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Abstract
Temporal correlation in dynamic magnetic resonance imaging (MRI), such as cardiac MRI, is in-
formative and important to understand motion mechanisms of body regions. Modeling such in-
formation into the MRI reconstruction process produces temporally coherent image sequence and
reduces imaging artifacts and blurring. However, existing deep learning based approaches neglect
motion information during the reconstruction procedure, while traditional motion-guided methods
are hindered by heuristic parameter tuning and long inference time. We propose a novel dynamic
MRI reconstruction approach called MODRN that unitizes deep neural networks with motion in-
formation to improve reconstruction quality. The central idea is to decompose the motion-guided
optimization problem of dynamic MRI reconstruction into three components: dynamic reconstruc-
tion, motion estimation and motion compensation. Extensive experiments have demonstrated the
effectiveness of our proposed approach compared to other state-of-the-art approaches.

1. Introduction

Dynamic magnetic resonance imaging (MRI) is critical in clinical applications, such as cardiovas-
cular and pulmonary. However, high spatiotemporal resolution reconstruction from under-sampled
MRI k-space data is still very challenging due to the lack of gold-standard to clinical practice and
strong dependence on the parameters tuning (Yang et al., 2016). Many works have been proposed
to tackle these challenges. Some of them argued that motion plays a leading role in dynamic recon-
struction because correlation and redundancy exist along the temporal dimension, such as cardiac
moves relatively periodically against the static background (Jung et al., 2010; Jung and Ye, 2010;
Chen et al., 2018). In other computer vision problems, such as video super resolution, motion esti-
mation and compensation are also powerful techniques to further explore the temporal correlations
between video frames (Caballero et al., 2017; Makansi et al., 2017).

Traditional Compressed Sensing (CS) approaches have dominated dynamic reconstruction in
the past few years. Some studies have successfully incorporated the physical motion into the CS
schemes to improve reconstruction performance, either by refining the results after the image re-
construction step (Jung et al., 2009; Bai and Brady, 2011) or embedding the motion estimation
into the reconstruction process (Gigengack et al., 2012; Chen et al., 2018). For both methods,
displacement motion fields or optical flow are calculated to estimate motion between image pairs.
According to the form of motion constraint, many algorithms were proposed, among which, Horn-
Schunck (Horn and Schunck, 1981) and Lucas-Kanade (Lucas and Kanade, 1981) are widely used.
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However, heuristic parameter tuning and long reconstruction time are major drawbacks of these
methods. Additionally, motion estimation itself is still a very difficult task and often produces inac-
curate results if object movement is large or fast.

Recent advances in deep learning technique have sparked the new research interests in MRI
reconstruction. Deep convolutional neural network was proposed to learn mapping directly from
k-space data to fully-sampled reconstructed image, which introduced an interesting way for MRI
reconstruction (Zhu et al., 2018). Compared to CS-based methods, deep learning approaches are
faster in inference and learn the implicit prior automatically based on the training data (Sun et al.,
2016; Schlemper et al., 2017, 2018; Lønning et al., 2018; Qin et al., 2018; Huang et al., 2018). DC-
CNN was introduced in (Schlemper et al., 2017), where a differentiable data consistency (DC) layer
was added into a deep cascaded convolution neural network for both 2D or dynamic reconstruction.
Qin et al. (Qin et al., 2018) efficiently modeled the recurrence of the iterative reconstruction stages
by a recurrent network. However, most of them were derived for 2D reconstruction problem. The
deep learning based dynamic MRI reconstruction problem is largely unsolved yet critical in clinical
scenarios. Especially, all existing state-of-the-art methods did not take motion information into
consideration that may generate blurry or temporal inconsistent results.

To tackle the aforementioned problems of both traditional and deep learning methods, in this
study, we develop a Motion-guided Dynamic Reconstruction Network (MODRN) that utilizes mo-
tion estimation and motion compensation (ME/MC) to improve the reconstruction quality for spa-
tiotemporal imaging. Different from traditional motion estimation algorithms which may fail in low
resolution and weak contrast, we utilize the unsupervised deep learning based optical flow estima-
tion (Ren et al., 2017; Meister et al., 2017), which is more robust and accurate in different scenarios.
To the best of our knowledge, this is the first work that embeds motion information into deep neural
network for dynamic MRI reconstruction. The contribution of this work are three folds. Firstly, we
derive a recurrent neural network from the optimization procedures of model-based dynamic recon-
struction, which simultaneously links the relationship of data over time and iterations. Secondly,
we introduce an unsupervised deep learning based motion estimation method to learn the motion
between the reference image and the reconstructed image by using the combination of forward,
backward and neighboring loss. Finally, we present a motion compensation component for refining
reconstructed image guided by the learned motion.

