” and “pool” all form a tight meta-cluster, as do “restau-
rant,” “store,” “shop,” and “shelves,” as well as “children,” “girl,” “woman,” and “man.” Many other
semantic meta-clusters can be seen in Figure 4, suggesting that the embedding space is capturing
information that is highly discriminative both acoustically and semantically.

Table 1: Results for image search and annotation on the Places audio caption data (214k training
pairs, 1k testing pairs). Recall is shown for the top 1, 5, and 10 hits. The model we use in this
paper is compared against the meanpool variant of the model architecture presented in Harwath
et al. (2016). For both training and testing, the captions were truncated/zero-padded to 10 seconds.

Search Annotation
Model R@1 R@5 R@10 R@1 R@5 R@10

(Harwath et al., 2016) 0.090 0.261 0.372 0.098 0.266 0.352
This work 0.112 0.312 0.431 0.120 0.307 0.438

Figure 2: Scatter plot of audio cluster purity
weighted by log cluster size against cluster
variance for k = 500 (least-squares line su-
perimposed).

Word Count Word Count

ocean 2150 castle 766
(silence) 127 (silence) 70
the ocean 72 capital 39

blue ocean 29 large castle 24
body ocean 22 castles 23

oceans 16 (noise) 21
ocean water 16 council 13

(noise) 15 stone castle 12
of ocean 14 capitol 10

oceanside 14 old castle 10

Table 2: Examples of the breakdown of
word/phrase identities of several acoustic clusters

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated that a neural network trained to associate images with the wave-
forms representing their spoken audio captions can successfully be applied to discover and cluster
acoustic patterns representing words or short phrases in untranscribed audio data. An analogous
procedure can be applied to visual images to discover visual patterns, and then the two modali-
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sky grass sunset ocean river

castle couch wooden lighthouse train

Figure 3: The 9 most central image crops from several image clusters, along with the majority-vote
label of their most associated acoustic pattern cluster

Table 3: Top 50 clusters with k = 500 sorted by increasing variance. Legend: |Cc| is acoustic
cluster size, |Ci| is associated image cluster size, Pur. is acoustic cluster purity, σ2 is acoustic
cluster variance, and Cov. is acoustic cluster coverage. A dash (-) indicates a cluster whose majority
label is silence.

Trans |Cc| |Ci| Pur. σ2 Cov. Trans |Cc| |Ci| Pur. σ2 Cov.

- 1059 3480 0.70 0.26 - snow 4331 3480 0.85 0.26 0.45
desert 1936 2896 0.82 0.27 0.67 kitchen 3200 2990 0.88 0.28 0.76

restaurant 1921 2536 0.89 0.29 0.71 mountain 4571 2768 0.86 0.30 0.38
black 4369 2387 0.64 0.30 0.17 skyscraper 843 3205 0.84 0.30 0.84
bridge 1654 2025 0.84 0.30 0.25 tree 5303 3758 0.90 0.30 0.16
castle 1298 2887 0.72 0.31 0.74 bridge 2779 2025 0.81 0.32 0.41

- 2349 2165 0.31 0.33 - ocean 2913 3505 0.87 0.33 0.71
table 3765 2165 0.94 0.33 0.23 windmill 1458 3752 0.71 0.33 0.76

window 1890 2795 0.85 0.34 0.21 river 2643 3204 0.76 0.35 0.62
water 5868 3204 0.90 0.35 0.27 beach 1897 2964 0.79 0.35 0.64
flower 3906 2587 0.92 0.35 0.67 wall 3158 3636 0.84 0.35 0.23

sky 4306 6055 0.76 0.36 0.34 street 2602 2385 0.86 0.36 0.49
golf course 1678 3864 0.44 0.36 0.63 field 3896 3261 0.74 0.36 0.37

tree 4098 3758 0.89 0.36 0.13 lighthouse 1254 1518 0.61 0.36 0.83
forest 1752 3431 0.80 0.37 0.56 church 2503 3140 0.86 0.37 0.72
people 3624 2275 0.91 0.37 0.14 baseball 2777 1929 0.66 0.37 0.86
field 2603 3922 0.74 0.37 0.25 car 3442 2118 0.79 0.38 0.27