2. Methodology

In this section, we start with the formulation of dynamic MRI reconstruction problem, followed by
detailed description of our proposed method called Motion-guided Dynamic Reconstruction Net-
work (MODRN).

2.1. Problem Formulation

Given a sequence of under-sampled k-space data {yt}t∈[T ] of T frames, the dynamic MRI recon-
struction problem is to predict reconstructed images {zt}t∈[T ] from {yt}, which can be formalized
as an optimization problem: argmin{zt} Lrec({zt}), where

Lrec({zt}) =
T

∑
t=1

1
2
‖Fu(zt)− yt‖2

2 +λR(zt). (1)
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The term ‖Fu(zt)−yt‖2
2 is used to guarantee data consistency by restricting the reconstructed image

zt to be close to the input measurement yt . Fu(·) is an operator that transforms image-domain zt

into Fourier domain followed by undersampling. R(·) is a regularization function that depends on
the prior knowledge of the input {yt}. Common choices include sparsity in transformed domain
(Lingala et al., 2011), total variation (TV) penalties (Knoll et al., 2012) and low-rank property
(Trzasko et al., 2011). λ is a weighting factor.

In order to capture anatomical motion in the dynamic MRI acquisition, it is natural to incor-
porate motion estimation/motion compensation (ME/MC) technique in the reconstruction process
(Jung et al., 2010). Specifically, based on the brightness constancy assumption (Horn and Schunck,
1981), for a temporal 2D image zt(x,y, t) with small movement (∆x,∆y,∆t) with respect to the next
frame, we add the following motion estimation constraint to the objective function (1):

Lme({vt}) =
T−1

∑
t=1

∥∥∥∥5z>t vt +
∂ zt

∂ t

∥∥∥∥
1
+δ‖vt‖1, (2)

where5zt(x,y) =
(

∂ zt
∂x ,

∂ zt
∂y

)
are the derivatives of image zt at position (x,y), and vt(x,y) =

(
∆x
∆t ,

∆y
∆t

)
is the estimated displacement motion fields or optical flow.

Furthermore, given the estimated motion field vt , the reconstructed image zt can be refined
through MC process, i.e. ct = MC(zt ,z1,zT )+rt , where ct is the motion-compensated reconstructed
image and rt is a residual term for better exploiting temporal redundancy. Therefore, we can derive
the motion compensation constraint as follows.

Lmc({rt}) =
T−1

∑
t=1

1
2
‖Fu(ct)− yt‖2

2 . (3)

By combining with two motion-based constraints of Equations (2) and (3), the motion-guided
dynamic MRI reconstruction problem is defined as:

argmin
{zt ,vt ,rt}

Lrec({zt})+ηLme({vt})+ζLmc({rt}). (4)

The solution to problem (4) is non-trivial and traditional CS-based algorithms are usually compu-
tationally expensive and require long running time for hyper-parameter tuning. Recent advances
in deep learning provide an alternative way for efficient MRI reconstruction, but very few works
focused on the dynamic reconstruction problem and they only targeted for the simpler problem (1)
without considering motion information. To this end, we propose a deep learning based method
called Motion-guided Dynamic Reconstruction Network (MODRN) to solve the problem (4).

2.2. Motion-guided Dynamic Reconstruction Network

Our method dissects the motion-guided dynamic reconstruction problem into three closely-connected
parts: (i) Dynamic Reconstruction (DR) component for estimating initial reconstructed image from
Equation (1), (ii) Motion Estimation (ME) component for generating motion information through
Equation (2), and (iii) Motion Compensation (MC) component for refining reconstructed image
guided by learned motion based on Equation (3).
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Figure 1: Architecture of DR component and the workflow of ConvGRU units B and S.

2.2.1. DYNAMIC RECONSTRUCTION

Instead of directly solving Equation (1), we adopt an iterative process through DR component to
approximate reconstructed images zt . Formally, given under-sampled k-space data {yt}t∈[T ] with
sampled mask Ω, DR component learns to reconstruct images in N iterations:

z(n)t = DR
(

z(n−1)
t ,yt ,Ω

)
⇔


x(n)bt ,b

(n)
t = B

(
fenc(z

(n−1)
t ),b(n−1)

t

)
x(n)st ,s(n)t = S

(
fdec1(x

(n)
bt ),s

(n−1)
t

)
z(n)t = DC

(
fdec2(x

(n)
st )+ z(n−1)

t ,yt ,Ω
) ,n ∈ [N]. (5)

where z(0)t is zero-filling image and z(n)t is the reconstructed image of yt after iteration n. B and S
are two ConvGRU (Ballas et al., 2015) units that respectively output features x(n)bt and x(n)st together
with hidden states b(n)t and s(n)t . fenc and fdec1, fdec2 are convolutional encoder and decoders in the
U-Net (Ronneberger et al., 2015), which is used as the backbone of the DR component to capture
course-to-fine features of reconstructed images. Equation (5) is visualized in figure 1 for better
understanding. One benefit here is that regularization function R(·) in Equation (1) is now built
upon the convolutional network for automated feature learning and hence avoid the requirements of
prior knowledge on the selection of R. DC(·) is the differentiable DC layer (Schlemper et al., 2017)
that takes the same effect as the data consistency term ‖Fu(zt)− yt‖2

2 in Equation (1) to force the
reconstructed image to be consistent with the input data. It fills the reconstructed image zt with the
original values of input data yt in the Fourier domain by the sampled mask Ω.

More importantly, in order to capture dynamic information of image sequence during each it-
eration, we introduce two kinds of ConvGRU units, i.e. B and S, inspired by the work (Qin et al.,
2018) in Equation (5). The difference between B and S is that GRU unit S is used to improve
the performance of image zt over N iterations while the role of B is to connect dynamic informa-
tion of neighboring images zt−1 and zt , which is implemented by initializing hidden state b(0)t as
b(N)

t−1. Finally, we impose l1 loss on the reconstructed images {zN
t } with respect to ground truth for

penalizing.

2.2.2. MOTION ESTIMATION

In analogy to Equation (2), the Motion Estimation (ME) component takes as input the sequence of
reconstructed images {zt}t∈[T ] and learn to predict displacement motion fields {vt}t∈[T ]. As shown
in figure 2, our proposed ME component embraces two parts. One is a FlowNet backboned by
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Figure 2: The network architecture of ME/MC components and ME losses.

convolutional U-Net (U-FlowNet) for motion field estimation. The other is a differentiable sam-
pling layer based on Spatial Transformer Network (STN) (Jaderberg et al., 2015), which endows
convolutional network with the ability to warp the spatial deformation between images. Unlike tra-
ditional optimization algorithms for motion estimation that depend on a strong assumption that the
brightness of two frames should be consistent and the movement of the foreground object is small,
our method does not succumb to any assumption and hence is more applicable in practical dynamic
MRI reconstruction. The performance of ME is heavily affected by noisy input, therefore it is pre-
trained with two fully sampled images zt−1 and zt . The image pair is first fed to the U-FlowNet,
which produces two-channel displacement vt−1 along the x and y directions. Then, the sampling
layer warps zt−1 towards zt by using vt−1 and yields a warping image denoted by z′t through differ-
entiable bilinear interpolation. This leads to a natural re-formalization of motion estimation (ME)
loss `me between zt−1 and zt from Equation (2):

`me(zt−1,zt) =
∥∥z′t − zt

∥∥
1 +β ‖vt−1‖1 + γ ‖vt−1‖TV . (6)

The first term is an image reconstruction loss used to keep the majority of high-frequency parts on
images. Two additional regularization terms reinforce constraints on the motion field vt−1, where
l1 regularization is to suppress unreal large magnitude of displacement and total-variation (TV)
regularization is to make the displacement locally smooth.

In addition, the above loss only enforces temporal consistency between consecutive frames, but
there is no guarantee for long-term coherence. Therefore, we consider to train the U-FlowNet with
three sets of ME losses to capture long-term motion information, as illustrated in figure 2.