people 4074 2286 0.92 0.38 0.17 shower 1271 2206 0.74 0.38 0.82
people walking 918 2224 0.63 0.38 0.25 wooden 3095 2723 0.63 0.38 0.28

mountain 3464 3239 0.88 0.38 0.29 tree 3676 2393 0.89 0.39 0.11
- 1976 3158 0.28 0.39 - snow 2521 3480 0.79 0.39 0.24

water 3102 2948 0.90 0.39 0.14 rock 2897 2967 0.76 0.39 0.26
- 2918 3459 0.08 0.39 - night 3027 3185 0.44 0.39 0.59

station 2063 2083 0.85 0.39 0.62 chair 2589 2288 0.89 0.39 0.22
building 6791 3450 0.89 0.40 0.21 city 2951 3190 0.67 0.40 0.50

ties can be linked, allowing the network to learn e.g. that spoken instances of the word “train” are
associated with image regions containing trains. This is done without the use of a conventional au-
tomatic speech recognition system and zero text transcriptions, and therefore is completely agnostic
to the language in which the captions are spoken. Further, this is done in O(n) time with respect
to the number of image/caption pairs, whereas previous state-of-the-art acoustic pattern discovery
algorithms which leveraged acoustic data alone run in O(n2) time. We demonstrate the success of
our methodology on a large-scale dataset of over 214,000 image/caption pairs, comprising over 522
hours of spoken audio data. We have shown that the shared multimodal embedding space learned
by our model is discriminative not only across visual object categories, but also acoustically and se-
mantically across spoken words. To the best of our knowledge, this paper contains by far the largest
scale speech pattern discovery experiment ever performed, as well as the first ever successful effort
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Table 4: Clustering statistics of the acoustic clusters for various values of k and different settings
of the variance-based cluster pruning threshold. Legend: |C| = number of clusters remaining after
pruning, |X | = number of datapoints after pruning, Pur = purity, |L| = number of unique cluster
labels, AC = average cluster coverage

σ2 < 0.9 σ2 < 0.65
k |C| |X | Pur |L| AC |C| |X | Pur |L| AC

250 249 1081514 .364 149 .423 128 548866 .575 108 .463
500 499 1097225 .396 242 .332 278 623159 .591 196 .375
750 749 1101151 .409 308 .406 434 668771 .585 255 .450

1000 999 1103391 .411 373 .336 622 710081 .568 318 .382
1500 1496 1104631 .429 464 .316 971 750162 .566 413 .366
2000 1992 1106418 .431 540 .237 1354 790492 .546 484 .271

Figure 4: t-SNE analysis of the 150 lowest-variance audio pattern cluster centroids for k = 500.
Displayed is the majority-vote transcription of the each audio cluster. All clusters shown contained
a minimum of 583 members and an average of 2482, with an average purity of .668.

to learn the semantics of the discovered acoustic patterns by grounding them to patterns which are
jointly discovered in another modality (images).

The future directions in which this research could be taken are incredibly fertile. Because our method
creates a segmentation as well as an alignment between images and their spoken captions, a genera-
tive model could be trained using these alignments. The model could provide a spoken caption for an
arbitrary image, or even synthesize an image given a spoken description. Modeling improvements
are also possible, aimed at the goal of incorporating both visual and acoustic localization into the
neural network itself. Additionally, by collecting a second dataset of captions for our images in a dif-
ferent language, such as Spanish, our model could be extended to learn the acoustic correspondences
for a given object category in both languages. This paves the way for creating a speech-to-speech
translation model not only with absolutely zero need for any sort of text transcriptions, but also with
zero need for directly parallel linguistic data or manual human translations.
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A APPENDIX: ADDITIONAL VISUALIZATIONS OF IMAGE PATTERN
CLUSTERS

beach cliff pool desert field

chair table staircase statue stone

church forest mountain skyscraper trees

waterfall windmills window city bridge

flowers man wall archway baseball

boat shelves cockpit girl children

building rock kitchen plant hallway

10


	Introduction
	Problem Statement and Motivation
	Previous Work

	Experimental Data
	Audio-Visual Embedding Neural Networks
	Finding and Clustering Audio-Visual Caption Groundings
	Experiments and Analysis
	Conclusions and Future Work
	Appendix: Additional Visualizations of Image Pattern Clusters