Lme({zt}) =
T−1

∑
t=2

`me(z1,zt)+
T−1

∑
t=2

`me(zt ,zT )+
T−2

∑
t=2

`me(zt ,zt+1), (7)

where three terms on the right-hand-side are respectively forward ME loss, backward ME loss and
neighboring ME loss.

2.2.3. MOTION COMPENSATION

Motion Compensated (MC) component is used to refine reconstructed images {zt}t∈[T ] through
motion information and to generate motion compensated image {ct}t∈[T ]. By following the work
(Jung et al., 2010), during the MC stage, we also add two additional fully sampled reference frames
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to learn more accurate displacement motion fields. The pre-trained U-FlowNet is fixed and directly
used as an operator in the MC component. As shown in figure 2, the MC component takes a
reconstructed image zt from the DR component and two reference frame z1 and zT as input. It
first retrieves two warping images z′t and z′′t from the ME component by feeding z1,zt and zt ,zT

respectively. These two images represent forward and backward motion information, which is then
concatenated and fed to a residual network to generate residual information rt , as described in
Equation (3). Finally, the reconstructed image zt together with the residual rt are summed up to
generate the motion-guided refined image ct , which is penalized by l1 loss with respect to the ground
truth image.

3. Experiment

Evaluation Dataset:We experiment with a short-axis (SAX) cardiac dataset composed of 15 pa-
tients. Each subject contains around 12 SAX planes and each plane includes 24 phases (2D images)
that form a whole cardiac cycle. The image resolution is normalized to 1.25mm and image size is
cropped to 152×152 pixels. In order to simulate k-space data, we adopt the same Cartesian under-
sampling method as introduced in (Jung et al., 2007), which assumes that sampled mask Ω follows
a zero-mean Gaussian distribution and keeps 8 center spatial frequencies. We consider two different
settings on the dataset respectively with under-sampling rates of 20% (or acceleration rate 5×) and
12.5% (8×). For convenience, we refer to these two cases as Rate 5× and Rate 8×. We perform
3-fold cross-validation in the following experiments that each fold contains 10 training subjects and
5 test subjects.
Implementation Details:We implement all the deep learning models with PyTorch and train them
on NVIDIA K80. All models are trained for total 80 epochs using Adam optimizer, with initialized
learning rate of 5×10−4 and decreasing rate of 0.5 for every 20 epochs. Due to hardware limitation,
the number of iterations is set to be N = 3 and the length of image sequence is T = 12.

3.1. Comparison to State-of-the-Art

In this experiment, we evaluate the dynamic reconstruction performance of our proposed methods
quantitatively and qualitatively in both cases of Rate 5× and Rate 8×. We consider three variants of
our models: DRN w/o GRU (the one without GRU hidden unit), DRN (the one with DR component

Table 1: Average performance of dynamic MRI reconstruction on the test subjects in both cases of
Rate 5× and Rate 8×. The best results are highlighted in bold font.

Method
NRMSE↓ PSNR↑ SSIM↑ NRMSE↓ PSNR↑ SSIM↑

5× 8×
k-t SLR 0.0934 21.0858 0.6794 0.1054 19.9504 0.6193
k-t FOCUSS 0.0766 22.7471 0.6581 0.0879 21.4063 0.5920
k-t FOCUSS+ME/MC 0.0758 22.8139 0.6701 0.0854 21.6547 0.6131
DC-CNN(3D) 0.0360 29.1292 0.8449 0.0513 25.9709 0.7441
DRN w/o GRU 0.0381 28.7187 0.8286 0.0519 25.9120 0.7448
DRN 0.0349 29.5394 0.8502 0.0485 26.5275 0.7687
MODRN 0.0274 32.0403 0.9104 0.0364 29.4774 0.8702
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Figure 3: NRMSE curves of deep learning methods within one cardiac cycle in two cases.

only) and MODRN (the complete version). We compare with four state-of-the-art approaches in-
cluding k-t SLR (Lingala et al., 2011), k-t FOCUSS (Jung et al., 2009), k-t FOCUSS+ME/MC (Jung
et al., 2010) and DC-CNN (3D) (Schlemper et al., 2017). The first three are traditional CS-based
methods and only k-t FOCUSS+ME/MC includes ME/MC procedures. The last one is also a deep
learning based method that explores spatio-temporal information using 3D convolution. Three com-
mon quantitative metrics are used: root square mean error (NRMSE), peak signal-to-noise ration
(PSNR) and structural similarity index measure (SSIM).
Quantitative Results:The results of all methods are reported in Table 1. We observe that all our
methods consistently outperform four state-of-the-art approaches in both Rate 5× and Rate 8×
cases. In particular, MODRN achieves the best performance for all metrics, mainly attributing to
the motion information exploited by ME/MC components. We also find that DRN outperforms
DRN w/o GRU by a large margin, which indicates the importance of utilizing dynamic sequence of
image.

To further investigate the performance of four deep learning methods, we plot NRMSE values
within a complete cardiac cycle of one example in Figure 3. It shows that our method MODRN
consistently achieves the smallest error of dynamic reconstruction for the sequence of images. In
contrast, the models without ME/MC are unstable along the temporal dimension, especially in the
case of DC-CNN(3D). For example, in the case of Rate 8×, the gap between DRN and MODRN
model become larger, which implies the significance of using motion information.
Qualitative Results:We visualize the reconstructed images and error with respect to ground truth of
all methods in Figure 4. It is obvious that all CS-based methods have streaking artifacts and larger

(a) Ground truth (c) Zero-filling (d) k-t SLR (e) k-t FOCUSS (f) k-t FOCUSS+ME/MC (g) DC-CNN (3D) (h) DRN w/o GRU (i) DRN (j) MODRN

(c) Zero-filling (d) k-t SLR (e) k-t FOCUSS (f) k-t FOCUSS+ME/MC (g) DC-CNN (3D) (h) DRN w/o GRU (i) DRN (j) MODRN(b) Sampling-mask

Figure 4: Visualization of reconstructed images and errors in the case of Rate 8×.
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Method Dice↑ HD↓
Reference 0.8130 1.9254
Lucas-Kanade 0.8125 1.9577
U-FlowNet-A 0.8297 1.8755
U-FlowNet-B 0.8306 1.8584

Table 2: Motion estimation results.

D
R

N
M

O
D

R
N

Frame 1 Error 1 Error 2Frame 2 Frame 3 Error 3

Figure 5: Motion compensation results.

reconstruction error while our MODRN model eliminates the most blurring artifacts and recovers
more high-frequency details.

3.2. Motion Estimation/Compensation Analysis

First, we consider to evaluate the motion estimation results generated by the U-FlowNet from
ME component. Two baseline methods, Reference and Lucas-Kanade, are compared with our U-
FlowNet-A (trained with only neighboring loss) and U-FlowNet-B (trained with combined loss).
Reference method directly calculates metrics using the segmentation of the target phase and the
reference phase. Since it is impractical to obtain the ground truth of optical flow from cardiac
MRI, we compute the overlapped area of the myocardium between the targeting image and the
warping image. In particular, we calculate the average Dice’s score and Hausdorff Distance be-
tween z1 and other frames, zT and other frames and also neighboring frames. The results of 3-fold
cross-validataion are reported in Table 2. We observe that U-FlowNet-B method achieves the best
performance, which indicates that compared with neighboring loss, our combined loss contributes
more to accurate motion estimation with large movement between frames.

Second, we compare the quality of motion-guided refined image by MC component of MODRN
with that of reconstructed image by DRN alone. The results of three consecutive frames are visu-
alized in Figure 5. We can observe clear improvements of MODRN that its reconstruction error is
reduced around cardiac region and no noticeable artifact is generated.

4. Conclusion

We present a novel deep learning based approach called MODRN for motion-guided dynamic MRI
reconstruction problem. It is featured by a dynamic reconstruction (DR) component for preliminary
image reconstruction from under-sampled k-space data, and a motion estimation (ME) component
to predict motion of image sequence, which is further exploited by a motion compensation (MC)
component to refine the motion-guided reconstructed images. We extensively evaluate our approach
on a short-axis cardiac dataset in two settings. The experimental results show the effectiveness of
MODRN compared to state-of-the-art methods and prove the significance of motion information
from ME/MC components.
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